Anion Binding Induces Helicity in a Hydrogen Bonding Receptor: Crystal Structure of a 2,6-Bis(anilinoethynyl)pyrdinium Chloride

Charles A. Johnson II, Orion B. Berryman, Aaron C. Sather, Lev N. Zakharov, Mike M. Haley* and Darren W. Johnson* Department of Chemistry and Materials Science Institute, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA and the Oregon Nanoscience and Microtechnologies Institute (ONAMI) PO Box 2041, Corvallis, Oregon 97339. Fax: 541 346 0481; Tel: 541 346 1695; E-mail: dwj@uoregon.edu, haley@uoregon.edu

Supporting Information: Table of Contents

Receptor Synthesis and Characterization	S2-S3
General Synthesis Experimental	S2
Synthesis of 2,6-bis(anilinoethynyl) pyridine α -chloroacetamide intermediate	S2
Synthesis of 2,6-bis(anilinoethynyl) pyridine α -thioacetate amide (1)	S2
General Preparation of H1 ⁺ Cl ⁻	S3
Variable Temperature NMR Data	S3
¹ H NMR Chemical Shifts of 1 at 300K	\$3
¹ H NMR Chemical Shifts of H1 ⁺ Cl ⁻ at 300 K	\$3
NMR Chemical Shifts of H1 ⁺ Cl ⁻ at 222 K	\$3
¹ H NMR Chemical Shifts of H1 ⁺ Cl ⁻ at 205 K	\$3
Crystallography	\$4
General X-ray Experimental	\$4
References	54

RECEPTOR SYNTHESIS AND CHARACTERIZATION

General: CDCl₃, CD₂Cl₂, d_7 -DMF and d_8 -toluene were obtained from Cambridge Isotope Laboratories, Inc., Andover, MA, and used without further purification. All other materials were obtained from TCl-America, Sigma-Aldrich, Acros and Strem and used as received. All glassware was flame dried immediately prior to use. Nuclear Magnetic Resonance ¹H NMR and ¹³C NMR spectra were recorded on a Varian INOVA 300 (299.935) and 125 (125.751) MHz spectrometer respectively. Variable temperature 1H NMR experiments were performed on a Bruker DRX-600 spectrometer with a 5mm QNP probe. Chemical shifts (δ) are expressed as ppm downfield from tetramethylsilane using either the residual solvent peak as an internal standard (CDCl₃ ¹H: 7.27 ppm, ¹³C: 77.00 ppm). Signal patterns are indicated as br, broad; s, singlet; d, doublet; t, triplet; m, multiplet. Coupling constants (J) are given in hertz. Melting points were determined with a Meltemp II apparatus or a TA Instruments DSC 2920 Modulated DSC. Column chromatography was performed on Whatman reagent grade silica gel (230-400 mesh).

2,6-bis(anilinoethynyl) pyridine α-chloroacetamide intermediate. A solution of chloroacetyl chloride (571 mg, 5.1 mmol) in CH₂Cl₂ (10 mL) was added to a stirred, deoxygenated solution of alkynyl pyridine **2** (395 mg, 0.94 mmol) and Et₃N (379 mg, 3.76 mmol) in CH₂Cl₂ (10 mL). The reaction was stirred for 12 h at rt under N₂ and then concentrated in vacuo. CH₂Cl₂ was added and the organic layer was washed thrice with water, dried over MgSO₄, and concentrated in vacuo. The crude material was filtered through a 2.5 cm silica plug (1:1 hexanes:EtOAc) and concentrated to afford the α-chloroacetamide intermediate (476 mg, 89%) as a pale brown solid. Mp: 193 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.23 (br s, 2H), 8.30 (d, J = 8.3 Hz, 2H), 7.72 (t, J = 8.3 Hz, 1H), 7.64 (d, J = 2.1 Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.43 (dd, J = 8.1, 2.1 Hz, 2H), 4.27 (s, 4H), 1.31 (s, 18H). ¹³C NMR (75 MHz, CDCl₃): δ 163.62, 147.46, 143.19, 136.83, 135.83, 129.32, 127.87, 126.20, 119.07, 111.15, 94.78, 84.80, 43.21, 34.41, 31.10. IR (neat) v 3363, 2962, 2868, 2207, 1691, 1523 cm⁻¹. UV-Vis (CH₂Cl₂): λ_{max} (ε) 254 (52,600), 293 (27,700), 335 (27,600) nm. MS (CI pos) m/z (%): 578 (M⁺+4, 15), 577 (M⁺+3, 23), 576 (M⁺+2, 75), 575 (MH⁺, 38), 574 (M⁺, 100); C₃₃H₃₃Cl₂N₃O₂ (574.54).

2,6-bis(anilinoethynyl) pyridine α-thioacetate amide (1). Potassium thioacetate (16 mg, 0.14 mmol) was added to a stirred, deoxygenated solution of the α-chloro amide intermediate (see above) (34 mg, 0.06 mmol) in DMF (3 mL). The reaction was stirred for 12 h at rt under N₂ and then concentrated in vacuo. The crude material was filtered through a 2.5 cm silica plug (1:1 hexanes:EtOAc) and purified via Chromatotron (2:1 hexanes: EtOAc) to afford **1** (35 mg, 92%) as a spongy light yellow solid. Recrystallization by diffusion (hexanes:EtOAc) afforded colorless crystals. Mp: 94 °C. ¹H NMR (300 MHz, CDCl₃): δ 8.75 (br s, 2H), 8.28 (d, J = 8.7 Hz, 2H), 7.75 (br s, 3H), 7.58 (d, J = 2.4 Hz, 2H), 7.39 (dd, J = 8.7, 2.4 Hz, 2H), 3.76 (s, 4H), 2.34 (s, 6H), 1.28 (s, 18H). ¹³C NMR (75 MHz, CDCl₃): δ 195.20, 166.16, 146.81, 143.31, 136.59, 136.54, 129.38, 127.68, 126.57, 119.45, 110.79, 94.31, 85.15, 34.27, 33.99, 31.05, 30.13. IR (neat) v 3339, 3058, 2962, 2868, 2208, 1693, 1518 cm⁻¹. UV-Vis (CH₂Cl₂): λ_{max} (ε) 253 (48,200), 291 (24,500), 330 (21,600) nm. MS (CI pos) m/z (%): 656 (M⁺+2, 19), 655 (MH⁺, 44), 654 (M⁺, 100); C₃₇H₃₉N₃O₄S₂ (653.85).

General preparation of $H1^+Cl^-$. 2,6-bis(anilinoethynyl) pyridine α -thioacetate amide (1) (2 mg, 0.0031 mmol) is dissolved in 600 microliters of deuterated solvent. A pipette with 2 ml bulb was used to pass HCl gas through the solution 25 times. Further deuterated solvent was added as needed to the resulting bright yellow solution to return to the original sample volume.

VARIABLE TEMPERATURE DATA

¹H NMR chemical shifts of 1 at 300 K

¹H NMR (600 MHz, CD_2Cl_2): δ 8.85 (br, 2H), 8.26 (d, J = 8.8 Hz, 2H), 7.88 (br, 1H), 7.77 (d, J = 12 Hz, 2H), 7.62 (s, 2H), 7.46 (dd, J = 12 Hz, 2H), 3.83 (br, 4H), 2.37 (s, 6H), 1.32 (s, 18H).

¹H NMR (600 MHz, d_7 -DMF): δ 9.77 (s, 2H), 8.07 (t, J = 6 Hz, 1H), 8.02 (br, 2H), 7.90 (d, J = 7.8 Hz, 2H), 7.70 (d, J = 2.3 Hz, 2H), 7.57 (dd, J = 8.7 Hz, 2H), 4.05 (s, 4H), 2.44 (s, 6H), 1.35 (s, 18H).

¹H NMR (600 MHz, d_8 -toluene): δ 8.83 (s, 2H), 8.76 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 2.3, 2H), 7.46 (d, J = 7.8 Hz, 2H), 7.16 (dd, J = 8.8 Hz, 2H), 7.06 (t, J = 7.8 Hz, 1H), 3.38 (s, 4H), 1.84 (s, 6H), 1.13 (s, 18H).

¹H NMR chemical shifts of H1⁺Cl⁻ at 300 K

¹H NMR (600 MHz, CD_2Cl_2): δ 9.51 (s, 2H), 8.27 (t, J = 8.0 Hz, 1H), 8.13 (d, J = 8.8 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.65 (s, 2H), 7.54 (dd, J = 8.8 Hz, 2H), 4.23 (s, 4H), 2.34 (s, 6H), 1.33 (s, 18H).

¹H NMR (600 MHz, d_8 -toluene): δ 9.95 (s, 2H), 8.53 (d, J = 8.0 Hz, 1H), 7.63 (br, 2H), 7.08 (br, 6H), 4.68 (s, 4H), 1.89 (s, 6H), 1.18 (s, 18H).

¹H NMR chemical shifts of H1⁺Cl[−] at 222 K

¹H NMR (600 MHz, d_8 -toluene): δ 10.13 (s, 2H), 8.54 (br, 2H), 7.68 (br, 1H), 7.08 (br, 4H), 6.90 (br, 2H) 4.65 (s, 4H), 1.80 (s, 6H), 1.19 (s, 18H).

¹H NMR chemical shifts of H1⁺Cl⁻ at 205 K

¹H NMR (600 MHz, CD_2Cl_2): δ 9.52 (s, 2H), 8.27 (t, J = 8.0 Hz, 1H), 7.92 (d, J = 8.8 Hz, 2H), 7.83 (br, 2H), 7.85 (s, 2H), 7.49 (d, J = 8.1 Hz, 2H), 4.17 (s, 4H), 2.32 (s, 6H), 1.23 (s, 18H).

CRYSTALLOGRAPHY

X-ray Crystallography. The X-ray diffraction data for 2,6-bis(anilinoethynyl) pyridine α-thioacetate amide (1), and H1⁺Cl⁻ were collected on a Bruker Smart Apex difractometer at -173 K using MoKa radiation (λ =0.71073 Å). Absorption corrections were applied by SADABS^{S1}. Crystal structure were solved by directs methods. The structure of 1 was determined in the non-centrosymmerical space group Pc and it was found that the investigated crystal of 1 is a racemic twin with a ratio of two phases 25/75. Some of the t-Bu groups in ${\bf 1}$ are disordered over two postions. All non-H atoms in both structures were refined with anisotropic thermal parameters except those in the disordered t-Bu groups in 1 which were refined with isotropic thermal parameters and C-C distances of 1.53 Å were used in the refinement as a target for the C-C bonds in these groups. H atoms in both structures were refined in calculated positions in a rigid group model except H atoms on N atoms involved in H-bonds. These H atoms were found from the F-maps and refined with isotropic thermal parameters and with restrictions; the N-H distance of 1.00 Å was used as a target for the N-H bonds. In the crystal structure of $\mathbf{1}$ two dichloromethane solvent molecules fill the empty spaces created between main molecules. It was found that these positions are not full occupied by dichloromethane solvent molecules; the refinement shows that occupation factors for both solvent molecules are close to 0.5 and such occupation factors were used in the final refinement of 1. All calculations were performed using Bruker SHELXTL 6.10 package. S2

References

- S1. Sheldrick, G. M.; SADABS: University of Göttingen, Germany, 1995.
- S2. Bruker; SHELXTL 6.10; Bruker AXS Inc.: Madison, Wisconsin, USA, 2000.