## **Supporting Information**

## RAFT Polymerization of Vinylthiophene Derivatives and Synthesis of Block Copolymers Having Cross-Linkable Segments

Hideharu Mori $^{*\dagger}$ , Ken Takano $^{\dagger}$ , and Takeshi Endo $^{\ddagger}$ 

 <sup>†</sup> Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Japan
<sup>‡</sup> Molecular Engineering Institute, Kinki University, Iizuka, Fukuoka 820-8555, Japan



**Figure S1.** <sup>1</sup>H NMR spectra (CDCl<sub>3</sub>) of (a) 2,5-dibromo-3-thiophenecarboxaldehyde and (b) 2,5-dibromo-3-vinylthiophene (DB3VT).



**Figure S2.** (a) <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>) of 2,5-dibromo-3-vinylthiophene (DB3VT), and (b) DEPT135-<sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>) of DB3VT.



**Figure S3.** <sup>1</sup>H and <sup>13</sup>C NMR spectra (CDCl<sub>3</sub>) of 2-vinylthiophene (2VT).



**Figure S4.** <sup>1</sup>H and <sup>13</sup>C NMR spectra (CDCl<sub>3</sub>) of 3-vinylthiophene (3VT).



Scheme S1. Structures of vinylthiophene derivatives

| run | monomer | solvent               | temp.<br>(°C)     | time<br>(h) | conv. <sup>b)</sup><br>(%) | $M_n^{c)}$ | $M_{\rm w}/M_{\rm n}^{\rm c)}$ |
|-----|---------|-----------------------|-------------------|-------------|----------------------------|------------|--------------------------------|
| 1   |         | bulk                  | 100               | 48          | 88                         | 2,700      | 2.37                           |
| 2   | 2 V 1   | bulk                  | 80                | 48          | 75                         | 5,200      | 1.83                           |
| 3   |         | bulk                  | 100               | 24          | 39                         | 7,500      | 2.23                           |
| 4   | 2VT     | bulk                  | 100               | 48          | 53                         | 5,800      | 2.00                           |
| 5   | 311     | bulk                  | 100 <sup>d)</sup> | 24          | 28                         | 6,900      | 2.57                           |
| 6   |         | bulk                  | 100 <sup>d)</sup> | 48          | 48                         | 7,500      | 2.23                           |
| 7   |         | bulk                  | 80                | 24          | 97                         | 64,500     | 3.06                           |
| 8   | DB3VT   | bulk                  | 60                | 24          | 97                         | 153,100    | 2.73                           |
| 9   |         | dioxane <sup>e)</sup> | 60                | 24          | 94                         | 34,300     | 2.40                           |

Table S1. Free radical polymerization of vinylthiophene derivatives <sup>a)</sup>

a) 3VT 2-vinylthiophene, 2VT = 3-vinylthiophene, DB3VT = = 2,5-dibromo-3-vinylthiophene,  $[monomer]_0/[AIBN]_0 = 100$ .<sup>b)</sup> Determined by <sup>1</sup>H NMR in CDCl<sub>3</sub>. In the case of the polymerization of 2VT, the monomer conversion was determined by the integration of one proton of the monomer resonance at 5.5-5.7 ppm compared with the methine proton of the polymer main chain at 2.2-3.0 ppm. For 3VT, c) similarly the peaks at 5.5-5.7 ppm were compared with the peaks at 2.0-2.8 ppm. Calculated by size exclusion chromatography using polystyrene standards in THF.<sup>d)</sup>  $[Monomer]_0/[AIBN]_0 = 200.$  <sup>e)</sup> Polymerization in 1,4-dioxane ([M] = 2.0 mol/L).



**Figure S5.** SEC curves of poly(DB3VT)s obtained by free radical polymerization of DB3VT in (a) bulk, and (b) 1,4-dioxane (2.0 M). See Table S1 for detailed polymerization conditions.

| run | CTA <sup>b)</sup> | [CTA]/ | temp. | time | conv. <sup>c)</sup> | M <sub>n</sub>       |                   | M /M <sup>e)</sup>                            |
|-----|-------------------|--------|-------|------|---------------------|----------------------|-------------------|-----------------------------------------------|
|     |                   | [AIBN] | (°C)  | (h)  | (%)                 | theory <sup>d)</sup> | SEC <sup>e)</sup> | <i>w</i> <sub>w</sub> / <i>w</i> <sub>n</sub> |
| 1   | CTA 1             | 2      | 80    | 72   | 71                  | 7,900                | 2,700             | 2.70                                          |
| 2   |                   | 5      | 100   | 48   | 93                  | 10,500               | 2,300             | 1.95                                          |
| 3   |                   | 2      | 120   | 48   | 96                  | 10,800               | 3,200             | 2.17                                          |
| 4   |                   | 2      | 100   | 48   | 91                  | 10,300               | 4,000             | 2.11                                          |
| 5   | CTA 4             | 2      | 80    | 72   | 70                  | 8,000                | 4,000             | 1.67                                          |
| 6   |                   | 5      | 100   | 48   | 83                  | 9,600                | 2,300             | 2.56                                          |
| 7   |                   | 10     | 100   | 48   | 80                  | 9,100                | 2,200             | 1.97                                          |
| 8   | CTA 5             | 2      | 100   | 48   | 95                  | 10,700               | 1,900             | 2.79                                          |

**Table S2.** Reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-vinylthiophene (2VT) in 1,4-dioxane  $a^{a}$ 

<sup>a)</sup>[2VT]/[CTA] = 100. <sup>b)</sup> See Scheme 2. <sup>c)</sup> Determined by <sup>1</sup>H MNR in CDCl<sub>3</sub>. <sup>d)</sup> The theoretical molecular weight  $(M_{n, \text{theory}}) = [2VT]_0/[CTA]_0 \times (Mw \text{ of } 2VT) \times \text{conv.} + (Mw \text{ of } CTA)$ . <sup>e)</sup> Calculated by size exclusion chromatography using polystyrene standards in THF (RI detector).



**Figure S6.** SEC traces of poly(DB3VT)s obtained by polymerization using different chain transfer agents (CTAs). See Table 1 for detailed polymerization conditions.



**Figure S7.** SEC traces of poly(DB3VT)s obtained by RAFT polymerization of DB3VT with CTA 3 at different [CTA]/[AIBN] ratios; (a) [CTA]/[I] = 2 and (b) [CTA]/[I] = 5. See Table 2 for detailed polymerization conditions.



**Figure S8.** <sup>1</sup>H NMR spectra of polymer end groups of poly(DB3VT)s prepared with CTA 1 (a, [M]/[CTA]/[AIBN] = 200/2/1, conv. = 89%), CTA 2 (b, [M]/[CTA]/[AIBN] = 1000/10/1, conv. = 73%), CTA 3 (c, [M]/[CTA]/[AIBN] = 200/2/1, conv. = 91%), and without CTA (d, [M]/[AIBN] = 200/1, conv. = 94%).

| run | time | conv. <sup>b)</sup> |                      | M /M <sup>d)</sup> |                                 |                                    |                                               |
|-----|------|---------------------|----------------------|--------------------|---------------------------------|------------------------------------|-----------------------------------------------|
|     | (h)  | (%)                 | theory <sup>c)</sup> | NMR <sup>b)</sup>  | SEC <sub>RI</sub> <sup>d)</sup> | SEC <sub>RALLS</sub> <sup>e)</sup> | <i>W</i> <sub>W</sub> / <i>W</i> <sub>n</sub> |
| 1   | 3    | 0                   | 300                  | -                  | 600                             | -                                  | 1.30                                          |
| 2   | 8    | 18                  | 5000                 | 6900               | 2400                            | -                                  | 1.15                                          |
| 3   | 12   | 34                  | 9400                 | 11200              | 4400                            | 10,400                             | 1.07                                          |
| 4   | 15   | 42                  | 11600                | 12900              | 5200                            | 13,100                             | 1.07                                          |
| 5   | 24   | 63                  | 17200                | 19100              | 6200                            | 15,200                             | 1.05                                          |
| 6   | 36   | 79                  | 21400                | 22700              | 8300                            | -                                  | 1.10                                          |
| 7   | 45   | 83                  | 22400                | 25900              | 8800                            | 22,700                             | 1.09                                          |

**Table S3.** Reversible addition-fragmentation chain transfer (RAFT) polymerization of DB3VT in 1,4-dioxane at 60  $^{\circ}C^{a)}$ 

<sup>a)</sup> [DB3VT]<sub>0</sub>/[CTA 2]<sub>0</sub>/[AIBN]<sub>0</sub>= 1000/10/1, [DB3VT]<sub>0</sub> = 2.0 mol/L. <sup>b)</sup> Calculated by <sup>1</sup>H NMR in CDCl<sub>3</sub>. <sup>c)</sup> The theoretical molecular weight ( $M_n$ , theory) = [DB3VT]<sub>0</sub>/[CTA]<sub>0</sub> × (MW of monomer) × conv. + (MW of CTA). <sup>d)</sup> Determined by SEC using polystyrene standards in THF (RI detector). <sup>e)</sup> Determined by SEC in THF with RALLS detector.



**Figure 9.** SEC traces (THF) of poly(DB3VT) and poly(vinyl terthiophene)s obtained by Suzuki coupling reaction with 2-thiopheneboronic acid in the presence of KOH and NaHCO<sub>3</sub>.



**Figure S10.** Appearance of poly(DB3VT) (left) and cross-linked product (right) obtained by Suzuki coupling reaction with 2,5-thiophenediboronic acid.



**Figure S11.** Appearance of the cross-linked block copolymer illuminated by visible (left) and UV ( $\lambda$  ex = 365 nm, right) light measured in THF.