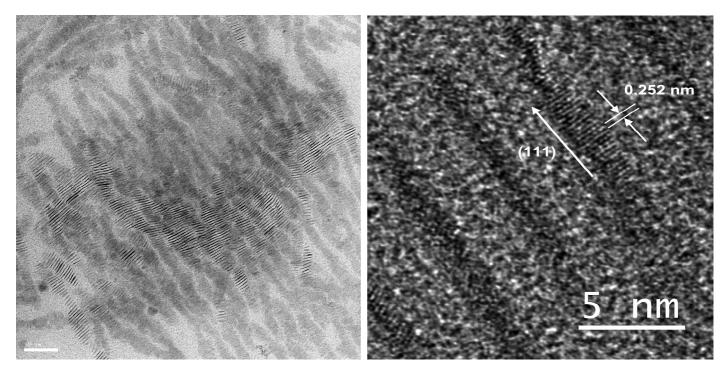
## Supporting Information for

# Cutting Ultrathin Gallium Oxide Nanoribbons into Nanoplates having Single Unit-Cell Thickness


Juan Xu, Kwonho Jang, Hae Jin Kim, Dong-Hwa Oh, Joung Real Ahn\* and Seung Uk Son\*

Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea, Korea Basic Science Institute, Daejeon 350-333, Korea and Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

## Experimental

TEM, HRTEM images and EDS spectrum were recorded with a JEOL 2100F unit operated at 200 kV. The samples for TEM study were prepared by drop casting nanomaterials dispersed in methylene chloride on carbon-coated copper grids. The TEM studies were performed on as-prepared samples without employing size-selection process. Powder XRD patterns were obtained on a Rigaku Max-2200 with filtered Cu<sub>ka</sub> radiation. X-ray photoelectron spectroscopy (XPS) was obtained using a Thermo VG and Monochromatic Al- $K\alpha$  radiation. PL studies were performed using Jasco-FP6200.

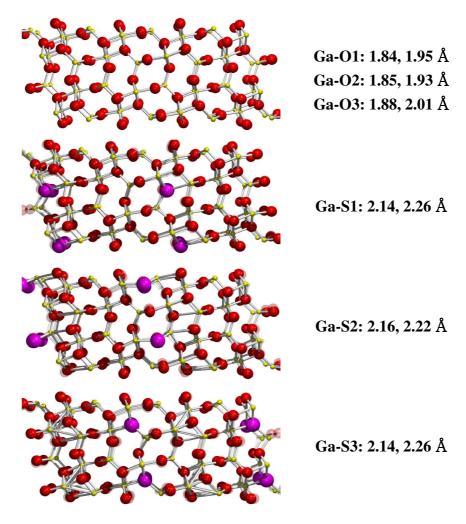
Figure S1. TEM image (a) of the assembled nanoplates and their HR-TEM image (b).



**(a)** 

| Figure S2. The | analysis of the low | w angle – XRPD patter | m (in Figure 3C of text) | of nanoplates |
|----------------|---------------------|-----------------------|--------------------------|---------------|
|----------------|---------------------|-----------------------|--------------------------|---------------|

| 2 theta (°) | observed distance(Å) | theoretical distance(Å) |
|-------------|----------------------|-------------------------|
| 7.2         | 12.3                 | 12.3 (d/3)              |
| 9.6         | 9.2                  | 9.2 (d/4)               |
| 12.0        | 7.4                  | 7.4 (d/5)               |
| 14.4        | 6.2                  | 6.1 (d/6)               |


**d = 36.8** Å

#### **Simulation Method**

The VASP code<sup>1</sup> was used for planewave pseudopotential calculations based on density functional theory. The exchange-correlation part of electron-electron interaction was described by local density approximation<sup>2</sup> and electron-ion interaction was described by projected augmented method.<sup>3</sup> Electron wavefunctions were expanded by planewaves up to kinetic energy cutoff of 250 eV. The simulated unit cell<sup>4</sup> has monoclinic structure with lattice parameters of a = 12.23 Å, b = 3.04 Å, c = 5.80 Å and  $\beta$  = 103.7 °, which contains 4 Ga atoms and 12 O atoms. We used 1\* 4 \* 2 Monkhorst-Pack mesh<sup>5</sup> for the k-point sampling. For the structure relaxation, we used conjugate-gradient algorithm, where stopping criteria was maximal force on atoms of 2 \* 10<sup>-2</sup> eV/Å.

### References

- 1. Kresse, G.; J. Furthmüller, J. Commput. Mat. Sci. 1996, 6, 15.
- 2. Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048.
- 3. (a) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. (b) Joubert, D.; Kresse, G. Phys. Rev. B 1999, 59, 1758.
- 4. Geller, S. J. Chem. Phys. 1960, 33, 676.
- 5. Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.

