Section 1 of supporting information for

Synthesis of Surfactants Based on Pentaerythritol. Part I. Cationic and Zwitterionic Gemini Surfactants

Nusrat Jahan, ${ }^{1}$ Nawal Paul, ${ }^{\dagger}$ Christian J. Petropolis, ${ }^{\dagger, \dagger}$ D. Gerrard Marangoni, ${ }^{\ddagger,{ }^{\ddagger}}$ and T. Bruce
Grindley ${ }^{\dagger,}{ }^{\text {, }}$
${ }^{\dagger}$ Department of Chemistry, Dalhousie University, Halifax, NS, Canada, B3H 4J3, and ${ }^{\ddagger}$ Department of
Chemistry, St. Francis Xavier University, Antigonish, NS, Canada B2G 2 W5
*Corresponding authors

T. Bruce Grindley, email: bruce.grindley@dal.ca, telephone:1-902-494-2041
D. Gerrard Marangoni, email: gmarango@stfx.ca, telephone: 1-902-867-2324

Note: spectra from compound $\mathbf{1 . 2 4}$ to the end of series $\mathbf{3}$ are in section 1b

Table of Contents

Item Page No.
General Methods S8
General method for alkylation: 5,5'-Bis(octyloxymethyl)-2-phenyl-1,3-dioxane (5) S9
5,5'-Bis(decyloxymethyl)-2-phenyl-1,3-dioxane (6) S10
5,5'-Bis(dodecyloxymethyl)-2-phenyl-1,3-dioxane (7) S11
2-Phenyl-5,5'-bis(tetradecyloxymethyl)-1,3-dioxane (8) S11
General method for hydrogenolysis:2,2'-bis(octyloxymethyl)-1,3-propanediol (9) S12
2,2'-Bis(decyloxymethyl)-1,3-propanediol (10) S12
2,2'-Bis(dodecyloxymethyl)-1,3-propanediol (11) S13
2,2'-Bis(tetradecyloxymethyl)-1,3-propanediol (12) S13
General procedure for formation of iodides: 1,3-diiodo-2,2'-bis(octyloxymethyl)propane (13) S13
2,2'-Bis(decyloxymethyl)-1,3-diiodopropane (14) S14
2,2'-Bis(dodecyloxymethyl)-1,3-diiodopropane(15) S14
1,3-Diiodo-2,2'-bis(tetradecyloxymethyl)propane (16) S15
Procedures for preparation of compounds $\mathbf{1 . 1}$ to $\mathbf{1 . 2 4}$ S15 to S28
Procedures for preparation of compounds 2.1 to $\mathbf{2 . 2 0}$ S28 to S37
Procedures for preparation of compounds $\mathbf{3 . 1}$ to $\mathbf{3 . 1 6}$ S37 to S46General procedure method for reaction of dialkoxides of 9-12 with 2-(dimethylamino)ethyl
chloride hydrochloride: $N, N, N^{\prime}, N^{\prime}$-tetramethyl-5,5-bis(octyloxymethyl)-3,7-dioxa-1,9nonanediaminium dichloride (4.5)
5,5-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediaminium dichloride (4.6) S47
5,5-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediaminium dichloride (4.7) S48
5,5-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediaminium dichloride (4.8) S48
Procedures for alkylation of diamines 4.1 to 4.4 with methyl iodide: compounds 4.9-4.12 S49 to S52
Procedures for reaction of dialkoxides of 1-4 with 2-bromo- N, N-diethylethylamine hydrobromide: compounds 4.17-4.20 S53 to S55
Procedures for reaction of amines 4.13-4.16 with ethyl bromide: compounds 4.21-4.24 S56 to S59
5,5-Bis(dodecyloxymethyl)- N, N^{\prime}-diethyl- $N, N, N N^{\prime}, N^{\prime}$-dimethyl-3,7-dioxa-1,9-nonanediammonium dibromide (4.25) S60
5,5-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-dimethyl-3,7-dioxa- N, N^{\prime}-dipropyl-1,9-nonanediammonium dibromide (4.26) S61
N, N^{\prime}-Dibutyl-5,5-bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-dimethyl-3,7-dioxa-1,9-nonanediammonium dibromide (4.27) S62
Procedures for reaction of dialkoxides of 1-4 with 3-chloro- N, N-dimethyl-1-propanamine hydrochloride: compounds 5.1-5.4 S63 to S64
Procedures for reaction of diamines 5.1-5.4 with methyl iodide: compounds 5.5-5.8 S65 to S66
2,2-Bis(decyloxymethyl)-7-dimethylamino-4-oxa-1-heptanol (5.9) S67
Procedures for reaction diamines 4.1 to 4.4 with ethyl bromoacetate: compounds 6.1 - 6.4 S68 to S70
Procedures for hydrolysis of diesters 6.1 - 6.4: compounds $6.5-6.8$ S71 to S72
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5,5 '-bis(octyloxymethyl)-2-phenyl-1,3-dioxane (5) in chloroform- d S74
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 5,5'-bis(octyloxymethyl)-2-phenyl-1,3-dioxane (5) in chloroform- d S76
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5,5 '-bis(decyloxymethyl)-2-phenyl-1,3-dioxane (6) in chloroform- d S77
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 5,5'-bis(decyloxymethyl)-2-phenyl-1,3-dioxane (6) in chloroform- d S79
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5,5'-bis(dodecyloxymethyl)-2-phenyl-1,3-dioxane (7) in chloroform-d S80
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 5,5'-bis(dodecyloxymethyl)-2-phenyl-1,3-dioxane (7) in chloroform- d S82
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2-phenyl-5,5'-bis(tetradecyloxymethyl)-1,3-dioxane (8) in chloroform- d S83
$125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 2-phenyl-5,5'-bis(tetradecyloxymethyl)-1,3-dioxane (8) in chloroform- d S85
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(octyloxymethyl)-1,3-propanediol (9)in chloroform- dS86
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(octyloxymethyl)-1,3-propanediol (9) in chloroform- d S88
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(decyloxymethyl)-1,3-propanediol (10) in chloroform- d S89
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(decyloxymethyl)-1,3-propanediol (10) in chloroform- d S91
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(dodecyloxymethyl)-1,3-propanediol (11) in chloroform- d S92
125.7 MHz ${ }^{13}$ C NMR spectrum of 2,2'-bis(dodecyloxymethyl)-1,3-propanediol (11) in chloroform- d S94
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(tetradecyloxymethyl)-1,3-propanediol (12) in chloroform- d S95
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(tetradecyloxymethyl)-1,3-propanediol (12) in chloroform- d S97
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-diiodo-2,2'-bis(octyloxymethyl)propane (13) in chloroform- d S98
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 1,3-diiodo-2,2'-bis(octyloxymethyl)propane (13) in chloroform- d S99
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(decyloxymethyl)-1,3-diiodopropane (14) in chloroform-d S100
$125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(decyloxymethyl)-1,3-diiodopropane (14) in chloroform- d S101
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(dodecyloxymethyl)-1,3-diiodopropane(15) in chloroform- d S102
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(dodecyloxymethyl)-1,3-diiodopropane (15) in chloroform- d S103
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-diiodo-2,2'-bis(tetradecyloxymethyl)propane (16) in chloroform- d S104
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 1,3-diiodo-2,2'-bis(tetradecyloxymethyl)propane (16) in chloroform- d S105
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of N, N, N ', N '-tetramethyl-2,2-bis(octyloxymethyl)-1,3- propanediaminium dichloride (1.5) in chloroform- d S106
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of N, N, N, N^{\prime}-tetramethyl-2,2-bis(octyloxymethyl)-1,3- propanediaminium dichloride (1.5) in chloroform- d S108
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(decyloxymethyl)- N, N, N ',N 'tetramethyl-1,3- propanediaminium dichloride (1.6) in chloroform- d S109
125.7 MHz ${ }^{3} \mathrm{C}$ NMR spectrum of 2,2-bis(decyloxymethyl)- N, N, N ',N 'tetramethyl-1,3- propanediaminium dichloride (1.6) in chloroform- d S111
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)- N, N, N ',N 'tetramethyl-1,3- propanediaminium dichloride (1.7) in chloroform S112
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-1,3- propanediaminium dichloride (1.7) in chloroform S114
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N T, N$-tetramethyl-2,2-bis(tetradecyloxymethyl)-1,3- propanediaminium dichloride (1.8) in chloroform- d S115
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N N^{\prime}$-tetramethyl-2,2-bis(tetradecyloxymethyl)-1,3- propanediaminium dichloride (1.8) in chloroform- d S117
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(octyloxymethyl)-1,3- propanediammonium diiodide (1.9) in chloroform- d S118
$125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(octyloxymethyl)-1,3- propanediammonium diiodide (1.9) in chloroform- d S120
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(decyloxymethyl)- $N, N, N, N, N^{\prime}, N^{\prime}$-hexamethyl-1,3- propanediammonium diiodide (1.10) in chloroform- d S121
$125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(decyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3- propanediammonium diiodide (1.10) in chloroform- d S123
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3- propanediammonium diiodide (1.11) in chloroform- d S124
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3- propanediammonium diiodide (1.11) in chloroform- d S126
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(tetradecyloxymethyl)-
1,3-propanediammonium diiodide (1.12) in chloroform- d S127
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(tetradecyloxymethyl)- 1,3-propanediammonium diiodide (1.12) in chloroform- d S129
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(octyloxymethyl)propane dihydrochloride (1.17) in chloroform-d S130
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(octyloxymethyl)propane dihydrochloride (1.17) in chloroform- d S132
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(decyloxymethyl)propane dihydrochloride (1.18) in chloroform- d S133
125.7 MHz ${ }^{13}$ C NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(decyloxymethyl)propane dihydrochloride (1.18) in chloroform- d S135
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(dodecyloxymethyl)propane dihydrochloride (1.19) in chloroform- d S136
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(dodecyloxymethyl)propane dihydrochloride (1.19) in chloroform- d S138
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(tetradecyloxymethyl)propane dihydrochloride (1.20) in chloroform- d S139
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(tetradecyloxymethyl)propane dihydrochloride (1.20) in chloroform- d S141
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2 bis(octyloxymethyl) propane diiodide (1.21) in chloroform- d S142
$125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2 bis(octyloxymethyl)propane diiodide (1.21) in chloroform- d S144
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(decyloxymethyl)-1,3-bis(1-methyl-1- azoniacyclopentyl)propane diiodide (1.22) in chloroform- d S145
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2- bis(decyloxymethyl)-1,3-bis(1-methyl-1- azoniacyclopentyl)propane diiodide (1.22) in chloroform- d S147
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)-1,3-bis(1-methyl-1- azoniacyclopentyl)propane diiodide (1.23) in chloroform- d S148
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)-1,3-bis(1-methyl-1- azoniacyclopentyl)propane diiodide (1.23) in chloroform- d S150
500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2- bis(tetradecyloxymethyl)propane iodide (1.24) in chloroform- d S151
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2- bis(tetradecyloxymethyl)propane iodide (1.24) in chloroform- d S153
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(octyloxymethyl)pentanedinitrile (2.1) in chloroform- d S154
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(octyloxymethyl)pentanedinitrile (2.1) in chloroform- d S155
500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(decyloxymethyl)pentanedinitrile (2.2) in chloroform- d S156
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(decyloxymethyl)pentanedinitrile (2.2) in chloroform- d S157
500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(dodecyloxymethyl)pentanedinitrile (2.3) in chloroform-d S158
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(dodecyloxymethyl)pentanedinitrile (2.3) in chloroform- d S159
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(tetradecyloxymethyl)pentanedinitrile (2.4) in chloroform- d S160
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(tetradecyloxymethyl)pentanedinitrile (2.4) in chloroform- d S161
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(octyloxymethyl)pentanedioic acid (2.5) in chloroform-d S162
125.7 $\mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(octyloxymethyl)pentanedioic acid (2.5) in chloroform- d S163
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(decyloxymethyl)pentanedioic acid (2.6) in chloroform-d S164
125.5 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(decyloxymethyl)pentanedioic acid (2.6) in chloroform- d S165
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(dodecyloxymethyl)pentanedioic acid (2.7) in chloroform- d S166
$125.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(dodecyloxymethyl)pentanedioic acid (2.7) in chloroform- d S168
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(tetradecyloxymethyl)pentanedioic acid (2.8) in chloroform- d S169
125.7 MHz ${ }^{13}$ C NMR spectrum of 3,3-bis(tetradecyloxymethyl)pentanedioic acid (2.8) in chloroform- d S170
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-3,3-bis(octyloxymethyl)- pentanediamide (2.9) in chloroform- d S171
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime} N^{\prime}$-tetramethyl-3,3-bis(octyloxymethyl)- pentanediamide (2.9) in chloroform- d S173
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(decyloxymethyl)- N, N, N ', N '-tetramethyl- pentanediamide (2.10) in chloroform- d S174
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 3,3 -bis(decyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl- pentanediamide (2.10) in chloroform- d S176
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-bis(dodecyloxymethyl)- N, N, N ', N '-tetramethyl- pentanediamide (2.11) in chloroform- d S177
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 3,3 -bis(dodecyloxymethyl)- N, N, N,,N^{\prime}-tetramethyl- pentanediamide (2.11) in chloroform- d S178
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,3-bis(tetradecyloxymethyl)- pentanediamide (2.12) in chloroform-d S179
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,3-bis(tetradecyloxymethyl)- pentanediamide (2.12) in chloroform- d S180
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,3-bis(octyloxymethyl)-1,5- pentanediamine (2.13) in chloroform- d S181
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-3,3-bis(octyloxymethyl)-1,5- pentanediamine (2.13) in chloroform- d S183
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3 -bis(decyloxymethyl)- $N, N, N{ }^{\prime}, N^{\prime}$-tetramethyl-1,5-pentanediamine(2.14) in chloroform- dS184
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(decyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-1,5- pentanediamine(2.14) in chloroform- d S186
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3 -bis(dodecyloxymethyl)- $N, N, N{ }^{\prime}, N$ 'tetramethyl-1,5- pentanediamine (2.15) in chloroform- d S187
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(dodecyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-1,5- pentanediamine (2.15) in chloroform- d S189
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-3,3-bis(tetradecyloxymethyl)-1,5- pentanediamine (2.16) in chloroform- d S190
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,3-bis(tetradecyloxymethyl)-1,5- pentanediamine (2.16) in chloroform- d S191
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-3,3-bis(octyloxymethyl)-1,5- pentanediammonium diiodide (2.17) in chloroform- d S192
$125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-3,3-bis(octyloxymethyl)-1,5- pentanediammonium diiodide (2.17) in chloroform- d S193
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3 -bis(decyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,5- pentanediammonium diiodide (2.18) in chloroform- d S194
$125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 3,3-bis(decyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,5- pentanediammonium diiodide (2.18) in chloroform- d S195
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 3,3-is(dodecyloxymethyl)- $N, N, N, N{ }^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,5- pentanediammonium diiodide (2.19) in chloroform- d S196
125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 3,3 -bis(dodecyloxymethyl)- $N, N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl- 1,5-pentanediammonium diiodide (2.19) in chloroform- d S197
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-3,3-bis(tetradecyloxymethyl)- 1,5-pentanediammonium diiodide (2.20) in chloroform- d S198
$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-3,3-bis(tetradecyloxymethyl)- 1,5-pentanediammonium diiodide (2.20) in chloroform- d S200
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2, 2-bis(octyloxymethyl)propanedial (17) in chloroform- d S201
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2, 2-bis(octyloxymethyl)propanedial (17) in chloroform- d S203
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2, 2-bis(decyloxymethyl)propanedial (18) in chloroform- d S204
127.5 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2, 2-bis(decyloxymethyl)propanedial (18) in chloroform- d S205
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2, 2-bis(dodecyloxymethyl)propanedial (19) in chloroform- d S206
127.5 MHz ${ }^{13}$ C NMR spectrum of 2, 2-bis(dodecyloxymethyl)propanedial (19) in chloroform- d S208
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2, 2-bis(tetradecyloxymethyl)propanedial (20) in chloroform- d S209
127.5 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2, 2-bis(tetradecyloxymethyl)propanedial (20) in chloroform- d S210
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-4,4-bis(octyloxymethyl)-
2,5-heptadienediamide (3.1) in chloroform- d S211
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-4,4-bis(octyloxymethyl)- 2,5-heptadienediamide (3.1) in chloroform- d S212
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4,4-bis(decyloxymethyl)- $N, N, N{ }^{\prime}, N^{\prime}$-tetramethyl-2,5-heptadienediamide (3.2) in chloroform- dS213
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 4,4-bis(decyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl- 2,5-heptadienediamide (3.2) in chloroform- d S214
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4,4-bis(dodecyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl- 2,5-heptadienediamide (3.3) in chloroform- d S215
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 4,4-bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl- 2,5-heptadienediamide (3.3) in chloroform- d S216
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N^{\prime}, \mathrm{N}^{\prime}$-tetramethyl-4,4-bis(tetradecyloxymethyl)- 2,5-heptadienediamide (3.4) in chloroform- d S217
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-4, 4-bis(tetradecyloxymethyl)- 2,5-heptadienediamide (3.4) in chloroform- d S219
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N^{\prime}, \mathrm{N}^{\prime}$-tetramethyl-4, 4-bis(octyloxymethyl)- heptanediamide (3.5) in chloroform- d S220
127.5 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-4, 4-bis(octyloxymethyl)- heptanediamide (3.5) in chloroform- d S222
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4, 4-bis(decyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl- heptanediamide (3.6) in chloroform- d S224
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 4, 4-bis(decyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl- heptanediamide (3.6) in chloroform- d S226
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4, 4-bis(dodecyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl- heptanediamide (3.7) in chloroform- d S227
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 4, 4-bis(dodecyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl- heptanediamide (3.7) in chloroform- d S229
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N{ }^{\prime}, N^{\prime}$-tetramethyl-4, 4-bis(tetradecyloxymethyl)- heptanediamide (3.8) in chloroform- d S230
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-4, 4-bis(tetradecyloxymethyl)- heptanediamide (3.8) in chloroform- d S231
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of N, N, N, N^{\prime}-tetramethyl-4,4-bis(octyloxymethyl)-1,7- heptanediamine (3.9) in chloroform- d S232
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-4,4-bis(octyloxymethyl)-1,7- heptanediamine (3.9) in chloroform- d S233
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4,4-bis(decyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-1,7- heptanediamine (3.10) in chloroform- d S235
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 4,4-bis(decyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-1,7- heptanediamine (3.10) in chloroform- d S237
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4,4 -bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,7- heptanediamine (3.11) in chloroform- d S238
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 4,4-bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,7- heptanediamine (3.11) in chloroform- d S240
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of N, N, N ', N^{\prime}-tetramethyl-4,4-bis(tetradecyloxymethyl)-1,7- heptanediamine (3.12) in chloroform- d S241
$127.5 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of N, N, N, N^{\prime}-tetramethyl-4,4-bis(tetradecyloxymethyl)-1,7- heptanediamine (3.12) in chloroform- d S243
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-4,4-bis(octyloxymethyl)-1,7- heptanediammonium diiodide (3.13) in chloroform- d S244
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-4,4-bis(ocyloxymethyl)-1,7- heptanediammonium diiodide (3.13) in chloroform- d S246
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4,4-bis(decyloxymethyl)- $N, N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,7- heptanediammonium diiodide (3.14) in chloroform- d S247
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 4,4-bis(decyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,7- heptanediammonium diiodide (3.14) in chloroform- d S249
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 4,4-bis(dodecyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,7heptanediammonium diiodide (3.15) in chloroform- d
$127.5 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 4,4-bis(dodecyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,7heptanediammonium diiodide (3.15) in chloroform- d
$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-4,4-bis(tetradecyloxymethyl)-1,7heptanediammonium diiodide (3.16) in chloroform- $d \quad$ S253
127.5 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-4,4-bis(tetradecyloxymethyl)-1,7heptanediammonium diiodide(3.16) in chloroform- d S255

General Methods. N,N-Dimethylformamide was stored over activated molecular sieves for 72 hours, then distilled with reduced pressure over more activated molecular sieves. Methanol was dried with magnesium methoxide. Toluene was dried by reflux over calcium hydride for 10 min followed by distillation from calcium hydride. Sodium hydride was a 60% oil dispersion that was washed with dry hexane under nitrogen before use. Reactions involving sodium hydride were performed in flame-dried glassware. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 K in 5 mm NMR tubes on NMR spectrometers operating at 250.13 and 62.9 , respectively or at 500.13 and 125.08 MHz , respectively, on solutions in chloroform- d, unless otherwise indicated. Chemical shifts are given in parts per million $(\mathrm{ppm})(+/-0.01 \mathrm{ppm})$ relative to that of tetramethylsilane $($ TMS $)(0.00 \mathrm{ppm})$ in the case of ${ }^{1} \mathrm{H}$ NMR spectra, and to the central line of chloroform $-d(* 77.16)$ for the ${ }^{13} \mathrm{C}$ NMR spectra. All assignments were made with the aid of COSY, HETCOR, and/or long-range HETCOR experiments at 250 MHz or DGF COSY, HSQC or HMBC experiments at 500 MHz . High resolution electrospray mass spectra (HR ESI MS) were recorded on samples dissolved in methanol using trilysine KKK or rifampicin or the Tuning Mix from Agilent as references. Most TLC was performed on aluminum-backed plates bearing 200 um silica gel $60 \mathrm{~F}_{254}$. Benzylidene acetals were visualized by quenching of fluoresence or by spraying the plate with a solution ${ }^{22}$ of $0.2 \% p$-methoxyphenol in ethanol/2 $\mathrm{N}_{2} \mathrm{SO}_{4}(1 / 1, \mathrm{v} / \mathrm{v})$ or an acidic solution of anisaldehyde in ethanol [ethanol (9 mL), anisaldehyde (0.5 mL), and conc. sulfuric acid $(0.5 \mathrm{~mL})]^{23}$ or a solution of 2% ceric sulfate in 1 M sulfuric acid and followed, for all spray reagents, by heating on a hot plate until colour developed. TLC for quaternary ammonium salts was performed on aluminum-backed plates bearing 200 um basic alumina and developed with the Dragendorf reagent. Diethyl (N, N-dimethylcarbamoyl)methylphosphonate was prepared as described by Bartlett et al ${ }^{16}$ for the dimethyl analog and had physical properties as described. ${ }^{24}$

General Method for Alkylation: 5,5'-Bis(octyloxymethyl)-2-phenyl-1,3-dioxane (5). A hexaneswashed sodium hydride oil dispersion (60% oil dispersion, $8.6 \mathrm{~g}, 0.22 \mathrm{~mol}, 2.0 \mathrm{eq}$) was added in
portions slowly to a stirred solution of mono- O-benzylidenepentaerythritol ${ }^{12}$ (4) ($\left.24.11 \mathrm{~g}, 0.1076 \mathrm{~mol}\right)$ in dry DMF $(600 \mathrm{~mL})$ under a nitrogen atmosphere. The stirred reaction mixture was cooled with an ice water bath for one hour, then 1-bromooctane $(46.76 \mathrm{~mL}, 51.90 \mathrm{~g}, 0.268 \mathrm{~mol}, 2.5 \mathrm{eq})$ was added dropwise over 2 h . After the reaction mixture had been stirred 12 h , another addition of sodium hydride ($4.5 \mathrm{~g}, 0.11 \mathrm{~mol}, 1.0 \mathrm{eq}$) and 1-bromooctane ($20 \mathrm{~mL}, 0.11 \mathrm{~mol}, 1.0 \mathrm{eq}$) was made. If after the reaction mixture had been stirred a further 12 h , TLC showed that some mono- O-octyl product was present, another identical addition was made. When all of the mono- O-octyl derivative had been consumed, the reaction mixture was quenched by the addition of methanol dropwise until foaming ceased. The reaction mixture was filtered under vacuum and the solid was washed with dichloromethane ($\sim 150 \mathrm{~mL}$). The combined filtrate and washings were concentrated and the residue was extracted with hexanes (300 mL , then 200 mL). The combined extracts were concentrated to an oily residue that was passed through a short silica gel column using hexanes, then 5% ethyl acetate $/ 95 \%$ hexanes as eluents. The title compound (5) was a colorless oil ($44.71 \mathrm{~g}, 85 \%$): $\mathrm{R}_{\mathrm{F}} 0.46$ (hexanes : ethyl acetate $94: 6) ;{ }^{1} \mathrm{H} \operatorname{NMR}(500.13 \mathrm{MHz}) \delta 0.88,0.89(2 \mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me})$, 1.20-1.35 (br m, 20H, $10 \times \mathrm{CH}_{2}$), $1.54,1.57\left(2\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{eq}$ $\left.\mathrm{CCH}_{2} \mathrm{O}\right), 3.35\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, eq octyl $\left.\mathrm{OCH}_{2}\right), 3.45\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, ax octyl $\left.\mathrm{OCH}_{2}\right), 3.71(\mathrm{~s}, 2 \mathrm{H}$, ax $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.88,4.09(2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=11.5 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-4$ ', H-6,H-6'), $5.42(\mathrm{~s}, 1 \mathrm{H}$, acetal H), 7.31-7.49 (m, $5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\delta 138.5$ (q Ph) , 128.8 (para Ph), 128.3 (2C, mPh), 126.1 (2C, oPh), 101.7 (acetal C), $71.8\left(\mathrm{eq} \mathrm{OCH} 2 \mathrm{CH}_{2}\right), 71.7\left(\mathrm{ax} \mathrm{OCH} \mathrm{CH}_{2}\right), 70.8\left(\mathrm{eq} \mathrm{OCH} \mathrm{H}_{2} \mathrm{C}\right), 70.2(\mathrm{C}-4$ and C-6$), 69.4\left(\mathrm{ax} \mathrm{OCH} \mathrm{O}_{2} \mathrm{C}\right)$, $38.9(\mathrm{q} \mathrm{C}), 2 \times 31.89\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.68,29.54,29.51,29.45,2 \times 29.34\left(6\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.22,26.19$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2 \times 22.70\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me}) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 471.3445, found 471.3448 .

5,5'-Bis(decyloxymethyl)-2-phenyl-1,3-dioxane (6). The title compound was prepared as above (89% yield) as a colorless oil that was crystallized from methanol: mp $29-30{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.48$ (94: 6 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.20-1.35\left(\mathrm{br} \mathrm{s}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right)$, 1.54 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.23\left(\mathrm{~s}, 2 \mathrm{H}\right.$, eq $\left.\mathrm{CCH}_{2} \mathrm{O}\right), 3.36(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}$, eq decyl $\left.\mathrm{OCH}_{2}\right), 3.46\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, ax decyl $\left.\mathrm{OCH}_{2}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}\right.$, ax $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.88,4.09(2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=11.7$ Hz, H-4, H-4', H-6, H-6'), 5.42 (s, 1H, acetal H), 7.31-7.48 (m, 5H, Ph); ${ }^{13} \mathrm{C}$ NMR $\delta 138.6$ (q Ph), 129.0 (para Ph), $128.4(2 \mathrm{C}, \mathrm{mPh}), 126.2(2 \mathrm{C}, \mathrm{oPh}), 101.9$ (acetal C), $71.9\left(\mathrm{eq} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 71.8(\mathrm{ax}$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 70.9\left(\mathrm{eq} \mathrm{OCH}_{2} \mathrm{C}\right), 70.4\left(\mathrm{C}-4\right.$ and C-6), $69.4\left(\mathrm{ax} \mathrm{OCH} \mathrm{O}_{2} \mathrm{C}\right), 39.0(\mathrm{q} \mathrm{C}), 2 \times 32.06$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2 \times 29.81,29.79,2 \times 29.76,29.69,29.65,29.62,2 \times 29.50\left(10\right.$ decyl $\left.\mathrm{CH}_{2}\right), 2 \times 26.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2 \times 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me})$; LR ESI MS m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 505.4$, found 505.1. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{O}_{4}$: C, $76.14 ; \mathrm{H}, 11.18$. Found: C, $76.03 ; \mathrm{H}, 10.97$.

5,5'-Bis(dodecyloxymethyl)-2-phenyl-1,3-dioxane (7). The title compound was prepared as above (77% yield) as a solid that was crystalized from methanol to give colorless needles: $\mathrm{R}_{\mathrm{F}} 0.51$ (94:6 hexanes:ethyl acetate); mp $37.5-38.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.20-1.35$ (br s, $\left.36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.54\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.22\left(\mathrm{~s}, 2 \mathrm{H}\right.$, eq $\left.\mathrm{CCH}_{2} \mathrm{O}\right), 3.35(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ 6.5 Hz , eq dodecyl OCH_{2}), $3.46\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, ax dodecyl $\left.\mathrm{OCH}_{2}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}\right.$, ax $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.88$, $4.09\left(2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=11.7 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-4 \mathrm{C}, \mathrm{H}-6, \mathrm{H}-6\right.$ '), $5.41\left(\mathrm{~s}, 1 \mathrm{H}\right.$, acetal H), 7.31-7.48 (m, 5H, Ph); ${ }^{13} \mathrm{C}$ NMR $\delta 138.5$ (q Ph), 128.8 (para Ph), 128.2 (2C, mPh), 126.1 (2C, oPh), 101.7 (acetal C), 71.7 (eq $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.6\left(\mathrm{ax} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.7(\mathrm{eq} \mathrm{OCH} 2 \mathrm{C}), 70.2\left(\mathrm{C}-4\right.$ and C-6), $69.3\left(\mathrm{ax} \mathrm{OCH} \mathrm{O}_{2} \mathrm{C}\right), 38.9(\mathrm{q}$ C), $2 \mathrm{x} 31.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.70,29.66,29.61,29.53,29.22\left(14\right.$ dodecyl $\left.\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2 \times 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2 \times 14.1(\mathrm{Me}) ;$ LR ESI MS m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{65} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 561.49, found 561.3; calcd for $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{Na}^{+} 583.47$, found 583.5; calcd for $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{~K}^{+} 599.44$, found 599.3. Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{O}_{4}$: C, 77.09, H, 11.50. Found: C, $77.04, \mathrm{H}, 11.92$.

2-Phenyl-5,5'-bis(tetradecyloxymethyl)-1,3-dioxane (8). The title compound was prepared as above (89% yield) as a solid that was crystallized from ethyl acetate: $\mathrm{R}_{\mathrm{F}} 0.53$ ($94: 6$ hexanes:ethyl acetate); $\operatorname{mp} 45{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}) \delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.16-1.37\left(\mathrm{br} \mathrm{s}, 44 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right)$, 1.55 (br pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.23\left(\mathrm{~s}, 2 \mathrm{H}\right.$, eq $\left.\mathrm{CCH}_{2} \mathrm{O}\right), 3.35(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}$, eq $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.46\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}\right.$, ax $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.71\left(\mathrm{~s}, 2 \mathrm{H}\right.$, ax $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.88,4.09(2 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ 11.3 Hz, H-4,H-4', H-6,H-6'), 5.41 (s, 1H, acetal H), 7.31-7.48 (m, 5H, Ph); ${ }^{13} \mathrm{C}$ NMR $\delta 139.3$ (q Ph), 128.9 (para Ph), 128.4 ($2 \mathrm{C}, \mathrm{mPh}$), 126.2 (2 C , oPh), 101.8 (acetal C), 71.9 (eq $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}$), 71.8 (ax $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{eq} \mathrm{OCH} \mathrm{O}_{2} \mathrm{C}\right), 70.4\left(\mathrm{C}-4\right.$ and C-6), $69.5\left(\mathrm{ax} \mathrm{OCH}_{2} \mathrm{C}\right), 39.0(\mathrm{q} \mathrm{C}), 2 \times 32.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2 \times 29.86,2 \times 29.83,6 \times 29.81,2 \times 29.77,2 \times 29.75,2 \times 29.66,2 \times 29.51$ (18 tetradecyl $\left.\mathrm{CH}_{2}\right), 2 \times 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2 \times 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2 \times 14.2(\mathrm{Me}) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{72} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 639.5323, found 639.5305.

General method for hydrogenolysis: 2,2-bis(octyloxymethyl)-1,3-propanediol (9). To a solution of compound $5(10.02 \mathrm{~g}, 22.3 \mathrm{mmol})$ in ethyl acetate $(100 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}$ (Degussa type, 0.2 g). The mixture was stirred vigorously under atmospheric pressure $\mathrm{H}_{2}(\mathrm{~g})$ for 1 h . More $10 \% \mathrm{Pd} / \mathrm{C}$ (Degussa type, 0.5 g) was added and the solution stirred until uptake of $\mathrm{H}_{2}(\mathrm{~g})$ ceased (2h). The mixture was filtered and the residue washed with dichloromethane (50 mL), then dichloromethane containing 20% methanol ($2 \times 50 \mathrm{~mL}$). The filtrate and washings were concentrated to a colorless solid, yield $6.89 \mathrm{~g}, 85 \%$. Crystallization from isopropanol gave colorless crystals:, $\mathrm{R}_{\mathrm{F}} 0.40$ (dichloromethane: methanol 96:4); mp $35{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.20-1.36 (br m, 20H, $10 \times \mathrm{CH}_{2}$), 1.56 (pentet, $4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.82(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{OH}$), 3.42 $\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, octyl $\left.\mathrm{OCH}_{2}\right), 3.50\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.65\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 73.1$ $\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 72.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 65.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 44.7(\mathrm{q} \mathrm{C}), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.64$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 29.50,29.35\left(2\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{45} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 361.33, found 361.1. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{O}_{4}$: C, 69.95; $\mathrm{H}, 12.30$. Found: C, 69.62; H, 12.68.

2,2-Bis(decyloxymethyl)-1,3-propanediol (10). Hydrogenolysis of compound $\mathbf{6}$ ($10.23 \mathrm{~g}, 20.3 \mathrm{mmol}$) as for compound 5 above in ethyl acetate (100 mL) using $10 \% \mathrm{Pd} / \mathrm{C}$ (Degussa type, 0.2 g) gave a colorless solid that was crystallized from methanol: yield $6.81 \mathrm{~g}, 81 \%, \mathrm{R}_{\mathrm{F}} 0.42$ (dichloromethane: methanol 96:4); mp 44.5-45.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ (t, $6 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.20-1.35 (br s, 28H, 18 $\left.\mathrm{x} \mathrm{CH}_{2}\right), 1.55\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.88(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{OH}), 3.42(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, decyl $\left.\mathrm{OCH}_{2}\right), 3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.65\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 73.3\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 72.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 65.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 44.6(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 2×29.7, 29.66, 29.56, 29.47 (5 decyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI MS: m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{53} \mathrm{O}_{4} 417.39$, found 417.1. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{52} \mathrm{O}_{4}: \mathrm{C}, 72.06 ; \mathrm{H}, 12.58$. Found: C, 71.98; H, 12.45.

2,2-Bis(dodecyloxymethyl)-1,3-propanediol (11). Hydrogenolysis of compound 7 (10.23 g, 20.3 mmol) as for compound 5 above in ethyl acetate (100 mL) using $10 \% \mathrm{Pd} / \mathrm{C}$ (Degussa type, 0.2 g) gave a colorless solid that was crystallized from ethyl acetate: yield $6.81 \mathrm{~g}, 81 \% ; \mathrm{R}_{\mathrm{F}} 0.45$ (dichloromethane: methanol 96:4); mp $54-55^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.20-1.35(\mathrm{br} \mathrm{s}, 36 \mathrm{H}, 18 \mathrm{x}$ CH_{2}), 1.56 (pentet, $4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.69(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{OH}), 3.42(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.64\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 73.3\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 72.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 65.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 44.6(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.81,29.78,29.77,29.73,29.58,29.50$ (6 dodecyl CH_{2}), $29.66\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3$ (Me); LR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{61} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 473.46, found 473.3. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{60} \mathrm{O}_{4}: \mathrm{C}, 73.67 ; \mathrm{H}, 12.79$. Found: C, 73.31; H, 12.68.

2,2-Bis(tetradecyloxymethyl)-1,3-propanediol (12). Hydrogenolysis of compound $\mathbf{8}$ (10.0 g, 16.2 mmol) in ethyl acetate (200 mL) containing $10 \% \mathrm{Pd} / \mathrm{C}$ (Degussa type, 0.5 g) as for compound 5 above gave a colorless solid that was crystallized from ethyl acetate: yield $7.88 \mathrm{~g}, 92 \% ; \mathrm{R}_{\mathrm{F}} 0.47$ (dichloromethane: methanol 96:4); mp 63-64 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.20-1.35$ (br s, $44 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.56 (pentet, $4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.83(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{OH}), 3.42(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=$ 6.5 Hz , dodecyl OCH_{2}), $3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.64\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 73.4\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right)$, $72.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 65.7\left(\mathrm{CH}_{2} \mathrm{OH}\right), 44.6(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.85,2 \times 29.83,29.81,29.78$, 29.75, 29.59, 29.51 (8 tetradecyl CH_{2}), $29.65\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3$ (Me); LR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{69} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 529.52$, found 529.3. Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{68} \mathrm{O}_{4}$: C , 74.94, H, 12.96. Found: C, 74.55, H, 13.03.

General procedure for formation of iodides: 1,3-diiodo-2,2-bis(octyloxymethyl)propane (13). Iodine ($10.2 \mathrm{~g}, 0.0415 \mathrm{~mol}, 2.5 \mathrm{eq}$), imidazole ($2.73 \mathrm{~g}, 0.0415 \mathrm{~mol}, 2.5 \mathrm{eq}$) and triphenylphosphine $(8.94 \mathrm{~g}, 0.0353 \mathrm{~mol}, 2.2 \mathrm{eq})$ were added to a solution of compound $9(5.80 \mathrm{~g}, 0.0161 \mathrm{~mol})$ in anhydrous toluene (200 mL) and the reaction mixture was refluxed for 3 h . More iodine was then
added to consume excess triphenyl phosphine and reflux was continued for 1 h . The cooled reaction mixture was stirred for 10 min each with saturated sodium bicarbonate (100 mL) and 10% aqueous sodium thiosulfate $(200 \mathrm{~mL})$ solutions. The organic layer was washed with water ($3 \times 50 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was taken up in hexanes and the solution was passed a short silica gel column. Concentration gave the title compound as a colorless oil: $7.89 \mathrm{~g}, 86 \% ; \mathrm{R}_{\mathrm{F}} 0.34$ (98:2 hexanes: dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\delta 0.89(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me}), 1.22-1.36(\mathrm{br} \mathrm{s}, 20 \mathrm{H}, 10 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 1.55\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.33\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{I}\right), 3.35\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.42(\mathrm{t}, 4 \mathrm{H}$, octyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 41.7(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.69, 29.56, $29.47\left(3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me}), 12.1\left(\mathrm{CH}_{2} \mathrm{I}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{I}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 581.1353$, found 581.1351.

2,2-Bis(decyloxymethyl)-1,3-diiodopropane (14). A solution of compound $\mathbf{1 0}$ ($10.0 \mathrm{~g}, 24.3 \mathrm{mmol}$) in toluene (300 mL) was reacted with iodine $(16.3 \mathrm{~g}, 25.9 \mathrm{mmol}, 2.7 \mathrm{eq})$, imidazole ($4.08 \mathrm{~g}, 60.0 \mathrm{mmol}$, $2.5 \mathrm{eq})$ and triphenyl phosphine ($13.4 \mathrm{~g}, 50.4 \mathrm{mmol}, 2.1 \mathrm{eq}$) as above to give the title compound as an oil: $14.4 \mathrm{~g}, 94 \% ; \mathrm{R}_{\mathrm{F}} 0.43$ ($98: 2$ hexanes: dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me})$, 1.22-1.36 (br s, $28 \mathrm{H}, 14 \times \mathrm{CH}_{2}$), 1.54 (pentet, $4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.32\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{I}\right), 3.35(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2\right.$ decyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9$ $\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 41.7(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.65,29.63,29.48$, 29.37 (4 decyl $\left.\mathrm{CH}_{2}\right), 29.58$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me}), 12.1\left(\mathrm{CH}_{2} \mathrm{I}\right) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{51} \mathrm{I}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 637.1979, found 637.1976.

2,2-Bis(dodecyloxymethyl)-1,3-diiodopropane (15). Treatment of compound $\mathbf{1 1}$ ($10.0 \mathrm{~g}, 21.2 \mathrm{mmol}$) in toluene (300 mL) with iodine ($14.0 \mathrm{~g}, 52.8 \mathrm{mmol}, 2.5 \mathrm{eq}$), imidazole ($3.58 \mathrm{~g}, 52.8 \mathrm{~mol}, 2.5 \mathrm{eq}$) and triphenyl phosphine ($13.82 \mathrm{~g}, 52.8 \mathrm{~mol}, 2.5 \mathrm{eq}$) as above gave the title compound as an oil: 14.0 g , $95 \% ; \mathrm{R}_{\mathrm{F}} 0.44$ (98:2 hexanes: dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.22-1.36$ (br s, $36 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.55 (pentet, $4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.32\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{I}\right.$), 3.35 ($\mathrm{s}, 4 \mathrm{H}$,
$\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 41.7(\mathrm{q} \mathrm{C})$, $32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.92,3 \mathrm{x} 29.88,29.79$, 29.59 (6 dodecyl CH_{2}), $29.68\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me}), 12.1\left(\mathrm{CH}_{2} \mathrm{I}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{59} \mathrm{O}_{2} \mathrm{I}_{2}$ $(\mathrm{M}+\mathrm{H})$ 693.2598, found 693.2605.

1,3-Diiodo-2,2-bis(tetradecyloxymethyl)propane (16). Treatment of compound $\mathbf{1 2}$ ($5.0 \mathrm{~g}, 9.5 \mathrm{mmol}$) in toluene (200 mL) with iodine ($7.20 \mathrm{~g}, 28.4 \mathrm{mmol}, 3.0 \mathrm{eq}$), imidizole ($1.60 \mathrm{~g}, 23.6 \mathrm{mmol}, 2.5 \mathrm{eq}$) and triphenyl phosphine $(7.19 \mathrm{~g}, 28.4 \mathrm{mmol}, 2.9 \mathrm{eq})$ as above gave the title compound as a colorless solid: yield $6.36 \mathrm{~g}, 90 \% ; \operatorname{mp} 27-28{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.45$ (98:2 hexanes: dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \times \mathrm{Me}$), $1.22-1.36\left(\mathrm{br} \mathrm{s}, 44 \mathrm{H}, 22 \mathrm{x} \mathrm{CH}_{2}\right.$), 1.53 (pentet, $4 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 3.33 (s, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{I}\right), 3.35\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}\right.$, tetradecyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.0$ $\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 41.8(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.87,29.86,29.85,29.82,2 \times 29.81,29.72,29.52(8$ tetradecyl $\left.\mathrm{CH}_{2}\right)$, $29.61\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $14.3(\mathrm{Me}), 12.1\left(\mathrm{CH}_{2} \mathrm{I}\right)$; LR ESI MS m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{67} \mathrm{I}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 749.32$, found 749.1. Anal. Calcd. for $\mathrm{C}_{33} \mathrm{H}_{66} \mathrm{I}_{2} \mathrm{O}_{2}$: C, 52.94, H, 8.89. Found: C, 53.14, H, 9.20.

General procedure for iodide displacement by dimethylamine: $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-2,2-bis(octyloxymethyl)-1,3-propanediaminium dichloride (1.5). Compound $\mathbf{1 3}$ (9.98 g, 17.2 mmol), dimethylamine in THF ($2 \mathrm{M}, 87 \mathrm{~mL}, 0.17 \mathrm{~mol}, 10 \mathrm{eq}$) and potassium carbonate ($5.9 \mathrm{~g}, 43 \mathrm{mmol}, 2.5$ eq) were added to a sealed tube with the aid of THF $(10 \mathrm{~mL})$. The reaction mixture was stirred at $160 \sim 170{ }^{\circ} \mathrm{C}$. After one week, all of the starting material had been consumed and the reaction mixture was filtered and the solvent was removed in vaccuo at $35 \sim 40{ }^{\circ} \mathrm{C}$ to give a yellow oil, $N, N, N^{\prime}, N^{\prime}-$ tetramethyl-2,2-bis(octyloxymethyl)-1,3-propanediamine (1.1). The crude oil was taken up in dichloromethane (50 mL) and the resulting solution was shaken with ice cold $2 \mathrm{M} \mathrm{HCl}(75 \mathrm{~mL})$. The aqueous layer was extracted with dichloromethane ($2 \times 50 \mathrm{~mL}$), then the combined organic layers were washed with water $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give the title compound as a light
yellow crystalline solid that was recrystallized from ethyl acetate, acetone $15: 1$ to give clear rectangular crystals: yield $5.62 \mathrm{~g}, 67 \% ; \mathrm{mp} 145{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.29$ on basic alumina (hexanes, ethyl acetate, methanol 96: 4: 0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me}), 1.26-1.33(\mathrm{br} \mathrm{s}, 20 \mathrm{H}, 10 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 1.56\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.97\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.47(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, octyl OCH_{2}); $3.68\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.79\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 11.78$ (brs, HN); ${ }^{13} \mathrm{C}$ NMR $\delta 71.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 66.9\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 58.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 47.5\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.5(\mathrm{q} \mathrm{C}), 31.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.5, 29.3, 29.2, (3 octyl CH_{2}), $26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2}$ (M-H-2Cl) 415.4264, found 415.4260.

2,2-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,3-propanediaminium dichloride (1.6).

 Compound 14 ($6.88 \mathrm{~g}, 10.8 \mathrm{mmol}$), 2 M dimethylamine in THF ($54 \mathrm{~mL}, 0.11 \mathrm{~mol}, 10 \mathrm{eq}$), and potassium carbonate ($3.72 \mathrm{~g}, 27.0 \mathrm{mmol}, 2.5 \mathrm{eq}$) in THF were reacted as above to give a yellow oil, 2,2-bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,3-propanediamine (1.2) that was converted to the title bishydrochloride as above. The colorless crystals were recrystallized from ethyl acetate/acetone 2/1 to give colorless needles: yield $3.95 \mathrm{~g}, 68 \% ; \mathrm{mp} 130-133{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.32$ on basic alumina (hexanes, ethyl acetate, methanol 96: 4: 0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.32$ (br s, $\left.28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.55\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.97\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.47(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}$ $=6.6 \mathrm{~Hz}$, decyl OCH_{2}), $3.67\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.81\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 11.85(\mathrm{brs}, \mathrm{HN}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 66.9\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 58.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 47.7\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.6(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.7, 29.6, 29.5, 29.4, (decyl CH_{2}), $26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2$ (Me); HR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H}-2 \mathrm{Cl})$ 471.4890, found 471.4886.2,2-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,3-propanediaminium dichloride (1.7). Compound $15(11.72 \mathrm{~g}, 16.9 \mathrm{mmol}), 2 \mathrm{M}$ dimethylamine in THF ($85 \mathrm{~mL}, 0.17 \mathrm{~mol}, 10 \mathrm{eq}$), potassium carbonate ($5.83 \mathrm{~g}, 42.2 \mathrm{mmol}$), and THF (10 mL) were reacted as for compound $\mathbf{1 . 5}$ to give a yellow crystalline solid, 2,2-bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,3-propanediamine (1.3) that was
converted to the title compound, an off white crystalline solid. It was recrystallized from ethyl acetate acetone to give colorless rectangular crystals: yield $6.90 \mathrm{~g}, 68 \% ; \mathrm{mp} 128-130{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.34$ on basic alumina (hexanes, ethyl acetate, methanol 96: 4: 0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me})$, 1.26-1.31 (br s, $36 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.55 (pentet, $4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.97(\mathrm{~s}, 12 \mathrm{H}, 2 \times$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.47\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.67\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.78\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 11.69$ (brs, HN); ${ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 66.9\left(\mathrm{CCH}_{2} \mathrm{OCH} \mathrm{H}_{2} \mathrm{C}\right), 58.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 47.6\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.5(\mathrm{q}$ C), $31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.6, 29.6, 29.6, 29.5, 29.4, 29.3 (dodecyl $\left.\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{2}$ (M-H-2Cl) 527.5516, found 527.5517.
$N, N, N^{\prime}, N^{\prime}$-Tetramethyl-2,2-bis(tetradecyloxymethyl)-1,3-propanediaminium dichloride (1.8) A mixture of compound $16(15.24 \mathrm{~g}, 20.37 \mathrm{mmol}), 2 \mathrm{M}$ dimethyl amine in THF ($51 \mathrm{~mL}, 0.10 \mathrm{~mol}, 5.0$ eq), and potassium carbonate $(7.03 \mathrm{~g}, 50.9 \mathrm{mmol})$ were heated in a sealed tube as for compound 1.5 , except that the same amount of dimethylamine was added after 48 h , to give an offwhite crystalline solid, $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(tetradecyloxymethyl)-1,3-propanediamine (1.4) that was converted to the title bishydrochloride as above. The crystalline solid was recrystallized from ethyl acetate to give colorless crystals: yield $9.97 \mathrm{~g}, 75 \% ; \mathrm{mp} 129-130{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.36$ on basic alumina (hexanes, ethyl acetate, methanol 96: 4: 0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.31(\mathrm{br} \mathrm{s}, 44 \mathrm{H}$, $\left.22 \times \mathrm{CH}_{2}\right), 1.55\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.97\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 3.47(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6\right.$ Hz , tetradecyl OCH_{2}), $3.67\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.82\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 11.88($ brs, HN$) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 66.9\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 58.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 47.7\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.7(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.8, 29.6, 29.5, 29.5, (tetradecyl CH_{2}), $26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3$ (Me); HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}-2 \mathrm{Cl}-\mathrm{H}) 583.6142$, found 583.6139.

General procedure for formation of quaternary ammonium salts: $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(octyloxymethyl)-1,3-propanediammonium diiodide (1.9). An aqueous NaOH solution (2 M,
$30 \mathrm{~mL})$ was added to salt $1.5(4.44 \mathrm{~g}, 9.1 \mathrm{mmol})$ and the resulting mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined extracts were washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a colorless syrup, $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(octyloxymethyl)-1,3-propanediamine (1.1): yield: $2.45 \mathrm{~g}, 65 \%$; $\mathrm{R}_{\mathrm{F}} 0.39$ on basic alumina (hexanes, ethyl acetate, methanol 96: 4: 0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.32\left(\mathrm{br} \mathrm{s}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.54$ (pentet, $4 \mathrm{H}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.26\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{NCH}_{2}\right), 3.26\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.33$ $\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}\right.$, octyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.8\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 59.9\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $48.7\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.8(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.9,29.6$, 29.5 , (3 octyl CH_{2}), $26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$.

Methyl iodide ($3.6 \mathrm{~mL}, 57.9 \mathrm{mmol}, 10.0 \mathrm{eq}$) was added to a stirred solution of compound $\mathbf{1 . 1}$ $(2.4 \mathrm{~g}, 5.79 \mathrm{mmol})$ in dry THF (15 mL) and the resulting solution was refluxed for 24 h , then concentrated. The title compound, a light yellow crystalline solid, was recrystallized from ethyl acetate and acetone to give colorless crystals: yield $3.01 \mathrm{~g}, 75 \% ; \mathrm{mp} 160-162{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.53 (chloroform acetone methanol 21 1); ${ }^{1} \mathrm{H} \mathrm{NMR} \delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me}), 1.27$ 1.29 (br s, $20 \mathrm{H}, 10 \times \mathrm{CH}_{2}$), 1.60 (pentet, $4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 3.51 (t, $4 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}$, octyl OCH_{2}), $3.65\left(\mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.45\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 72.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.2\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 67.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 56.5\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 49.1(\mathrm{q} \mathrm{C}), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), ~}^{\text {, }}\right.$ 29.7, 29.4, 29.3, (octyl CH_{2}), $26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{IO}_{2}$ (M-I) 571.3700, found 571.3702; calcd for $\mathrm{C}_{54} \mathrm{H}_{120} \mathrm{~N}_{4} \mathrm{I}_{3} \mathrm{O}_{4}$ (2M-I) 1269.6444, found 1269.6443.

2,2-Bis(decyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3-propanediammonium diiodide (1.10).

 An aqueous NaOH solution ($2 \mathrm{M}, 20 \mathrm{~mL}$) and salt $1.5(2.5 \mathrm{~g}, 4.4 \mathrm{mmol})$ were reacted as for compound 1.9 to yield a colorless syrup of 2,2-bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,3-propanediamine (1.2), yield: $1.7 \mathrm{~g}, 79 \% ; \mathrm{R}_{\mathrm{F}} 0.42$ on basic alumina (hexanes, ethyl acetate, methanol 96: 4: 0.4); ${ }^{1} \mathrm{H}$NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.28\left(\mathrm{br} \mathrm{s}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.54(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, 2$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 16 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 2 \times \mathrm{NCH}_{2}\right), 3.26\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.38(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, decyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.7\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 59.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.6\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.6(\mathrm{q} \mathrm{C})$, $32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.9, 29.8, 29.8, 29.7, $29.5\left(\right.$ decyl $\left.\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 14.2 (Me).

Alkylation of compound $1.2(1.7 \mathrm{~g}, 3.6 \mathrm{mmol})$ in dry THF (25 mL) with methyl iodide (2.24 $\mathrm{mL}, 36.1 \mathrm{mmol}, 10 \mathrm{eq})$ as for compound $\mathbf{1 . 9}$ gave the title compound as a light yellow crystalline solid that was recrystallized from ether and acetone to give colorless crystals: yield $2.4 \mathrm{~g}, 73 \%$; $\mathrm{mp} 75{ }^{\circ} \mathrm{C}$; R_{F} on basic alumina 0.57 (chloroform acetone methanol 211); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$, $2 \times \mathrm{Me}), 1.26-1.30\left(\mathrm{br} \mathrm{s}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.60\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.51(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=$ 6.9 Hz , decyl OCH_{2}), $3.65\left(\mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.44\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR δ $\left.71.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.2\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 67.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 56.1 \quad\left(\mathrm{~N}_{\left(\mathrm{CH}_{3}\right)}\right)_{3}\right), 48.7 \quad(\mathrm{q} \mathrm{C}), 31.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.45,29.43$, 29.37, $29.14\left(4 \mathrm{decyl} \mathrm{CH}_{2}\right), 29.25\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{IO}_{2}$ (M-I) 627.4326, found 627.4326; calcd for $\mathrm{C}_{62} \mathrm{H}_{136} \mathrm{I}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}$ (2M-I) 1381.7696, found 1381.7694.

2,2-Bis(dodecyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3-propanediammonium diiodide (1.11).

 Reaction of an aqueous NaOH solution ($2 \mathrm{M}, 50 \mathrm{~mL}$) with salt $\mathbf{1 . 7}(4.75 \mathrm{~g}, 7.9 \mathrm{mmol})$ as for compound 1.9 yielded a colorless syrup, 2,2-bis(dodecyloxymethyl)- $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-1,3-propanediamine (1.3): yield $3.27 \mathrm{~g}, 78 \%$; $\mathrm{R}_{\mathrm{F}} 0.48$ on basic alumina (hexanes, ethyl acetate, methanol 96: 4: 0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.33\left(\mathrm{br} \mathrm{s}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.53$ (pentet, $4 \mathrm{H}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.26\left(2 \mathrm{~s}, 16 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 2 \times \mathrm{NCH}_{2}\right), 3.26\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.33(\mathrm{t}, \mathrm{J}=6.5$ $\mathrm{Hz}, 4 \mathrm{H}$, dodedecyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.7\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 59.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.7$ $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.7(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.9,29.8,29.8,29.7$, 29.5 (dodecyl $\left.\mathrm{CH}_{2}\right), 26.5$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me})$.Alkylation of compound $\mathbf{1 . 2 . 3}$ ($3.25 \mathrm{~g}, 6.18 \mathrm{mmol}$) in dry THF (20 mL) with methyl iodide (3.9 $\mathrm{mL}, 61.7 \mathrm{mmol}, 10 \mathrm{eq}$) as above gave $\mathbf{1 . 1 1}$ as a light yellow crystalline solid that was recrystallized from ethyl acetate and acetone to give colorless crystals: yield $3.75 \mathrm{~g}, 76 \%$; R_{F} on basic alumina 0.60 (chloroform acetone methanol 21 1); mp 130-132 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x}$ Me), 1.26-1.30 (br s, $36 \mathrm{H}, 18 \mathrm{xCH}_{2}$), 1.59 (pentet, $4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.51(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.7$ Hz , dodecyl OCH_{2}), $3.65\left(\mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right), 3.91\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.45\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR δ $72.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.2\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 67.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 56.4\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 48.9(\mathrm{q} \mathrm{C}), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.6, 29.5, 29.4, 29.4 (dodecyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1$ (Me); LR ESI MS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{IO}_{2}$ (M-I) 683.49, found 683.3. Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{I}_{2}$: C, 51.85, H , 9.45, N, 3.46. Found: C, 51.43, H, 9.32, N, 3.71.
$N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexamethyl-2,2-bis(tetradecyloxymethyl)-1,3-propanediammonium diiodide
(1.12). Treatment of salt $1.8(5.96 \mathrm{~g}, 9.11 \mathrm{mmol})$ with an aqueous NaOH solution ($2 \mathrm{M}, 40 \mathrm{~mL}$) as above gave a colorless syrup, $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(tetradecyloxymethyl)-1,3-propanediamine (1.4): yield $4.69 \mathrm{~g}, 89 \% ; \mathrm{R}_{\mathrm{F}} 0.51$ on basic alumina (hexanes, ethyl acetate, methanol 96: 4: 0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.31\left(\mathrm{br} \mathrm{s}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.51$ (pentet, $4 \mathrm{H}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 16 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 2 \times \mathrm{NCH}_{2}\right), 3.26\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.33(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}$, 4 H , tetradecyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.7\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 59.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.7$ $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.7(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.91,29.86,29.85,29.82,29.81,29.80,29.65$ (8 tetradecyl $\left.\mathrm{CH}_{2}\right), 29.52\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me}) ;$ LR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{2} 583.61$, found 583.5.

Alkylation of compound $1.4(4.0 \mathrm{~g}, 6.9 \mathrm{mmol})$ in dry THF (20 mL) with methyl iodide (4.3 $\mathrm{mL}, 68.7 \mathrm{mmol}, 10 \mathrm{eq}$) as above gave the title compound as a light yellow crystalline solid, that was recrystallized from ethyl acetate and acetone to give colorless crystals: yield $5.7 \mathrm{~g}, 96 \% ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.63 (chloroform acetone methanol 211); mp 127-128 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$
$7.0 \mathrm{~Hz}, 2 \times \mathrm{Me}$), $1.26-1.30\left(\mathrm{br} \mathrm{s}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.57$ (pentet, $4 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.50(\mathrm{t}$, $4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}$, tetradecyl $\left.\mathrm{OCH}_{2}\right), 3.63\left(\mathrm{~s}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right), 3.93\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 72.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.2\left(\mathrm{CCH}_{2} \mathrm{OCH} \mathrm{H}_{2} \mathrm{C}\right), 67.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 56.6\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 49.1(\mathrm{q} \mathrm{C}), 32.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.83,29.80,29.78,29.78,29.76,29.54,29.48$ (8 tetradecyl $\left.\mathrm{CH}_{2}\right), 29.68\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.23(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{I}$ (M-I) 739.56, found 739.3. Anal. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{I}_{2}$: C, 54.03, H, 9.77, N, 3.23. Found: C, 53.78, H, 9.76, N, 3.09.

General procedure for displacement of iodides by pyrrolidine: 1,3-Bis(1-azacyclopentyl)-2,2bis(octyloxymethyl)propane dihydrochloride (1.17). A stirred solution of compound $\mathbf{1 3}$ (18.0 g, $31.0 \mathrm{mmol})$ in pyrrolidine (100 mL) containing potassium carbonate ($10.7 \mathrm{~g}, 31.0 \mathrm{mmol}, 2.5 \mathrm{eq}$) was refluxed under nitrogen for 48 h , allowed to cool to rt , then filtered. The solid was washed with dichloromethane (2 x 10 mL) and the filtrate and washings were combined and diluted with dichloromethane (100 mL). The resulting solution was washed with water (3 x 100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated at $30{ }^{\circ} \mathrm{C}$ to give crude 1,3-bis(1-azacyclopentyl)-2,2bis(octyloxymethyl)propane (1.13): yield 14.20 g . This product was taken up in dichloromethane (100 $\mathrm{mL})$ and the resulting solution was shaken with ice cold $2 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$. The aqueous layer was extracted with dichloromethane ($2 \times 100 \mathrm{~mL}$), then the combined organic layers were washed with water $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the title compound as a light yellow crystalline solid that was recrystallized from hexanes, ethyl acetate $2: 1$ to give colorless crystals: yield $12.5 \mathrm{~g}, 75$ $\% ; m p 124-125{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{F}} 0.22$ on basic alumina (hexanes, ethyl acetate, methanol, 96:4:0.4); ${ }^{1} \mathrm{H}$ NMR δ $0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.31\left(\mathrm{br} \mathrm{s}, 20 \mathrm{H}, 10 \mathrm{x} \mathrm{CH}_{2}\right.$), 1.55 (pentet, $4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.06\left(\mathrm{YY}^{\prime}\right.$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.25\left(\mathrm{XX'}^{\prime}\right.$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.21\left(\mathrm{BB}^{\prime}\right.$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.2 \mathrm{~N}\left(\mathrm{CH}_{2}\right)\right), 3.46\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, octyl $\left.\mathrm{OCH}_{2}\right), 3.59\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.84\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.91$
(AA' part of AA'BB'XX'YY' pattern, 4H, $1 / 2$ of $2 \mathrm{~N}\left(\mathrm{CH}_{2}\right)$), 11.51 (br s, HN); ${ }^{13} \mathrm{C}$ NMR $\delta 71.5$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 67.5\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 57.8\left(\mathrm{NCH}_{2}\right), 56.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 44.3(\mathrm{q} \mathrm{C}), 31.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.41, 29.25, $29.18\left(3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 23.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{2}$ (M-H-2Cl) 467.4577, found 467.4578.

1,3-Bis(1-azacyclopentyl)-2,2-bis(decyloxymethyl)propane dihydrochloride (1.18). Treatment of a solution of compound $14(16.0 \mathrm{~g}, 25.0 \mathrm{mmol})$ in pyrrolidine (100 mL) containing potassium carbonate $(8.69 \mathrm{~g}, 62.8 \mathrm{mmol}, 2.5 \mathrm{eq})$ as for compound $\mathbf{1 . 1 7}$ gave a light brown syrup, 1,3-bis(1-azacyclopentyl)-2,2-bis(decyloxymethyl)propane (1.14): yield 11.93 g . Addition of ice cold $2 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ gave a light yellow crystalline solid that was recrystallized from ethyl acetate to give colorless crystals: yield $10.9 \mathrm{~g}, 76 \% ; \mathrm{mp} 125-126^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{F}} 0.24$ on basic alumina (hexanes, ethyl acetate, methanol, 96:4:0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.28\left(\mathrm{br} \mathrm{s}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.55$ (pentet, $4 \mathrm{H}, \mathrm{J}=$ $\left.6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.05\left(\mathrm{YY}^{\prime}\right.$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.25$ (XX' part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.21\left(\mathrm{BB}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime} \mathrm{YY}^{\prime}$ pattern, $\left.4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.45\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right), 3.58\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.84(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $3.91\left(\mathrm{BB}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XXX}^{\prime} \mathrm{YY}^{\prime}$ pattern, $\left.4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 11.5(\mathrm{br} \mathrm{s}, \mathrm{HN}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 67.5\left(\mathrm{CCH}_{2} \mathrm{O}\right), 57.9\left(\mathrm{NCH}_{2}\right), 57.0\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 44.5(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.71$, 29.66, 29.59, 29.47, $29.40\left(6 \mathrm{decyl} \mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 23.6\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 14.2 (Me); HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{2}$ (M-H-2Cl) 523.5203, found 523.5204.

1,3-Bis(1-azacyclopentyl)-2,2-bis(dodecyloxymethyl)propane dihydrochloride (1.19). Treatment of a solution of compound $15(12.2 \mathrm{~g}, 17.6 \mathrm{mmol})$ in pyrrolidine $(100 \mathrm{~mL})$ containing potassium carbonate $(6.1 \mathrm{~g}, 44 \mathrm{mmol}, 2.5 \mathrm{eq})$ as for compound 1.17 gave an orange syrup, 1,3-bis(1-azacyclopentyl)-2,2-bis(dodecyloxymethyl)propane (1.15): yield 12.9 g . Addition of ice cold 2 M HCl $(100 \mathrm{~mL})$ and dichloromethane $(30 \mathrm{~mL})$ provided a light pink crystalline solid that was dissolved in dichloromethane (30 mL). The dichloromethane solution was washed with distilled water (10 mL),
dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to a crystalline solid that was recrystallized from ethyl acetate to give colorless crystals: yield $8.8 \mathrm{~g}, 77 \%$; mp $127^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.28$ on basic alumina (hexanes, ethyl acetate, methanol, 96:4:0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.28\left(\mathrm{br} \mathrm{s}, 36 \mathrm{H}, 18 \mathrm{xCH}_{2}\right)$, 1.55 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.06\left(\mathrm{YY}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime} \mathrm{Y}^{\prime}$ ' pattern, $4 \mathrm{H}, 1 / 2$ of 22 $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.25\left(\mathrm{XX'}^{\prime}\right.$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.21(\mathrm{BB}$ part of AA'BB'XX'YY' pattern, $\left.4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.45\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.58(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.83\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.91\left(\mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX'}^{\prime} \mathrm{YY}^{\prime}$ pattern, $\left.4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 11.5(\mathrm{br} \mathrm{s}$, $\mathrm{HN}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 67.6\left(\mathrm{CCH}_{2} \mathrm{O}\right), 58.0\left(\mathrm{NCH}_{2}\right), 57.1\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 44.5(\mathrm{q} \mathrm{C}), 32.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.6, 29.5, 29.4, (dodecyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 23.6\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 22.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{75} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H}-2 \mathrm{Cl}) 579.5829$, found 579.5826.

1,3-Bis(1-azacyclopentyl)-2,2-bis(tetradecyloxymethyl)propane dihydrochloride

Treatment of a solution of compound $16(14.96 \mathrm{~g}, 31.29 \mathrm{mmol})$ in pyrrolidine (100 mL) containing potassium carbonate $(10.78 \mathrm{~g}, 78.0 \mathrm{mmol}, 2.5 \mathrm{eq})$ as for compound $\mathbf{1 . 1 7}$ gave a brown solid, 1,3-bis(1-azacyclopentyl)-2,2-bis(tetradecyloxymethyl)propane (1.16), yield 17.26 g . Addition of ice cold 2 M $\mathrm{HCl}(100 \mathrm{~mL})$ and dichloromethane $(30 \mathrm{~mL})$ provided a yellow crystalline solid $(18.11 \mathrm{~g})$, that was dissolved in dichloromethane $(30 \mathrm{~mL})$. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to colorless crystalline solid that was recrystallized from ethyl acetate to give the title compound as colorless crystals: yield $17.5 \mathrm{~g}, 79 \% ; \mathrm{mp} 128{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.33$ on basic alumina (hexanes, ethyl acetate, methanol, 96:4:0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.28\left(\mathrm{br} \mathrm{s}, 44 \mathrm{H}, 22 \mathrm{x} \mathrm{CH}_{2}\right), 1.55$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.05\left(\mathrm{YY}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX'}^{\prime} \mathrm{Y}^{\prime}$ pattern, $4 \mathrm{H}, 1 / 2$ of 22 $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.25\left(\mathrm{XX}^{\prime}\right.$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.21$ (BB' part of AA'BB'XX'YY' pattern, $\left.4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.45\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, tetradecyl $\left.\mathrm{OCH}_{2}\right), 3.58(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.84\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.91\left(\mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX'}^{\prime} \mathrm{YY}^{\prime}$ pattern, $\left.4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 11.5(\mathrm{br} \mathrm{s}$, $\mathrm{HN}) ;{ }^{13} \mathrm{C}$ NMR $\left.\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 67.6\left(\mathrm{CCH}_{2} \mathrm{O}\right), 58.0\left(\mathrm{NCH}_{2}\right), 57.1\left(\left(\mathrm{CH}_{2}\right)_{2}\right) \mathrm{N}\right), 44.6(\mathrm{q} \mathrm{C}), 32.1$
$\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.83,29.82,29.79,29.65,29.57,29.49$ (8 tetradecyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 23.7$ $\left(\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}) ;$ HR ESI MS m/z calcd for $\mathrm{C}_{41} \mathrm{H}_{83} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}-\mathrm{H}-2 \mathrm{Cl})$ 635.6455, found 635.6454.

General procedure for methylation of the pyrrolidine derivatives: 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2-bis(octyloxymethyl)propane diiodide (1.21). An aqueous 2 M NaOH solution (50 mL) was added to compound $1.17(12.5 \mathrm{~g}, 23.2 \mathrm{mmol})$ and the resulting mixture was extracted with dichloromethane (3 x 50 mL). The combined extracts were washed with water and dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give the free base, 1,3-bis(1-azacyclopentyl)-2,2bis(octyloxymethyl)propane (1.13) as a light yellow syrup: yield $10.3 \mathrm{~g}, 72 \% ; \mathrm{R}_{\mathrm{F}} 0.32$ on basic alumina (hexanes, ethyl acetate, methanol, 96:4:0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me})$, 1.27$1.34\left(\mathrm{br} \mathrm{s}, 20 \mathrm{H}, 10 \mathrm{x} \mathrm{CH}_{2}\right), 1.53$ (pentet, $4 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.68\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.48$ $\left(\mathrm{s}, 4 \mathrm{H} \mathrm{CH}_{2} \mathrm{~N}\right), 2.56\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}, 3.27\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.32\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}\right.\right.$, octyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 71.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 56.81\left(\mathrm{CH}_{2} \mathrm{~N}\right), 56.84\left(\mathrm{NCH}_{2}\right), 45.7(\mathrm{q} \mathrm{C}), 31.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.87,29.55,29.43\left(3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 24.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1$ (Me).

Methyl iodide ($13.3 \mathrm{~g}, 21.3 \mathrm{mmol}, 10 \mathrm{eq}$) was added to a stirred solution of compound $\mathbf{1 . 1 3}$ $(9.90 \mathrm{~g}, 21.3 \mathrm{mmol})$ in dry THF (50 mL). The resulting mixture was refluxed under nitrogen for 48 h , then concentrated. The title compound, a light brown crystalline solid, was recrystallized from ethyl acetate to give colorless crystals: yield $13 \mathrm{~g}, 81 \% ; \mathrm{mp} 92{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.69$ on basic alumina (chloroform, acetone, methanol, ammonia 2:2:1:0.5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.89 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.30(\mathrm{br}$ s, $20 \mathrm{H}, 10 \times \mathrm{CH}_{2}$), 1.57 (pentet, $4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.18\left(\mathrm{YY}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime} \mathrm{YY}^{\prime}$ pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.38\left(\mathrm{XX}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime} \mathrm{Y}^{\prime}$ ' pattern, $4 \mathrm{H}, 1 / 2$ of 22 $\left.\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)\right), 3.46\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{NCH}_{3}\right), 3.49\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, octyl $\left.\mathrm{OCH}_{2}\right), 3.96\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.04$ $\left(\mathrm{m}, 8 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 4.63\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.3\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$,
$66.9\left(\mathrm{NCH}_{2}\right), 65.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.5\left(\mathrm{CH}_{3} \mathrm{~N}\right), 48.4(\mathrm{q} \mathrm{C}), 31.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.5,29.3$, 29.2 (3 octylCH 2$), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.1(\mathrm{Me}) ;$ HR ESI-MS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{64} \mathrm{IN}_{2} \mathrm{O}_{2} 623.4013$ (M-I), found 623.4011 .

2,2-Bis(decyloxymethyl)-1,3-bis(1-methyl-1-azoniacyclopentyl)propane diiodide (1.22). Aqueous 2 M NaOH solution (50 mL) and compound $\mathbf{1 . 1 8}(10.9 \mathrm{~g}, 18.3 \mathrm{mmol})$ were reacted as for $\mathbf{1 . 2 1}$ above to give a colorless syrup, 1,3-bis(1-azacyclopentyl)-2,2-bis(decyloxymethyl)propane (1.14): yield 9.50 $\mathrm{g}, 72.5 \% ; \mathrm{R}_{\mathrm{F}} 0.34$ on basic alumina (hexanes, ethyl acetate, methanol, 96:4:0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}$ (t, $6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26-1.31 (br s, $28 \mathrm{H}, 14 \mathrm{x} \mathrm{CH}_{2}$), 1.53 (pentet, $4 \mathrm{H}, \mathrm{J}=\mathrm{Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.68\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right), 2.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}, 2.57\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.29\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right)\right.$, $3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 71.9\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 71.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 57.2$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 57.0\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 45.8(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.93$, 29.85, 29.78 29.68, 29.52 (6 decyl $\left.\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $24.4\left(\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $14.3(\mathrm{Me})$.

Methyl iodide ($16.6 \mathrm{~g}, 117 \mathrm{mmol}, 10 \mathrm{eq}$) and compound $1.14(6.1 \mathrm{~g}, 11.6 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ was treated as for compound $\mathbf{1 . 2 1}$ to give a light brown crystalline solid that was recrystallized from ethyl acetate to give an off white crystalline solid: yield $6.0 \mathrm{~g}, 81 \%$; mp $95-96^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{F}} 0.71$ on basic alumina (chloroform, acetone, methanol, ammonia 2:2:1:0.5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}$, $6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.30\left(\mathrm{br} \mathrm{s}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.57$ (pentet, $4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 2.18 (YY^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX'}^{\prime} \mathrm{YY}^{\prime}$ pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.38$ ($\mathrm{XX'}^{\prime}$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)\right), 3.46\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{NCH}_{3}\right), 3.49(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, decyl $\left.\mathrm{OCH}_{2}\right), 3.96\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.04\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 4.63\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 72.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.2\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 66.9\left(\mathrm{NCH}_{2}\right), 65.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.6\left(\mathrm{CH}_{3} \mathrm{~N}\right), 48.3(\mathrm{q} \mathrm{C}), 32.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.71, 29.67, 29.66, 29.47, $29.39\left(5\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $21.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.2(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{72} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 679.64, found 679.3, calcd
for (M-2I) 276.3, found 276.3. Anal. Calcd. for $\mathrm{C}_{35} \mathrm{H}_{72} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 52.11, H, 9.00, N, 3.47. Found: C, 52.08, H, 9.17, N, 3.69.

2,2-Bis(dodecyloxymethyl)-1,3-bis(1-methyl-1-azoniacyclopentyl)propane diiodide

(1.23).

Reaction of $2 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$ with salt $1.19(8.8 \mathrm{~g}, 13.5 \mathrm{mmol})$ as above gave 1,3-bis(1-azacyclopentyl)-2,2-bis(dodecyloxymethyl)propane (1.15) as a colorless syrup: yield $7.5 \mathrm{~g}, 74 \% ; \mathrm{R}_{\mathrm{F}}$ 0.36 on basic alumina (hexanes, ethyl acetate, methanol, 96:4:0.4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9$ $\mathrm{Hz}, 2 \times \mathrm{Me}$), 1.26-1.31 (br s, $36 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.53 (pentet, $4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.69(\mathrm{~m}, 8 \mathrm{H}$, $\left.2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.57\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.28\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.33(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=$ 6.5 Hz , dodecyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.9\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 57.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 57.0$ $\left(\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 45.8(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.3,29.8$, $29.7\left(\right.$ dodecyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 24.2$ $\left(\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 22.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me})$.

Methyl iodide ($8 \mathrm{~mL}, 129.7 \mathrm{mmol}, 10 \mathrm{eq}$) was reacted with compound $1.15(7.5 \mathrm{~g}, 13 \mathrm{mmol})$ in dry THF (50 mL) as above to give the title compound, as an offwhite crystalline solid, that was recrystallized from ethyl acetate to give colorless crystals: yield $7.5 \mathrm{~g}, 84 \% ; \mathrm{mp} 100-101{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.74$ on basic alumina (chloroform, acetone, methanol, ammonia 2:2:1:0.5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.25-1.23 (br s, $36 \mathrm{H}, 18 \mathrm{xCH}_{2}$), 1.57 (pentet, $4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.17\left(\mathrm{YY}^{\prime}\right.$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.38(X X '$ part of AA'BB'XX'YY' pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.45\left(\mathrm{~s}, 2 \mathrm{NCH}_{3}\right), 3.49\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2\right.$ dodecyl $\left.\mathrm{OCH}_{2}\right), 3.96(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 4.05\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.64\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.3$ $\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 66.9\left(\mathrm{NCH}_{2}\right), 65.5\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.4\left(\mathrm{CH}_{3} \mathrm{~N}\right), 48.3(\mathrm{q} \mathrm{C}), 31.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.6$, 29.5, 29.3, 29.3 (dodecyl CH_{2}), $26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.0(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{80} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 735.53, found 735.3; calcd for $\mathrm{C}_{38} \mathrm{H}_{77} \mathrm{~N}_{2} \mathrm{O}_{2}$ (M-2I-Me) 593.60, found 593.4; calcd for (M-2I)/2 304.31, found 304.3. Anal. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{80} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 54.29, H, 9.34, N, 3.47. Found: C, 54.16, H, 9.77, N, 3.38.

Reaction of $2 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL}$) with salt 1.20 ($17.5 \mathrm{~g}, 24.7 \mathrm{mmol}$) as above gave 1,3-bis(1-azacyclopentyl)-2,2-bis(tetradecyloxymethyl)propane (1.16) as a light yellow crystalline solid: yield $14.3 \mathrm{~g}, 72 \% ; \mathrm{mp} 100-102{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.38$ on basic alumina (hexanes, ethyl acetate, methanol, 96:4:0.4); ${ }^{1} \mathrm{H} \operatorname{NMR} \delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.31\left(\mathrm{br} \mathrm{s}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.53$ (pentet, $4 \mathrm{H}, \mathrm{J}=$ $\left.7.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.68\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.57\left(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.28$ $\left(\mathrm{s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, tetradecyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 57.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 56.9\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 45.6(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.80,29.74,29.70$ 29.55, $29.40\left(8\right.$ tetradecyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 24.2\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1(\mathrm{Me}) .}\right.$
 $\mathrm{g}, 112 \mathrm{mmol}, 10 \mathrm{eq}$) as above gave the compound, a light brown crystalline solid, that was recrystallized from ethyl acetate to give an off-white crystalline solid: yield $7.6 \mathrm{~g}, 94 \% ; \mathrm{mp} 108{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ 0.76 on basic alumina (chloroform, acetone, methanol, ammonia 2:2:1:0.5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}$, $6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26-1.29 (br s, $44 \mathrm{H}, 22 \times \mathrm{CH}_{2}$), 1.57 (pentet, $4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 2.17 (YY^{\prime} part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{XX}^{\prime} \mathrm{YY}^{\prime}$ pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 2.38$ ($\mathrm{XX'}^{\prime}$ part of $A^{\prime} A^{\prime} B^{\prime} X^{\prime} \mathrm{YY}^{\prime}$ pattern, $4 \mathrm{H}, 1 / 2$ of $\left.22 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right), 3.45\left(\mathrm{~s}, 2 \mathrm{NCH}_{3}\right), 3.49(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, tetradecyl OCH_{2}), $3.97\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 4.05\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.67\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 72.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.3\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 66.9\left(\mathrm{NCH}_{2}\right), 65.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 48.6\left(\mathrm{CH}_{3} \mathrm{~N}\right), 48.3(\mathrm{q} \mathrm{C}), 32.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.72, 29.69, 29.62, 29.44, 29.39 (5 tetradecyl CH_{2}), $26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.2(\mathrm{Me}) ;$ LR ESI MS m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{88} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 791.59, found 791.3; calcd for $\mathrm{M} / 2$: 332.34, found 332.4; calcd for $\mathrm{C}_{86} \mathrm{H}_{176} \mathrm{I}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}(2 \mathrm{M}-\mathrm{I})$ 1710.1, found 1709.3. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{88} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 55.12, \mathrm{H}, 9.68, \mathrm{~N}, 2.99$. Found: C, 55.26, H, 9.46, $\mathrm{N}, 3.30$.

General procedure for displacement of iodides by cyanide: 3,3bis(octyloxymethyl)pentanedinitrile (2.1). Potassium cyanide ($0.80 \mathrm{~g}, 12.0 \mathrm{mmol}, 3.0 \mathrm{eq}$) was added
to a stirred solution of compound $\mathbf{1 3}(2.4 \mathrm{~g}, 4.1 \mathrm{mmol})$ in dry DMF $(25 \mathrm{~mL})$. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h , and then allowed to cool to rt . A solid was deposited and the solution was decanted. The solid was washed with dichloromethane ($2 \times 10 \mathrm{~mL}$). The combined solution and washings were concentrated to yellow oil that was taken up in dichloromethane (30 mL). The resulting solution was washed with water $(3 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the title compound as a light yellow oil: yield $1.3 \mathrm{~g}, 83 \% ; \mathrm{R}_{\mathrm{F}} 0.42$ (hexanes: ethyl acetate 9: 1); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ (t, $6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), $1.23-1.33\left(\mathrm{br} \mathrm{s}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right.$), 1.55 (pentet, $4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 2$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.57\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.42\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.44\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}\right.$, octyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 116.7(\mathrm{CN}), 71.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.8\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 41.3(\mathrm{q} \mathrm{C}), 32.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.45$, $29.34\left(2\right.$ octyl $\left.\mathrm{CH}_{2}\right)$, $29.47\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $21.7\left(\mathrm{CH}_{2} \mathrm{CN}\right) 14.2$ (Me); HR ESI MS m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 401.3138$, found 401.3152.

3,3-Bis(decyloxymethyl)pentanedinitrile (2.2). Treatment of compound $\mathbf{1 4}(5.9 \mathrm{~g}, 9.3 \mathrm{mmol})$ in dry DMF (30 mL) with potassium cyanide $(1.8 \mathrm{~g}, 28.0 \mathrm{mmol}, 3.0 \mathrm{eq})$ as above gave the title compound as a light yellow oil: yield $3.6 \mathrm{~g}, 91 \% ; \mathrm{R}_{\mathrm{F}} 0.46$ (hexanes: ethyl acetate $9: 1$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26-1.31 (br s, 28H, $14 \mathrm{x} \mathrm{CH}_{2}$), 1.53 (pentet, $4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.58(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.43\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.45\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \operatorname{decyl} \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 116.8(\mathrm{CN}), 72.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{OCH}_{2} \mathrm{C}\right), 41.3(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.75,29.72,29.53$, 29.47 (4 decyl $\left.\mathrm{CH}_{2}\right), 29.55\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{2} \mathrm{CN}\right) 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 457.3764, found 457.3781.

3,3-Bis(dodecyloxymethyl)pentanedinitrile (2.3). Treatment of compound $\mathbf{1 5}$ ($2.3 \mathrm{~g}, 3.3 \mathrm{mmol}$) in dry DMF (30 mL) with potassium cyanide ($0.5 \mathrm{~g}, 8.4 \mathrm{mmol}, 3.0 \mathrm{eq}$) as above gave the title compound as a light yellow oil: yield $1.5 \mathrm{~g}, 91 \% ; \mathrm{R}_{\mathrm{F}} 0.49$ (hexanes: ethyl acetate $9: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR} \delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), $1.26-1.32\left(\mathrm{br} \mathrm{s}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right.$), $1.54-1.58$ (pentet, $4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 2.57 $\left(\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.38\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.45\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.57\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right)$,
$3.38\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.45\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 116.7(\mathrm{CN}), 72.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.8\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 41.3(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2 \times 29.72,2 \times 29.70,29.51,29.45$ (6 dodecyl CH_{2}), $29.53\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $21.7\left(\mathrm{CH}_{2} \mathrm{CN}\right) 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 513.4391$, found 513.4373.

3,3-Bis(tetradecyloxymethyl)pentanedinitrile (2.4). Treatment of compound $\mathbf{1 6}$ ($5.0 \mathrm{~g}, 6.7 \mathrm{mmol}$) in dry DMF (30 mL) with potassium cyanide ($1.0 \mathrm{~g}, 16.7 \mathrm{mmol}, 2.5 \mathrm{eq}$) as above gave a light yellow oil that was taken up in hot 95% ethanol $(50 \mathrm{~mL})$. When this solution was kept at $5{ }^{\circ} \mathrm{C}$, the title compound (2.4) precipitated as an amorphous solid, yield 2.24 g . Flash column chromatography of the residue yielded an additional 0.57 g , total yield $2.81 \mathrm{~g}, 77 \%$: $\mathrm{R}_{\mathrm{F}} 0.56$ (hexanes: ethyl acetate $9: 1$); mp $33-35{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.22-1.36\left(\mathrm{br} \mathrm{s}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.56$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.58\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.43\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.45(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, tetradecyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 116.7(\mathrm{CN}), 72.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.8\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 41.3(\mathrm{q} \mathrm{C}), 32.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.84,29.78,29.76,29.72,29.54,29.51$ (8 tetradecyl CH_{2}), $29.56\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{2} \mathrm{CN}\right) 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na}) 569.5017$, found 569.5002 .

General procedure for cyanide hydrolysis: 3,3-bis(octyloxymethyl)pentanedioic acid (2.5). A mixture of compound $2.1(2.5 \mathrm{~g}, 5.61 \mathrm{mmol})$ in 1-propanol (40 mL) containing $35 \% \mathrm{NaOH}(10 \mathrm{~mL})$ was refluxed for 36 h . The reaction mixture was concentrated then the resulting aqueous reaction mixture was refluxed for another 24 h . The reaction mixture was cooled to $10^{\circ} \mathrm{C}$, acidified by adding a dilute HCl solution until the pH was 5 (pH paper). The mixture was extracted with ethyl acetate (2×50 mL) and the combined organic layers were washed with water ($2 \times 30 \mathrm{~mL}$), brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude product (2.5). The product was purified by flash column chromatography on silica gel using a gradient changing from 5\% EtOAc in hexanes to $15 \% \mathrm{EtOAc}$ in hexanes as eluent to give as a thick colorless syrup: yield $1.75 \mathrm{~g}(63 \%) ; \mathrm{R}_{\mathrm{F}} 0.5$ (EtOAc: hexanes 1:1);
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24-1.31\left(\mathrm{~m}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.53$ (pentet, $4 \mathrm{H}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.61\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.40\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5, \mathrm{OCH}_{2}\right), 3.46\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 10.92(\mathrm{bs}$, $2 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 176.8(\mathrm{COOH}), 73.2\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 41.1(\mathrm{q} \mathrm{C}), 37.5$ $\left(\mathrm{HOOCCH}_{2}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.60,29.55,29.42\left(3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{O}_{6}(\mathrm{M}-\mathrm{H}) 415.3065$, found 415.3042.

3,3-Bis(decyloxymethyl)pentanedioic acid (2.6). Reaction of compound 2.2 ($2.5 \mathrm{~g}, 5.8 \mathrm{mmol}$) in 1propanol (40 mL) containing $35 \% \mathrm{NaOH}(10 \mathrm{~mL})$ as above gave the title compound as a colorless solid: yield $1.2 \mathrm{~g}(44 \%) ; \mathrm{mp} 68-71^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{F}} 0.4$ (EtOAc: hexanes $\left.1: 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}$ $\left.=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23-1.32\left(\mathrm{~m}, 28 \mathrm{H}, 14 \mathrm{xCH}_{2}\right), 1.53\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.60(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{COCH}_{2}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5, \mathrm{OCH}_{2}\right), 3.47\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 10.50(\mathrm{bs}, 2 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR CDCl ${ }_{3} \delta$ $176.4(\mathrm{COOH}), 73.2\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 41.1(\mathrm{q} \mathrm{C}), 37.6\left(\mathrm{HOOCCH}_{2}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3$ x 29.75, 29.60, $29.49(5$ decyl CH 2$), 26.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{6}(\mathrm{M}-\mathrm{H}) 471.3691$, found 471.3667 .

3,3-Bis(dodecyloxymethyl)pentanedioic acid (2.7). A mixture of compound $2.3(2.5 \mathrm{~g}, 5.8 \mathrm{mmol})$ in 1-propanol (40 mL) containing $35 \% \mathrm{NaOH}(10 \mathrm{~mL})$ was treated as in the preparation of compound $\mathbf{2 . 5}$ above except that the aqueous mixture was refluxed for 36 h to give the product as a colorless solid: yield $2.2 \mathrm{~g}(46 \%) ; \mathrm{mp} 80-82^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.46$ (ethyl acetate: hexanes $\left.1: 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}$ $\left.=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24-1.32\left(\mathrm{~m}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.53\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.60(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{COCH}_{2}\right), 3.40\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.46\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 10.6(\mathrm{bs}, 2 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 176.5(\mathrm{COOH}), 73.2\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 41.1(\mathrm{qC}), 37.6\left(\mathrm{HOOCCH}_{2}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3 \times 29.84,2 \times 29.81,29.61,29.52\left(7\right.$ dodecyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{O}_{6}(\mathrm{M}-\mathrm{H})$ 527.4317, found 527.4324.

3, 3-Bis (tetradecyloxymethyl)pentanedioic acid (2.8). A mixture of compound 2.4 ($5.0 \mathrm{~g}, 6.7$ $\mathrm{mmol})$ in 1-propanol (40 mL) containing $35 \% \mathrm{NaOH}(10 \mathrm{~mL})$ was treated as in the preparation of
compound 2.7 above to give the product as a colorless solid: yield: $2.2 \mathrm{~g}(46 \%) ; \mathrm{mp} 84-86^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.51$ (ethyl acetate: hexanes 1:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.32(\mathrm{~m}, 44 \mathrm{H}, 22$ $\left.\mathrm{x} \mathrm{CH}_{2}\right), 1.54$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.60\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $3.47\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 10.6(\mathrm{bs}, 2 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 175.6(\mathrm{COOH}), 73.3\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.9$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 41.1(\mathrm{qC}), 37.8\left(\mathrm{HOOCCH}_{2}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.86,29.82,29.60,29.52$ (tetradecyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{68} \mathrm{O}_{6}(\mathrm{M}-\mathrm{H})$ 583.4943, found 583.4978.

General procedure for formation of N, N-dimethyl amides: $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,3bis(octyloxymethyl)pentanediamide (2.9). 1-Hydroxybenzotriazole (HOBT, $1.03 \mathrm{~g}, 7.69 \mathrm{mmol}$) and N-(3-dimethylamino-propyl)- N^{\prime}-ethylcarbodiimide.hydrochloride (EDC. $\mathrm{HCl}, 1.54 \mathrm{~g}, 8.07 \mathrm{mmol}$) were added to a stirred solution of diacid $2.5(1.6 \mathrm{~g}, 3.9 \mathrm{mmol})$ and the reaction mixture was stirred for 1 h . Dimethylamine hydrochloride ($1.25 \mathrm{~g}, 15.4 \mathrm{mmol}$) and triethylamine ($2.7 \mathrm{~g}, 27 \mathrm{mmol}$) were added and the reaction mixture was stirred for another 24 h , then diluted with dichloromethane (50 mL). This mixture was washed with water $(2 \times 30 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash column chromatography using a gradient of 15 to $30 \% \mathrm{EtOAc}$ in hexanes as eluent, giving compound 2.9 as a viscous liquid: yield $1.63 \mathrm{~g}(91 \%) ; \mathrm{R}_{\mathrm{F}} 0.5$ (ethyl acetate: hexanes 2:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.26-1.30\left(\mathrm{~m}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.51$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.65\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.89\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.36(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.53\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 172.4(\mathrm{CO}), 72.7\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 42.1(\mathrm{qC}), 37.9\left(\mathrm{NCH}_{3}\right), 35.5\left(\mathrm{NCH}_{3}\right), 33.6\left(\mathrm{NCOCH}_{2}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.87$, 29.63, $29.51\left(2 \times 3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 493.3976, found 493.3966.

3,3-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethylpentanediamide (2.10). 1-Hydroxybenzotriazole (HOBT, $1.14 \mathrm{~g}, 8.45 \mathrm{mmol})$, EDC. $\mathrm{HCl}(1.61 \mathrm{~g}, 8.45 \mathrm{mmol})$, diacid 2.6 ($1.9 \mathrm{~g}, 4.0 \mathrm{mmol}$),
dimethylamine hydrochloride $(1.31 \mathrm{~g}, 16.1 \mathrm{mmol})$ and triethylamine $(3.26 \mathrm{~g}, 32.2 \mathrm{mmol})$ were reacted as for compound 2.9 above, giving compound 2.10 as a viscous liquid: yield $2.0 \mathrm{~g}(95 \%) ; \mathrm{R}_{\mathrm{F}} 0.5$ (ethyl acetate: hexanes 2:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.26-1.35(\mathrm{~m}, 28 \mathrm{H}, 14 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 1.53$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.67\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.91\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.04(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.38\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.54\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 172.4(\mathrm{CO}), 72.7$ $\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 42.1(\mathrm{qC}), 38.0\left(\mathrm{NCH}_{3}\right), 35.5\left(\mathrm{NCH}_{3}\right), 33.6\left(\mathrm{NCOCH}_{2}\right), 32.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2 \mathrm{x} 29.87,29.78,29.69,29.52\left(2 \mathrm{x} 4\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 549.4602, found 549.4580. 3,3-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethylpentanediamide (2.11). 1-Hydroxybenzotriazole (HOBT, $0.96 \mathrm{~g}, 7.2 \mathrm{mmol})$, EDC. $\mathrm{HCl}(1.36 \mathrm{~g}, 7.15 \mathrm{mmol})$, diacid $2.7(1.8 \mathrm{~g}, 3.4 \mathrm{mmol})$, dimethylamine hydrochloride ($1.11 \mathrm{~g}, 13.6 \mathrm{mmol}$) and triethylamine $(2.06 \mathrm{~g}, 20.5 \mathrm{mmol})$ were reacted as for compound $\mathbf{2 . 9}$ above to give the title compound as a viscous liquid: yield $1.7 \mathrm{~g}(86 \%) ; \mathrm{R}_{\mathrm{F}} 0.5$ (ethyl acetate: hexanes 2:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.34(\mathrm{~m}, 36 \mathrm{H}, 18$ $\mathrm{x} \mathrm{CH}_{2}$), 1.50 (pentet, $4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.65\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.89\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.03(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.36\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.52\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 172.4(\mathrm{CO}), 72.7$ $\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 42.1(\mathrm{qC}), 37.9\left(\mathrm{NCH}_{3}\right), 35.5\left(\mathrm{NCH}_{3}\right), 33.5\left(\mathrm{NCOCH}_{2}\right), 32.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.88(\mathrm{x} 3), 29.83(\mathrm{x} 2), 29.70,29.52\left(7\right.$ dodecyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 605.5228$, found 605.5183 . $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-3,3-bis(tetradecyloxymethyl)pentanediamide (2.12). \quad 1Hydroxybenzotriazole (HOBT, $2.0 \mathrm{~g}, 15 \mathrm{mmol}$), EDC.HCl ($2.89 \mathrm{~g}, 15.1 \mathrm{mmol}$), diacid 2.8 ($4.2 \mathrm{~g}, 7.2$ $\mathrm{mmol})$, dimethylamine hydrochloride $(2.40 \mathrm{~g}, 29.5 \mathrm{mmol})$ and triethylamine $(5.81 \mathrm{~g}, 57.5 \mathrm{mmol})$ were reacted as for compound 2.9 above to give the title compound (2.12) as a solid: yield $4.1 \mathrm{~g}(89 \%) ; \mathrm{mp}$ $52-54{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.46$ (ethyl acetate: hexanes 2:1); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.26-$ $1.42\left(\mathrm{~m}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.51\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.65\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.89(\mathrm{~s}, 6 \mathrm{H}$,
$\left.\mathrm{NCH}_{3}\right), 3.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.36\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.52\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $172.4(\mathrm{CO}), 72.7\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 42.1(\mathrm{qC}), 37.9\left(\mathrm{NCH}_{3}\right), 35.5\left(\mathrm{NCH}_{3}\right), 33.6\left(\mathrm{NCOCH}_{2}\right)$, $32.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.9-29.8(7 \mathrm{C}), 29.69,29.52\left(2 \mathrm{x} 9\right.$ tetradecyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.9$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 661.5854, found 661.5823.

General procedure for amide reduction: $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-3,3-bis(octyloxymethyl)-1,5pentanediamine (2.13). Diamide $2.9(0.9 \mathrm{~g}, 1.91 \mathrm{mmol})$ was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(0.29 \mathrm{~g}, 7.65 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then the reaction mixture was stirred at rt for 6 h. Ethyl acetate (50 mL) was added dropwise, followed by water $(0.3 \mathrm{~mL})$, then $1 \mathrm{M} \mathrm{NaOH}(0.3 \mathrm{~mL})$. The mixture was filtered on a bed of celite that was washed with hot ethyl acetate. The combined filtrate and washings were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to a residue that was purified by flash column chromatography. Elution using a gradient of 5 to $15 \% \mathrm{MeOH}$ in dichloromethane gave 2.13 as a light brown liquid: yield: $0.67 \mathrm{~g}(80 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.46 (dichloromethane: methanol 96:4); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.38\left(\mathrm{~m}, 20 \mathrm{H}, 10 \mathrm{xCH}_{2}\right), 1.43-$ $1.54\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.21\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.27\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.19(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.34\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 73.8\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 54.5$ $\left(\mathrm{NCH}_{2}\right), 45.8\left(\mathrm{NCH}_{3}\right), 40.2(\mathrm{qC}), 32.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 30.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 29.89,29.64,29.50(2 \mathrm{x} 3$ octyl $\left.\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+1) 443.4571$, found 443.4558 .

3,3-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,5-pentanediamine (2.14). Reaction of diamide $2.10(1.9 \mathrm{~g}, 3.6 \mathrm{mmol})$ with $\mathrm{LiAlH}_{4}(0.54 \mathrm{~g}, 14 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ as for $\mathbf{2 . 1 3}$ gave $\mathbf{2 . 1 4}$ as light brown liquid: yield: $1.1 \mathrm{~g}(61 \%)$; R_{F} on basic alumina 0.44 (dichloromethane: methanol 96:4); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.45(\mathrm{~m}, 28 \mathrm{H}, 14 \mathrm{x} \mathrm{CH} 2), 1.49-1.54(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.37\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5, \mathrm{NCH}_{2}\right), 3.19\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.34(\mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 73.8\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 54.5\left(\mathrm{NCH}_{2}\right), 45.5$
$\left(\mathrm{NCH}_{3}\right), 40.3(\mathrm{qC}), 32.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 30.01\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 29.87,29.85,29.79,29.68,29.52$ (2 x 5 decyl $\left.\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+1) 443.4571$, found 443.4558 .

3,3-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,5-pentanediamine (2.15). Reaction of diamide $2.11(1.9 \mathrm{~g}, 3.3 \mathrm{mmol})$ was reacted with $\mathrm{LiAlH}_{4}(0.62 \mathrm{~g}, 16 \mathrm{mmol})$ in THF (50 mL) as for 2.13 gave 2.15 as a light brown liquid: yield $1.3 \mathrm{~g}(72 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.52 (DCM: methanol 95:5); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.45\left(\mathrm{~m}, 36 \mathrm{H}, 18 \mathrm{x} \mathrm{CH}_{2}\right), 1.45-1.54(\mathrm{~m}, 8 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.21\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.26-2.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.18(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.34\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 73.8\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 54.5$ $\left(\mathrm{NCH}_{2}\right), 45.8\left(\mathrm{NCH}_{3}\right), 40.2(\mathrm{qC}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 30.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 29.9$-20.8 (4C), 29.69, 29.52 (2 x 7 dodecyl CH_{2}), $26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+1)$ 555.5823, found 555.5854.
$N, N, N^{\prime}, N^{\prime}$-Tetramethyl-3,3-bis(tetradecyloxymethyl)-1,5-pentanediamine (2.16) Reaction of diamide $2.12(2.2 \mathrm{~g}, 3.4 \mathrm{mmol})$ with $\mathrm{LiAlH}_{4}(0.65 \mathrm{~g}, 17 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ as for $\mathbf{2 . 1 3}$ gave a residue that was purified by flash column chromatography. Elution using a gradient of 10 to 15% MeOH in DCM gave 2.16 as a light brown liquid: yield $1.7 \mathrm{~g}(81 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.55 (DCM: methanol 95:5); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.21-1.37\left(\mathrm{~m}, 44 \mathrm{H}, 22 \mathrm{xCH}_{2}\right), 1.46-$ $1.54\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.30-2.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.18$ $\left(\mathrm{s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.34\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 73.7\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $54.4\left(\mathrm{NCH}_{2}\right), 45.5\left(\mathrm{NCH}_{3}\right), 40.2(\mathrm{qC}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 30.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 29.9-29.8,29.68,29.51$ (tetradecyl CH_{2}), $26.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{82}$ $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{M}+1) 611.6449$, found 611.6466.

General procedure for alkylation: $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-3,3-bis(octyloxymethyl)-1,5pentanediammonium diiodide (2.17). A solution of methyl iodide ($1.6 \mathrm{~g}, 11 \mathrm{mmol}$) and diamine
$2.13(0.50 \mathrm{~g}, 1.1 \mathrm{mmol})$ in THF (20 mL) was refluxed for 36 h , then concentrated. The solid residue was purified by flash column chromatography using 10% methanol in dichloromethane as eluent to give the title product as an off-white solid: yield $0.70 \mathrm{~g}(85 \%) ; \mathrm{mp} 223-225{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.5$ on basic alumina (8% methanol in dichloromethane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22$ $1.28\left(\mathrm{~m}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.45\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.83\left(\mathrm{AA}^{\prime}\right.$ part of AA'XX' pattern, 4 H , $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.13\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.15\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.18\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.73(\mathrm{XX}$ part of AA' $^{\prime} \mathrm{XX'}^{\prime}$ pattern, $\left.4 \mathrm{H}, \quad \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 71.7\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 62.8$ $\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 54.2\left(\mathrm{NCH}_{3}\right), 41.6(\mathrm{qC}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.82$, 29.58, $29.50\left(3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.6$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $24.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{64} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 599.4007, found 599.3993.

3,3-Bis(decyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,5-pentanediammonium diiodide (2.18). Reaction of methyl iodide ($1.93 \mathrm{~g}, 13.7 \mathrm{mmol}$) and diamine $2.14(0.68 \mathrm{~g}, 1.4 \mathrm{mmol})$ in THF as above gave the title product as an off-white solid: yield $0.80 \mathrm{~g}(80 \%) ; \mathrm{mp} 214-216{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.5$ on basic alumina (7% methanol in dichloromethane); ${ }^{1} \mathrm{H}$ NMR $(\mathrm{CDCl} 3) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24-$ $1.35\left(\mathrm{~m}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.52\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.93\left(\mathrm{AA}^{\prime}\right.$ part of AA'XX' pattern, 4 H , $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.42\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.44\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.02(\mathrm{XX}$ part of AA'XX' pattern, $\left.4 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 71.7\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 62.8$ $\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 54.2\left(\mathrm{NCH}_{3}\right), 41.5(\mathrm{qC}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.85,29.81,29.77,29.62$, 29.47 (5 decyl $\left.\mathrm{CH}_{2}\right), 26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 24.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{72} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 655.4633, found 655.4614.

3,3-Bis(dodecyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,5-pentanediammonium diiodide (2.19).

 Reaction of methyl iodide ($2.56 \mathrm{~g}, 18.0 \mathrm{mmol}$) with diamine $\mathbf{2 . 1 4}(1.00 \mathrm{~g}, 1.80 \mathrm{mmol})$ as for compound 2.17 above gave the title product as an off-white solid: yield $1.20 \mathrm{~g}(78 \%) ; \mathrm{mp} 220-223{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.5$ on basic alumina (7% methanol in dichloromethane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$,1.23-1.36 (m, $\left.36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.52\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.89\left(\mathrm{AA}^{\prime}\right.$ part of AA'XX' pattern, $\left.4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.38\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.44\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.45\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.94\left(\mathrm{XX}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX'}^{\prime}$ pattern, $\left.4 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 71.7\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 62.8$ $\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 54.2\left(\mathrm{NCH}_{3}\right), 41.5(\mathrm{qC}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.90$-29.75 (5C), 29.62, 29.47 (7 dodecyl $\left.\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 24.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{80} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 711.5259, found 711.5239.
$N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexamethyl-3,3-bis(tetradecyloxymethyl)-1,5-pentanediammonium diiodide (2.20). Reaction of methyl iodide ($2.32 \mathrm{~g}, 16.4 \mathrm{mmol}$) and diamine $2.15(1.0 \mathrm{~g}, 1.6 \mathrm{mmol})$ as for compound 2.17 above (without chromatography) gave a solid residue that was crystallized from dichloromethane and dried under vacuum to give compound $\mathbf{2 . 2 0}$ as an off-white shiny solid: yield 1.2 $\mathrm{g}(82 \%) ; \mathrm{mp} 218-221{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.6$ on basic alumina (7% methanol in dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.27(\mathrm{~m}, 44 \mathrm{H}, 22 \mathrm{xCH})_{2}, 1.52\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, 1.93(AA' part of AA'XX' pattern, $\left.4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.44(\mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.03\left(\mathrm{XX'}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX'}^{\prime}$ pattern, $\left.4 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 71.7$ $\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2}\right), 62.8\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $54.1\left(\mathrm{NCH}_{3}\right), 41.4(\mathrm{qC}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.90-$ 29.75 (7C), 29.64, 29.50 (tetradecyl CH_{2}), $26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $24.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $14.2\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{88} \mathrm{IN}_{2} \mathrm{O}_{2}(\mathrm{M}-1) 767.5885$, found 767.5907.

General conditions for the Wadsworth-Horner-Emmons reaction: $N, N, N^{\prime}, N^{\prime}$-tetramethyl-4,4-bis(octyloxymethyl)-2,5-heptadienediamide (3.1). A solution of dry dimethyl sulfoxide (DMSO) $(0.47 \mathrm{~g}, 6.11 \mathrm{mmol})$ in dichloromethane (2 mL) was added dropwise to a stirred solution of oxalyl chloride ($0.38 \mathrm{~g}, 3.0 \mathrm{mmol}$) in dichloromethane $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After the reaction mixture had been stirred for 30 min , a solution of $\operatorname{diol} 9(0.50 \mathrm{~g}, 1.4 \mathrm{mmol})$ was added and the reaction mixture was stirred for $1.5 \mathrm{~h}-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}(0.98 \mathrm{~g}, 9.7 \mathrm{mmol})$ was added slowly. The reaction mixture was stirred for 30 min , allowed to warm to rt , the quenched by addition of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10
mL). The reaction mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$), and the combined organic layers were washed with $2 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$, water $(2 \times 5 \mathrm{~mL})$, brine $(5 \mathrm{~mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give 2,2-bis(octyloxymethyl)propanedial (17) as a colorless viscous oil: yield $0.47 \mathrm{~g}, 95 \% ; \mathrm{R}_{\mathrm{F}} 0.56$ (hexanes: ethyl acetate $8: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26$1.32\left(\mathrm{br} \mathrm{s}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.51\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.42(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, decyl OCH 2$)$, $3.87\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 9.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\delta 199.4(\mathrm{CHO}), 72.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.6\left(\mathrm{OCH}_{2} \mathrm{C}\right)$, 43.8 (q C), $31.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.76,29.62,29.48,29.44,29.37\left(5\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.12$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Na} . \mathrm{MeOH} 411.31$, found 411.3; for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Na}$. 2 MeOH 443.33 , found 443.3; for $2 \mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4}+\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} 753.54$, found 753.6. Diethyl N, N-dimethylcarbamoylmethylphosphonate ${ }^{16,22}(4.1 \mathrm{~g}, 18 \mathrm{mmol})$ in THF (10 mL) was added in portion to a stirred suspension of $\mathrm{NaH}(0.45 \mathrm{~g}, 18 \mathrm{mmol})$ in THF $(80 \mathrm{~mL})$ at rt and the reaction mixture was stirred for 2 h , then cooled to $0^{\circ} \mathrm{C}$. A solution of dialdehyde $\mathbf{1 7}(1.6 \mathrm{~g}, 4.5 \mathrm{mmol})$ in THF (10 mL) was added and the reaction mixture was stirred for 24 h at rt . A saturated aqueous ammonium chloride solution (20 mL) was added to reaction mixture and then the volatile organic components were removed by concentration. The resulting solution was extracted with ethyl acetate (3 x 30 mL). The combined organic layers were washed with water ($2 \times 20 \mathrm{~mL}$), brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The residue was purified by flash column chromatography using a gradient of 80 to 90% EtOAc in hexanes as eluent, yielding 3.1 as a viscous liquid: yield 1.4 g (63\%); $\mathrm{R}_{\mathrm{F}} 0.35$ (dichloromethane: methanol 94:6); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26-1.34 (br s, $\left.20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.53$ (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.39\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \operatorname{decyl} \mathrm{OCH}_{2}\right), 3.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 6.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{COCHCH}), 6.86(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{COCHCH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.8(\mathrm{C}=\mathrm{O}), 145.3(\mathrm{CH}=C \mathrm{HC}), 121.9(\mathrm{COCH}=), 72.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.9\left(\mathrm{OCH}_{2} \mathrm{C}\right), 48.9(\mathrm{q} \mathrm{C}), 37.5\left(\mathrm{NCH}_{3}\right), 35.8\left(\mathrm{NCH}_{3}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.77$,
29.61, $29.45\left(3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 517.3976, found 517.3971.

4,4-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,5-heptadienediamide (3.2). Treatment of diol 10 ($2.3 \mathrm{~g}, 5.5 \mathrm{mmol}$) in dry dichloromethane with the Swern oxidation mixture [DMSO ($1.89 \mathrm{~g}, 24.3$ $\mathrm{mmol})$, oxalyl chloride ($1.54 \mathrm{~g}, 12.2 \mathrm{mmol})$] followed by workup as for dial 17 gave 2,2bis(decyloxymethyl)propanedial (18) as a light yellow oil: yield $2.1 \mathrm{~g}, 92 \% ; \mathrm{R}_{\mathrm{F}} 0.7$ (hexanes: ethyl acetate $8: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \times \mathrm{Me}\right.$), $1.25-1.31$ (brs, $28 \mathrm{H}, 14 \times \mathrm{CH}_{2}$), 1.51 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \operatorname{decyl} \mathrm{OCH}_{2}\right), 3.87\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 9.74(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\delta 199.5(\mathrm{CHO}), 72.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.6\left(\mathrm{OCH}_{2} \mathrm{C}\right), 43.7 \quad(\mathrm{q} \mathrm{C}), 32.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.72,29.53,29.46\left(\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.13\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Na} . \mathrm{MeOH} 467.37$, found 467.4.

A mixture of diethyl N, N-dimethylcarbamoylmethylphosphonate ($4.54 \mathrm{~g}, 20.4 \mathrm{mmol}), \mathrm{NaH}$ $(0.49 \mathrm{~g}, 20.6 \mathrm{mmol})$ and dialdehyde $18(2.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ was treated as in the preparation of compound $\mathbf{3 . 1}$ to give compound $\mathbf{3 . 2}$ as a colorless liquid: yield, $1.7 \mathrm{~g}(64 \%) ; \mathrm{R}_{\mathrm{F}} 0.39$ (dichloromethane: methanol 95:5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ (t, 6H, J = $7 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26-1.31 (br s, 28H, 14 x CH_{2}), $1.52\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.39(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{J}=6.5 \mathrm{~Hz}, \operatorname{decyl} \mathrm{OCH}_{2}\right), 3.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 6.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=15.5 \mathrm{~Hz}, \mathrm{COCH}=), 6.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $15.5 \mathrm{~Hz},=\mathrm{CHC}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.8(\mathrm{C}=\mathrm{O}), 145.3(\mathrm{CH}=\mathrm{CHC}), 121.9(\mathrm{COCH}=), 72.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right)$, $71.9\left(\mathrm{OCH}_{2} \mathrm{C}\right), 48.9(\mathrm{q} \mathrm{C}), 37.5\left(\mathrm{NCH}_{3}\right), 35.8\left(\mathrm{NCH}_{3}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.79,29.76,29.66,29.49$ (5 decyl CH2), $26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 573.4602, found 573.4592.

4,4-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,5-heptadienediamide (3.3). Treatment of diol $11(1.3 \mathrm{~g}, 2.8 \mathrm{mmol})$ in dry dichloromethane $(30 \mathrm{~mL})$ with the Swern oxidation mixture [DMSO (1.74 g, 22.3 mmol$)$, oxalyl chloride $(1.42 \mathrm{~g}, \quad 11.2 \mathrm{mmol})$] as for dial $\mathbf{1 7}$ gave 2,2-
bis(dodecyloxymethyl)propanedial (19) as a light yellow oil: yield $1.2 \mathrm{~g}, 92 \% ; \mathrm{R}_{\mathrm{F}} 0.7$ (hexanes: ethyl acetate $8: 2$); ${ }^{1} \mathrm{H} \operatorname{NMR} \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \times \mathrm{Me}\right.$), $1.25-1.32\left(\mathrm{br} \mathrm{s}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right.$), 1.52 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right), 3.87\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 9.74(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}$ NMR $\delta 199.4(\mathrm{CHO}), 72.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.6\left(\mathrm{OCH}_{2} \mathrm{C}\right), 43.7(\mathrm{q} \mathrm{C}), 32.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.81, 29.78, 29.72, 29.53, 29.44, (decyl CH 2$), 26.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 14.2 (Me).

A mixture of diethyl N, N-dimethylcarbamoylmethylphosphonate $(2.67 \mathrm{~g}, 11.9 \mathrm{mmol}), \mathrm{NaH}$ $(0.29 \mathrm{~g}, 12 \mathrm{mmol})$ and dialdehyde $19(1.1 \mathrm{~g}, 2.3 \mathrm{mmol})$ in $\mathrm{THF}(100 \mathrm{~mL})$ was treated as in the preparation of compound $\mathbf{3 . 1}$ to give compound $\mathbf{3 . 3}$ as a colorless solid: yield 1.25 g (69%); $\mathrm{mp} 52-54$ ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.42$ (dichloromethane: methanol 95:5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26-1.32 (br s, $36 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.52 (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.39\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right), 3.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 6.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=15.5 \mathrm{~Hz}, \mathrm{COCH}=), 6.86(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=15.5 \mathrm{~Hz},=\mathrm{CHC}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.8(\mathrm{C}=\mathrm{O}), 145.3(\mathrm{CH}=C \mathrm{HC}), 121.9(\mathrm{COCH}=), 72.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.9\left(\mathrm{OCH}_{2} \mathrm{C}\right), 48.9(\mathrm{qC}), 37.5\left(\mathrm{NCH}_{3}\right), 35.8\left(\mathrm{NCH}_{3}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.86$, 29.82, 29.68, $29.52\left(5\right.$ dodecyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{70} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 629.5228$, found 629.5244 .
$N, N, N^{\prime}, N^{\prime}$-Tetramethyl-4,4-bis(tetradecyloxymethyl)-2,5-heptadienediamide (3.4). Treatment of diol $12(3.0 \mathrm{~g}, 5.7 \mathrm{mmol})$ in dry DCM $(30 \mathrm{~mL})$ with the Swern oxidation mixture [DMSO $(2.03 \mathrm{~g}, 26.1$ mmol), oxalyl chloride $(1.65 \mathrm{~g}, \quad 13.0 \mathrm{mmol})] \quad$ as for dial $\mathbf{1 7}$ gave 2,2bis(tetradecyloxymethyl)propanedial (20) as a light yellow oil: yield $2.5 \mathrm{~g}, 86 \%$; $\mathrm{R}_{\mathrm{F}} 0.7$ (hexanes: ethyl acetate $8: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.0 .88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.25-1.32\left(\mathrm{br} \mathrm{s}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.51$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.40\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right), 3.87\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 9.74$ (s, 2H,CHO); ${ }^{13} \mathrm{C}$ NMR $\delta 199.5(\mathrm{CHO}), 72.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 68.6\left(\mathrm{OCH}_{2} \mathrm{C}\right), 43.7(\mathrm{q} \mathrm{C}), 32.1$
$\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.81, 29.77, 29.52, $29.45\left(\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2$ (Me); LR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{Na} . \mathrm{MeOH}, 579.50$, found 579.5.

A mixture of diethyl N, N-dimethylcarbamoylmethylphosphonate (4.68 g, 20.9 mmol$), \mathrm{NaH}$ $(0.51 \mathrm{~g}, 21 \mathrm{mmol})$ and dialdehyde $20(2.5 \mathrm{~g}, 4.7 \mathrm{mmol})$ in THF (100 mL) was treated as in the preparation of compound $\mathbf{3 . 1}$ to give compound $\mathbf{3 . 4}$ as a colorless solid: yield 2.0 g (64%); mp 59-61 ${ }^{\circ} \mathrm{C}$.; $\mathrm{R}_{\mathrm{F}} 0.43$ (dichloromethane: methanol 95:5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26-1.32 (br s, $44 \mathrm{H}, 22 \times \mathrm{CH}_{2}$), 1.53 (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.05(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.39\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \operatorname{decyl} \mathrm{OCH}_{2}\right), 3.50\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 6.37(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=15.5 \mathrm{~Hz}, \mathrm{COCH}=)$, $6.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=15.5 \mathrm{~Hz},=\mathrm{CHC}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.8(\mathrm{C}=\mathrm{O}), 145.3(\mathrm{CH}=\mathrm{CHC}), 121.9(\mathrm{COCH}=), 72.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.9\left(\mathrm{OCH}_{2} \mathrm{C}\right), 48.9(\mathrm{q} \mathrm{C}), 37.5\left(\mathrm{NCH}_{3}\right), 35.8\left(\mathrm{NCH}_{3}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.86$, 29.82, 29.77, 29.68, 29.52 (5 tetradecyl CH_{2}), $26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3$ (Me); HR ESI MS m / z calcd forC $\mathrm{C}_{41} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 685.5854, found 685.5814.

General procedure for hydrogenation: $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-4,4-bis(octyloxymethyl)hep-

 tanediamide (3.5). A mixture of $\mathbf{3 . 1}(0.5 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}$ wet Degusa type catalyst (50 mg) in ethyl acetate (50 mL) was stirred under H_{2} at atmospheric pressure for 24 h . The reaction mixture was filtered using a celite bed and the filtrate was concentrated to give compound $\mathbf{3 . 5}$ as a colorless liquid: yield $0.46 \mathrm{~g}(91 \%) ; \mathrm{R}_{\mathrm{F}} 0.5$ (dichloromethane: methanol 95:5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}$, $\mathrm{J}=6.5 \mathrm{~Hz}, 2 \times \mathrm{Me}$), $1.25-1.31$ (br s, $20 \mathrm{H}, 10 \times \mathrm{CH}_{2}$), 1.50 (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 1.61 (4H, AA'XX' pattern, $\left.\mathrm{CCH}_{2}\right), 2.32\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right.$ pattern, $\left.\mathrm{COCH}_{2}\right), 2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.07(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.22\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.34\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.8(\mathrm{C}=\mathrm{O}), 73.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.7\left(\mathrm{OCH}_{2} \mathrm{C}\right), 40.6(\mathrm{qC}), 37.4\left(\mathrm{NCH}_{3}\right), 35.6\left(\mathrm{NCH}_{3}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.90$, 29.64, 29.48 (3 octyl CH_{2}), 28.04, $27.94\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2}\right), 26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3$ (Me); HR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 521.4289$, found 521.4278.4,4-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,5-heptanediamide (3.6). Hydrogenation of compound $3.2(1.0 \mathrm{~g}, 1.8 \mathrm{mmol})$ as for compound 3.1 gave the title compound as a colorless liquid: yield $0.90 \mathrm{~g}(89 \%) ; \mathrm{R}_{\mathrm{F}} 0.39$ (dichloromethane: methanol 95:5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{x}$ Me), 1.25-1.31 (br s, $28 \mathrm{H}, 14 \times \mathrm{CH}_{2}$), 1.51 (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.61\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right.$ pattern, $\left.\mathrm{CCH}_{2}\right), 2.32\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right.$ pattern, $\left.\mathrm{COCH}_{2}\right), 2.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.22(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.34\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.8(\mathrm{C}=\mathrm{O}), 73.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.7$ $\left(\mathrm{OCH}_{2} \mathrm{C}\right), 40.6(\mathrm{q} \mathrm{C}), 37.4\left(\mathrm{NCH}_{3}\right), 35.6\left(\mathrm{NCH}_{3}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.90$, 29.82, 29.77, 29.67, $29.51\left(5\right.$ decyl $\left.\mathrm{CH}_{2}\right)$, 28.04, $27.94\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2}\right), 26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3$ (Me); HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na} 577.4915$, found 577.4918.

4,4-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,5-heptanediamide (3.7). Hydrogenation of compound $3.3(0.70 \mathrm{~g}, 1.2 \mathrm{mmol})$ as for compound $\mathbf{3 . 1}$ gave compound $\mathbf{3 . 7}$ as a colorless solid: yield $0.65 \mathrm{~g}(92 \%) ; \mathrm{mp} 46-48{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.42$ (dichloromethane: methanol 95:5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7$ $\mathrm{Hz}, 2 \times \mathrm{Me}$), $1.25-1.32$ (br s, $36 \mathrm{H}, 18 \mathrm{xCH}_{2}$), 1.52 (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.62(4 \mathrm{H}$, $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ pattern, $\left.\mathrm{CCH}_{2}\right), 2.33\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right.$ pattern, $\left.\mathrm{COCH}_{2}\right), 2.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.22\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.34\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.8(\mathrm{C}=\mathrm{O}), 73.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.7\left(\mathrm{OCH}_{2} \mathrm{C}\right), 40.6(\mathrm{q} \mathrm{C}), 37.4\left(\mathrm{NCH}_{3}\right), 35.5\left(\mathrm{NCH}_{3}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.90$, 29.83, 29.70, $29.52\left(7\right.$ dodecyl $\left.\mathrm{CH}_{2}\right)$, 28.05, $27.94\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2}\right), 26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 633.5541$, found 633.5562 . $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-4,4-bis(tetradecyloxymethyl)heptanediamide (3.8). Hydrogenation of compound 3.3 ($1.60 \mathrm{~g}, 2.4 \mathrm{mmol}$) as for compound 3.1 gave the title compound as a colorless solid: yield, $1.50 \mathrm{~g}(94 \%) ; \operatorname{mp} 47-49{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.43$ (dichloromethane: methanol 95:5); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}$ $=7 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.25-1.32\left(\right.$ br s, $\left.36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.50\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.62(4 \mathrm{H}$, $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ pattern, $\left.\mathrm{CCH}_{2}\right), 2.33\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{XX}^{\prime}\right.$ pattern, $\left.\mathrm{COCH}_{2}\right), 2.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.22\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.8(\mathrm{C}=\mathrm{O}), 74.0$
$\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.7\left(\mathrm{OCH}_{2} \mathrm{C}\right), 40.6(\mathrm{q} \mathrm{C}), 37.4\left(\mathrm{NCH}_{3}\right), 35.5\left(\mathrm{NCH}_{3}\right), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.87$, 29.84, 29.70, 29.53 (9 tetradecyl CH_{2}), 28.04, $27.94\left(\mathrm{COCH}_{2} \mathrm{CH}_{2}, \mathrm{COCH}_{2}\right)$, $26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.4(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 689.6167$, found 689.6152.

General procedure for amide reduction: $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-4,4-bis(octyloxymethyl)-1,7heptanediamine (3.9). Diamide $3.5(0.6 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(0.18 \mathrm{~g}, 4.8 \mathrm{mmol})$ in THF at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 6 h , then the excess of LAH was decomposed by dropwise addition of ethyl acetate (50 mL), water $(0.3 \mathrm{~mL})$, then $1 \mathrm{M} \mathrm{NaOH}(0.3 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$. The mixture was filtered on a bed of celite, which was then washed with hot ethyl acetate. The combined filtrate and washings were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, then concentrated to a residue that was purified by flash column chromatography. Elution using a gradient of 5 to 15% MeOH in dichloromethane gave the title compound as a light brown liquid: yield $0.45 \mathrm{~g}(80 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.71 (dichloromethane: methanol 94:6); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right)$, 1.21-1.33 (m, $24 \mathrm{H}, 10$ octyl $\mathrm{CH}_{2}, 2 \mathrm{CCH}_{2}$), 1.37-1.43 (m, 4H, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 1.51 (pentet, $4 \mathrm{H}, \mathrm{J}=$ $7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.201\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.206\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.17\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.33(\mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 73.5\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2}\right), 60.9\left(\mathrm{NCH}_{2}\right), 45.7\left(\mathrm{NCH}_{3}\right)$, $41.0(\mathrm{qC}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.85,29.76,29.65,29.50\left(3\right.$ octyl $\left.\mathrm{CH}_{2}, \mathrm{CCH}_{2}\right), 26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.45\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.3(\mathrm{Me}) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 471.4884, found 471.4885.

4,4-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,7-heptanediamine (3.10). Diamide 3.6 (0.90 g , $1.6 \mathrm{mmol})$ was reacted with $\mathrm{LiAlH}_{4}(0.3 \mathrm{~g}, 8 \mathrm{mmol})$ as above to give the title compound as a light brown liquid: yield $0.60 \mathrm{~g}(70 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.52 (DCM: methanol 95:5); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.21-1.33\left(\mathrm{~m}, 32 \mathrm{H}, 14\right.$ decyl $\left.\mathrm{CH}_{2}, 2 \mathrm{CCH}_{2}\right), 1.39-1.44(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 1.51 (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.202\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.205(\mathrm{~s}, 12 \mathrm{H}$,
$\left.\mathrm{NCH}_{3}\right), 3.17\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 73.5\left(\mathrm{CCH}_{2} \mathrm{O}\right)$, $71.53\left(\mathrm{OCH}_{2}\right), 60.9\left(\mathrm{NCH}_{2}\right), 45.7\left(\mathrm{NCH}_{3}\right), 41.0(\mathrm{qC}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.85,29.77,29.70,29.52$ (5 decyl $\mathrm{CH}_{2}, \mathrm{CCH}_{2}$), $26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 527.5510, found 527.5502.

4,4-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,7-heptanediamine (3.11). Diamide 3.7 (0.64 $\mathrm{g}, 1.0 \mathrm{mmol})$ was reacted with $\mathrm{LiAlH}_{4}(0.16 \mathrm{~g}, 4.2 \mathrm{mmol})$ as above to give the title compound as a light brown liquid: yield $0.55 \mathrm{~g}(90 \%)$; R_{F} on basic alumina 0.7 (DCM: methanol 93:7); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.21-1.33\left(\mathrm{~m}, 40 \mathrm{H}, 18\right.$ dodecyl $\left.\mathrm{CH}_{2}, 2 \mathrm{CCH}_{2}\right), 1.37-1.43(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 1.51 (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.186\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.189(\mathrm{~s}, 12 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.17\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 73.5\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5$ $\left(\mathrm{OCH}_{2}\right), 60.9\left(\mathrm{NCH}_{2}\right), 45.7\left(\mathrm{NCH}_{3}\right), 40.9(\mathrm{qC}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.85,29.82,29.74,29.52(7$ dodecyl $\left.\mathrm{CH}_{2}, \mathrm{CCH}_{2}\right)$, $26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $21.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 583.6136, found 583.6123.
$N, N, N^{\prime}, N^{\prime}$-Tetramethyl-4,4-bis(tetradecyloxymethyl)-1,7-heptanediamine (3.12). Diamide 3.8 (1.0 $\mathrm{g}, 1.5 \mathrm{mmol})$ was reacted with $\mathrm{LiAlH}_{4}(0.23 \mathrm{~g}, 6.0 \mathrm{mmol})$ as above to give the title compound as a light brown liquid: yield $0.60 \mathrm{~g}(68 \%)$; R_{F} on basic alumina 0.52 (dichloromethane: methanol $96: 4$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.21-1.35\left(\mathrm{~m}, 48 \mathrm{H}, 22\right.$ tetradecyl $\left.\mathrm{CH}_{2}, 2 \mathrm{CCH}_{2}\right), 1.38$ $1.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.51$ (pentet, $4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.209\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, $2.211\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.17\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 73.5$ $\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2}\right), 60.9\left(\mathrm{NCH}_{2}\right), 45.6\left(\mathrm{NCH}_{3}\right), 40.9(\mathrm{qC}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.87$, 29.77, 29.71, $29.52\left(9\right.$ tetradecyl $\left.\mathrm{CH}_{2}, \mathrm{CCH}_{2}\right), 26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.3$ (Me); HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{87} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+1)$ 639.6762, found 639.6744 .

General procedure for alkylation: $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexamethyl-4,4-bis(octyloxymethyl)-1,7heptanediammonium diiodide (3.13). Methyl iodide ($1.51 \mathrm{~g}, 10.6 \mathrm{mmol}$) was added to a stirred
solution of amine $3.9(0.5 \mathrm{~g}, 1.0 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$. The reaction mixture was refluxed for 12 h , then concentrated. The solid residue was purified by flash column chromatography using 10% methanol in dichloromethane as eluent to give the title compound as an off-white solid, yield: 0.75 g (94\%); mp 233-236 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.5$ on basic alumina (7% methanol in dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23-1.31\left(\mathrm{~m}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 1.51 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.21\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.36(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.44\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 72.5\left(\mathrm{CCH}_{2} \mathrm{O}\right)$, $71.6\left(\mathrm{OCH}_{2}\right), 67.8\left(\mathrm{NCH}_{2}\right), 54.5\left(\mathrm{NCH}_{3}\right), 41.4(\mathrm{qC}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.82$, 29.62, 29.53 (octyl $\left.\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CCH}_{2}\right), 26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 17.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{68} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 627.4320, found 627.4267.

4,4-Bis(decyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,7-heptanediammonium diiodide (3.14).

Alkylation of amine $\mathbf{3 . 1 0}(0.5 \mathrm{~g}, 0.9 \mathrm{mmol})$ with methyl iodide $(1.34 \mathrm{~g}, 9.43 \mathrm{mmol})$ as above gave the title product as an off-white solid: yield $0.70 \mathrm{~g}(91 \%) ; \mathrm{mp} 240-243{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.5$ on basic alumina (7% methanol in dichloromethane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23-1.33(\mathrm{~m}, 28 \mathrm{H}$, $\left.14 \times \mathrm{CH}_{2}\right), 1.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.51$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.88(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.22\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.37\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.45\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.72(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 72.5\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.6\left(\mathrm{OCH}_{2}\right), 67.8\left(\mathrm{NCH}_{2}\right), 54.4\left(\mathrm{NCH}_{3}\right), 41.4(\mathrm{qC}), 32.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.88,29.79,29.67,29.50\left(5\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CCH}_{2}\right), 26.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 17.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{76} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 683.4946, found 683.4895.

4,4-Bis(dodecyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,7-heptanediammonium diiodide (3.15).

 Alkylation of amine $3.11(0.50 \mathrm{~g}, 0.8 \mathrm{mmol})$ with methyl iodide ($1.2 \mathrm{~g}, 8.4 \mathrm{mmol}$) as above gave the title product as an off-white solid: yield $0.65 \mathrm{~g}(88 \%) ; \mathrm{mp} 252-254{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.5$ on basic alumina (7% methanol in dichloromethane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.34(\mathrm{~m}, 20 \mathrm{H}$,$\left.10 \times \mathrm{CH}_{2}\right), 1.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.51$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.87(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.22\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.37\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.46\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.71(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 72.5\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.6\left(\mathrm{OCH}_{2}\right), 67.8\left(\mathrm{NCH}_{2}\right), 54.4\left(\mathrm{NCH}_{3}\right), 41.3(\mathrm{qC}), 32.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.86, 29.82, 29.69, $29.51\left(\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.72,26.48\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.83\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $17.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{84} \mathrm{IN}_{2} \mathrm{O}_{2}$ (M-I) 739.5572, found 739.5548. $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexamethyl-4,4-bis(tetradecyloxymethyl)-1,7-heptanediammonium diiodide
(3.16). Alkylation of amine $3.12(0.5 \mathrm{~g}, 0.9 \mathrm{mmol})$ with methyl iodide ($0.89 \mathrm{~g}, 6.2 \mathrm{mmol}$) as above gave the title product as an off-white solid: yield $0.51 \mathrm{~g}(88 \%) ; \mathrm{mp} 238-241^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.47$ on basic alumina (8% methanol in dichloromethane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-$ $1.32\left(\mathrm{~m}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.51$ (pentet, $4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.22\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.37\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.44\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $3.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 72.4\left(\mathrm{CCH}_{2} \mathrm{O}\right), 71.6\left(\mathrm{OCH}_{2}\right), 67.8\left(\mathrm{NCH}_{2}\right), 54.5\left(\mathrm{NCH}_{3}\right)$, $41.3(\mathrm{qC}), 32.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 29.87$, 29.82, 29.70, $29.52\left(\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.61,26.48\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH} 3 \mathrm{CH}_{2}\right), 17.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 14.3(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{92} \mathrm{IN}_{2} \mathrm{O}_{2}, 795.6198$, found 795.6215.

General procedure for reaction of dialkoxides with 2-(dimethylamino)ethyl chloride hydrochloride: $\quad N, N, N^{\prime}, N^{\prime}$-tetramethyl-5,5-bis(octyloxymethyl)-3,7-dioxa-1,9-nonanediaminium dichloride (4.5). Sodium hydride ($3.36 \mathrm{~g}, 0.14 \mathrm{~mol}, 10 \mathrm{eq}$) was added slowly to a stirred solution of 2,2-dioctyloxymethyl-1,3-propanediol (9) (5.05 g, 0.014 mol$)$ in DMF (500 mL) under nitrogen gas at rt and the mixture was stirred vigorously for 1 h . 2-(Dimethylamino)ethyl chloride hydrochloride $(8.08 \mathrm{~g}, 0.05 \mathrm{~mol}, 4 \mathrm{eq})$ was added and the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ under an N_{2} atmosphere for 12 h , then quenched with methanol. The mixture was filtered and concentrated. The residue was taken up in diethyl ether (50 mL) and the resulting solution was washed with brine (50 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated at $30-35{ }^{\circ} \mathrm{C}$ to give $N, N, N^{\prime}, N^{\prime}$-tetramethyl-5,5-
bis(octyloxymethyl)-3,7-dioxa-1,9-nonanediamine (4.1) as a orange oil. The crude product was taken up in dichloromethane (50 mL) and the resulting solution was shaken with ice cold $2 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$. The aqueous layer was diluted with brine and this solution was extracted with dichloromethane (5×30 $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the title compound (4.5) as a light yellow solid, that was crystallized from ethyl acetate and acetone to give colorless crystals: yield $4.90 \mathrm{~g}, 61 \%$; mp $150-152{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.47 (dichloromethane: ethanol $96: 4) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me}\right.$), 1.27 (brs, $20 \mathrm{H}, 10 \times \mathrm{CH}_{2}$), 1.50 (pentet, $4 \mathrm{H}, \mathrm{J}=6.3$ $\left.\mathrm{Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.92\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}\right.$, octyl $\left.\mathrm{OCH}_{2}\right), 3.34(\mathrm{~s}$ over broad pattern, 8 H , octylOCH ${ }_{2} \mathrm{C}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.90\left(\mathrm{XX}^{`}\right.$ part of AA`XX pattern, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $12.0(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.6\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ octyl), $65.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 56.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 45.1(\mathrm{q} \mathrm{C}), 43.6\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.5, 29.3, (octyl $\left.\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 503.4788$, found 503.4784.

5,5-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediaminium dichloride (4.6) Compound 10 ($5.03 \mathrm{~g}, 0.012 \mathrm{~mol}$) in DMF (700 mL) with sodium hydride ($4.83 \mathrm{~g}, 0.12 \mathrm{~mol}, 10 \mathrm{eq}$) and 2-(dimethylamino)ethyl chloride hydrochloride ($6.91 \mathrm{~g}, 0.05 \mathrm{~mol}, 4 \mathrm{eq}$) as above gave 5,5-bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediamine (4.2) as a orange oil. Treatment with ice cold $2 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ as above gave the title compound (4.6) as a yellow crystalline solid, that was crystallized from ethyl acetate and acetone to give light yellow crystals: yield $5.0 \mathrm{~g}, 66 \%$; mp 154-155 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.52 (dichloromethane: ethanol $96: 4$); ${ }^{1} \mathrm{H}$ NMR δ $0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26\left(\mathrm{brs}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.50$ (pentet, $4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.91\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.30\left(\right.$ br AA`part of AA`XX' pattern $\left.4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.33(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6$ Hz , decyl $\left.\mathrm{OCH}_{2}\right), 3.34(\mathrm{~s}, 4 \mathrm{H}$, decylOCH 2 C$), 3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.90\left(\mathrm{XX}^{`}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}$ 'pattern, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$); 12.2 (br s, $\left.2 \mathrm{H}, \mathrm{NH}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.7$
$\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5\left(\mathrm{CCH}_{2} \mathrm{Odecyl}\right), 65.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 56.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 45.2(\mathrm{q} \mathrm{C}), 43.7$ $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.73,29.71,29.68,29.57$, (decyl $\left.\mathrm{CH}_{2}\right), 29.40\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$, HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 559.5411, found 559.5411.

5,5-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediaminium dichloride

(4.7). Treatment of compound $11(5.040 \mathrm{~g}, 0.0106 \mathrm{~mol})$ in DMF (700 mL) with sodium hydride (4.26 $\mathrm{g}, 0.106 \mathrm{~mol}, 10 \mathrm{eq})$ and 2-(dimethylamino)ethyl chloride hydrochloride ($6.10 \mathrm{~g}, 0.042 \mathrm{~mol}, 4 \mathrm{eq}$) as above gave 5,5-bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediamine (4.3) as a orange oil, that was taken up in dichloromethane (30 mL). This solution was shaken with ice cold 2 M $\mathrm{HCl}(30 \mathrm{~mL})$ as for 4.5 to give a colorless crystalline solid that was recrystallized from ethyl acetate and acetone to give colorless crystals: yield $5.20 \mathrm{~g}, 71 \%$; mp $145^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.55 (dichloromethane: ethanol 96 :4); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26 (br s, $36 \mathrm{H}, 10 \mathrm{x}$ CH_{2}), 1.50 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.90\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.30($ AA`part of AA` XX pattern, $\left.4 \mathrm{H}, \mathrm{J}_{\mathrm{AX}}+\mathrm{J}_{\mathrm{A}^{\prime} \mathrm{X}}=9.3 \mathrm{~Hz} \mathrm{OCH} \mathrm{O}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.34(\mathrm{~s}$, 4 H , dodecylOCH ${ }_{2} \mathrm{C}$), $3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.90\left(\mathrm{XX}^{`}\right.$ part of $\mathrm{AA}^{`} \mathrm{XX}$ pattern, $4 \mathrm{H}, \mathrm{J}_{\mathrm{AX}}+\mathrm{J}_{\mathrm{A}^{\prime} \mathrm{X}}$ $\left.=9.3 \mathrm{~Hz} \mathrm{OCH} \mathrm{CH}_{2} \mathrm{~N}\right) ; 12.2(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.6\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right)$, $69.5\left(\mathrm{CCH}_{2}\right.$ Ododecyl), $65.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 56.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 45.1(\mathrm{q} \mathrm{C}), 43.6\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 31.9\right.$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.5, 29.4 (dodecyl CH 2$), 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1$ (Me), HR ESI MS m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 615.6040, found 615.6046. $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-3,7-dioxa-5,5-bis(tetradecyloxymethyl)-1,9-nonanediaminium dichloride (4.8). Treatment of compound $12(5.28 \mathrm{~g}, 0.01 \mathrm{~mol})$ in DMF (700 mL) with sodium hydride (4.0 g , $0.10 \mathrm{~mol}, 10 \mathrm{eq}$) and 2-(dimethylamino)ethyl chloride hydrochloride ($5.7 \mathrm{~g}, 0.040 \mathrm{~mol}, 4 \mathrm{eq}$) as above gave $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-5,5-bis(tetradecyloxymethyl)-1,9-nonanediamine (4.4) as a orange oil. Treatment with ice cold $2 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$ as above gave the title compound $(\mathbf{4 . 8})$ as a
colorless crystalline solid, that was recrystallized from ethyl acetate and acetone to give colorless crystals: yield $5.55 \mathrm{~g}, 75 \% ; \mathrm{mp} 148-150{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.57 (dichloromethane: ethanol $96: 4) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}\right.$), 1.26 (br s, $44 \mathrm{H}, 22 \times \mathrm{CH}_{2}$), 1.50 (pentet, $4 \mathrm{H}, \mathrm{J}=6.4$ $\left.\mathrm{Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.93\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.30\left(\right.$ br AA`part of AA`XX` pattern, \(4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\)), \(3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.\), tetradecyl \(\left.\mathrm{OCH}_{2}\right), 3.34(\mathrm{~s}, 4 \mathrm{H}\), tetradecylOCH 2 C\(), 3.51(\mathrm{~s}, 4 \mathrm{H}\), \(\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.90\left(\mathrm{XX}^{`}\right.\) part of $\mathrm{AA}^{`} \mathrm{XX}$ ' pattern, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$); $12.0(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}){ }^{13}{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.6\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.4\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ tetradecyl), $65.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 56.7$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 45.1(\mathrm{q} \mathrm{C}), 43.6\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.7,29.7,29.5$, (tetradecyl $\left.\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{87} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 671.6666, found 671.6662 .

General procedure for alkylation with methyl iodide: $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-5,5-

 bis(octyloxymethyl)-3,7-dioxa-1,9-nonanediammonium diiodide (4.9). Salt 4.5 (4.1 g, 7.1 mmol) was dissolved in a NaOH solution ($2 \mathrm{M}, 30 \mathrm{~mL}$) and the resulting mixture was extracted with diethyl ether ($2 \times 30 \mathrm{~mL}$). The combined extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a light yellow syrup, $N, N, N^{\prime}, N^{\prime}$-tetramethyl-5,5-bis(octyloxymethyl)-3,7-dioxa-1,9-nonanediamine (4.1): yield $3.20 \mathrm{~g}, 89 \%$; R_{F} on basic alumina 0.44 (chloroform: ethanol $98: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.25-1.33\left(\mathrm{br} \mathrm{m}, 20 \mathrm{H}, 10 \mathrm{xCH}_{2}\right), 1.51$ (pentet, $4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}$, $\left.2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.49\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.35(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5$ Hz , octyl OCH_{2}), $3.36(\mathrm{~s}, 4 \mathrm{H}$, octylOCH 2 C$), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.49(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 70.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.8$ $\left(\mathrm{CCH}_{2}\right.$ Odecyl), $58.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 46.1\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 45.6(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.70 \text {, 29.57, }}^{\text {, }}\right.$ $29.54\left(3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 29.40\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{63} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 503.47$, found 503.4; calcd for $\mathrm{M}+\mathrm{Na} 525.46$, found 525.5.Compound 4.1 ($7.49 \mathrm{~g}, 0.0149 \mathrm{~mol})$ was shaken with methyl iodide $(8.28 \mathrm{~g}, 0.0584 \mathrm{~mol}, 4 \mathrm{eq})$ for 2 min , then dichloromethane (100 mL) was added and shaking was continued for 5 min . The reaction mixture was concentrated to a yellow solid, that was washed with acetone, then crystallized from toluene : ethanol $10: 1$ to give colorless crystals: yield $10.17 \mathrm{~g}, 87 \%$; recrystallized from ethyl acetate: methanol; R_{F} on basic alumina 0.54 (butanol: water: methanol 20:5:2); mp softens $180^{\circ} \mathrm{C}$, melts $188-189{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.89\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}\right.$), 1.28-1.32(brs, 20H, $10 \times \mathrm{CH}_{2}$), 1.51 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.30\left(\mathrm{~s}, 4 \mathrm{H}\right.$, octylOCH $\left.{ }_{2} \mathrm{C}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, octyl $\left.\mathrm{OCH}_{2}\right)$, $3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.54\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.94\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.02(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right)$, $69.4\left(\mathrm{CCH}_{2}\right.$ Ooctyl), $65.8\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $65.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 54.9\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 45.2(\mathrm{q} \mathrm{C}), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.66,29.41,29.32(3$ octyl CH 2$)$, $29.46\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}$ (M-I) 659.45, found 659.1. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}_{2}$: C, 47.33; H, 8.71; N, 3.56. Found: C, 47.34; H, 8.51; N 3.29.

5,5-Bis(decyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-3,7-dioxa-1,9-nonanediammonium diiodide (4.10). Salt $4.6(2.06 \mathrm{~g}, 3.26 \mathrm{mmol})$ was dissolved in a NaOH solution ($2 \mathrm{M}, 20 \mathrm{~mL}$) and the resulting mixture was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined extracts were washed with water (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a light yellow syrup of 5,5-bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediamine (4.2): yield $1.6 \mathrm{~g}, 87 \%$; R_{F} on basic alumina 0.46 (chloroform : ethanol $98: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26 (br s, 28H, $14 \times \mathrm{CH}_{2}$), 1.52 (pentet, $4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.27\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.51(\mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.35\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \operatorname{decyl} \mathrm{OCH}_{2}\right), 3.36\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right)$, $3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.51\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right)$, $70.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 70.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.8\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 58.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 46.0$
$\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.5(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.81,29.79,29.75,29.73,29.65\left(5 \mathrm{decyl} \mathrm{CH}_{2}\right), 29.48$
$\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{4}$ (M+H) 559.54, found 559.5; m/z calcd for $\mathrm{M}+\mathrm{Na}$, 581.52, found 581.5.

Compound $4.2(11.0 \mathrm{~g}, 0.0197 \mathrm{~mol})$ was shaken with methyl iodide $(4.91 \mathrm{~mL}, 11.2 \mathrm{~g}, 0.0716$ $\mathrm{mol}, 4 \mathrm{eq})$ for 2 min , then dichloromethane $(250 \mathrm{~mL})$ was added and shaking was continued for 5 min . The reaction mixture was concentrated to a solid that was crystallized from toluene: ethanol 10:1 to give colorless crystals: yield $16 \mathrm{~g}, 96 \%$, that were recrystallized from ethyl acetate-methanol to give colorless translucent cubes: R_{F} on basic alumina 0.59 (butanol: water: methanol 20: 5:2); mp 100-110 ${ }^{\circ} \mathrm{C}$ becomes opaque, $180-183{ }^{\circ} \mathrm{C}$, clears, $186{ }^{\circ} \mathrm{C}$, melts; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me})$, 1.27-1.31 (brs, $28 \mathrm{H}, 14 \times \mathrm{CH}_{2}$), 1.50 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.29(\mathrm{~s}, 4 \mathrm{H}$, decylOCH 2 C$)$, $3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2}\right), 3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.53\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.94$ (br s, 4H, OCH_{2}), $4.02\left(\mathrm{br} \mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.4$ $\left(\mathrm{CCH}_{2}\right.$ Odecyl), $65.8 \quad\left(\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 54.9 \quad\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),}, 45.1 \quad(\mathrm{q} \mathrm{C}), 31.9\right.$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.65, 29.63, 29.60, 29.41 (5 decyl $\left.\mathrm{CH}_{2}\right)$, $29.49\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1$ (Me); LR ESI MS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{77} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}$ (M-I) 715.52, found 715.3. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}_{2}$: 49.88, H 9.09, N 3.32. Found: C 49.84, H 9.16, N 3.14.

5,5-Bis(dodecyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-3,7-dioxa-1,9-nonanediammonium

diiodide (4.11). Salt 4.7 ($5.2 \mathrm{~g}, 7.5 \mathrm{mmol}$) was dissolved in a NaOH solution ($2 \mathrm{M}, 40 \mathrm{~mL}$) and the resulting mixture was extracted with dichloromethane ($3 \times 40 \mathrm{~mL}$). The combined extracts were washed with water $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give a colorless semi-solid, $5,5-$ bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-3,7-dioxa-1,9-nonanediamine (4.3), yield $4.34 \mathrm{~g}, 94 \%$; R_{F} on basic alumina 0.51 (chloroform : ethanol $98: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26-1.29 (br s, $36 \mathrm{H}, 10 \times \mathrm{CH}_{2}$), 1.52 (pentet, $4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $2.27(\mathrm{~s}, 12 \mathrm{H}, 2 \times$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.51\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.35\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.36(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.51\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR
$\delta 71.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 70.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.8\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right), 58.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 45.9\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.4(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.82,29.80,29.79,29.78$, 29.77, $29.65(6$ decylCH 2$), 29.48\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 615.60$, found 615.5; calcd for $\mathrm{M}+\mathrm{Na} 637.59$, found 637.6.

Treatment of compound $4.3(17.6 \mathrm{~g}, 0.0286 \mathrm{~mol})$ with methyl iodide $(7.14 \mathrm{~mL}, 16.2 \mathrm{~g}, 0.114$ mol, 4 eq) as for compound 4.9 above gave the title compound (4.11) as colorless crystals: yield 21.44 $\mathrm{g}, 85 \%$; recrystallized from ethyl acetate - methanol to give colorless needles: R_{F} on basic alumina 0.61 (butanol: water: methanol 20: 5: 2) ; mp 100-115 ${ }^{\circ} \mathrm{C}$ becomes opaque, $155-180^{\circ} \mathrm{C}$, clears, 183 ${ }^{\circ} \mathrm{C}$, melts; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.31\left(\mathrm{br} \mathrm{s}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.50$ (pentet, 4H, J = 6.3 Hz, $2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.29(\mathrm{~s}, 4 \mathrm{H}$, dodecylOCH 2 C$), 3.33(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.53\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.94\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.02(\mathrm{br} \mathrm{m}$, $\left.4 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH} \mathrm{H}_{2} \mathrm{C}\right), 69.4\left(\mathrm{CCH}_{2}\right.$ Ododecyl $)$, $65.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 65.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 55.0\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 45.2(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.75,29.75 \text {, 29.72, }}\right.$ 29.41 (7 dodecyl CH_{2}), $29.58\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}$ (M-I) 771.58, found 771.3. Anal. Calcd. for $\mathrm{C}_{39} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}_{2}$: C, 52.11; H, 9.42; N, 3.12. Found: C, 52.11; H, 9.24; N, 2.99.

$N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexamethyl-3,7-dioxa-5,5-bis(tetradecyloxymethyl)-1,9-nonanediammonium

diiodide (4.12) Salt 4.8 ($3.59 \mathrm{~g}, 4.83 \mathrm{mmol}$) was dissolved in a NaOH solution ($2 \mathrm{M}, 30 \mathrm{~mL}$) and the resulting mixture was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The combined extracts were washed with water $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to a colorless semi-solid, $N, N, N^{\prime}, N^{\prime}-$ tetramethyl-3,7-dioxa-5,5-bis(tetradecyloxymethyl)-1,9-nonanediamine (4.4), yield $3.12 \mathrm{~g}, 97 \%$; R_{F} on basic alumina 0.53 (chloroform : ethanol $98: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me}$), 1.24-1.32 (br, $\left.44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.52$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 12 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.49(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{J}=5.9 \mathrm{~Hz}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.35\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, tetradecyl $\left.\mathrm{OCH}_{2}\right), 3.36(\mathrm{~s}, 4 \mathrm{H}$,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCOCH}_{2} \mathrm{C}$), 3.39 (s, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}$), $3.50\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$) ${ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 70.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.8\left(\mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{C}\right)$, $58.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 46.2\left(2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.5(\mathrm{q} \mathrm{C}), 32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3 \times 29.85,29.83,29.82,2 \times$ 29.80, 29.68 (8 tetradecyl CH_{2}), $29.51\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{87} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 671.67, found 671.6; calcd for $\mathrm{M}+\mathrm{Na} 693.65$, found 693.7.

Treatment of compound $4.8(3.63 \mathrm{~g}, 0.00570 \mathrm{~mol})$ with methyl iodide $(1.42 \mathrm{~mL}, 3.236 \mathrm{~g}$, $0.0228 \mathrm{~mol}, 4 \mathrm{eq}$) as for compound 4.9 above gave the title compound (4.12) as colorless crystals: yield $3.7 \mathrm{~g}, 69 \%$; recrystallized from ethyl acetate-methanol as opaque colorless crystals; R_{F} on basic alumina 0.63 (butanol: water: methanol 20: 5:2); mp 160-180 ${ }^{\circ} \mathrm{C}$, becomes transparent, $185^{\circ} \mathrm{C}$, melts; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.31\left(\mathrm{brs}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.50($ pentet, $4 \mathrm{H}, \mathrm{J}=$ $\left.6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.29\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{x}\right.$ tetradecy $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, tetradecyl $\left.\mathrm{OCH}_{2}\right)$, $3.52\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.53\left(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.93\left(\right.$ br s, $\left.4 \mathrm{H}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.02$ (br m, 4H, $\left.2 \quad \mathrm{x} \quad \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR} \delta \quad 71.9 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9 \quad\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), \quad 69.4$ $\left(\mathrm{CCH}_{2}\right.$ Otetradecyl), $65.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 65.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 54.9\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 45.2(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.81, 29.75, 29.64, 29.41 (9 tetradecyl CH_{2}), $29.45\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$; LR ESI MS m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{91} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}$ (M-I) 827.59, found 827.3. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{92} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}_{2}$: C, 54.08; H, 9.71; N 2.93. Found: C, 54.16; H, 9.53; N, 2.83.

General procedure for reaction of dialkoxides with 2-bromo- \mathbf{N}, \mathbf{N}-diethylethylamine

 hydrobromide: $N, N, N^{\prime}, N^{\prime}$-tetraethyl-5,5-bis(octyloxymethyl)-3,7-dioxa-1,9-nonanediaminium dihydrochloride (4.17). Sodium hydride ($6.10 \mathrm{~g}, 0.15 \mathrm{~mol}, 10 \mathrm{eq}$) was added slowly to a stirred solution of 2,2-dioctyloxymethyl-1,3-propanediol (9) (5.50 g, 0.015 mol$)$ in THF (500 mL) under N_{2} gas at rt . When foaming ceased, the mixture was stirred vigorously at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to rt, then 2-bromo- N, N-diethylethylamine hydrobromide ($15.95 \mathrm{~g}, 0.061 \mathrm{~mol}, 4.0$eq) was added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ under N_{2} gas for 12 h , then quenched with methanol. The reaction mixture was filtered and the filtrate concentrated to a syrupy residue. The residue was taken up in diethyl ether $(50 \mathrm{~mL})$ and the resulting solution was washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated at $30-35^{\circ} \mathrm{C}$ to give crude $N, N, N^{\prime}, N^{\prime}$-tetraethyl-5,5-bis(octyloxymethyl)-3,7-dioxa-1,9-nonanediamine (4.13). The crude product was taken up in dichloromethane (50 mL) and the resulting solution was shaken with ice cold $2 \mathrm{M} \mathrm{HCl}(30 \mathrm{~mL})$. The aqueous layer was diluted with brine $(20 \mathrm{~mL})$ and this solution was extracted with dichloromethane (5 $\mathrm{x} \mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the title compound (4.17) as a colorless solid, that was crystallized from ethyl acetate and acetone to give colorless granules: yield $7.20 \mathrm{~g}, 75 \%$; mp $155{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.5$ (96:4 dichloromethane : ethanol) ; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}$, $6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me}$), $1.27\left(\mathrm{brs}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.42(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \times \mathrm{Me}), 1.51$ (pentet, 4H, $\left.\mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.21$ (very br AB part of ABX_{3} pattern, $8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), $3.26(\mathrm{brt}, 4 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.31\left(\mathrm{~s}, 4 \mathrm{H}\right.$, octyl $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, octyl $\left.\mathrm{OCH}_{2}\right), 3.44(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.91\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 12.0(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.6\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.4\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ octyl), $65.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 50.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.3$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.1(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.6$, 29.5, $29.3\left(\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1(\mathrm{Me}), 8.8(\mathrm{Me}) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{4} / 2(\mathrm{M}+2 \mathrm{H} / 2) 280.2741$, found 280.2741.

5,5-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetraethyl-3,7-dioxa-1,9-nonanediaminium dihydrochloride

(4.18). A mixture of sodium hydride $(0.96 \mathrm{~g}, 0.024 \mathrm{~mol}, 10 \mathrm{eq})$ and compound $\mathbf{1 0}(1.0 \mathrm{~g}, 0.0024 \mathrm{~mol})$ in THF (50 mL) under nitrogen gas were reacted with 2-bromo- N, N-diethylethylamine hydrobromide ($2.5 \mathrm{~g}, 0.0096 \mathrm{~mol}, 4.0 \mathrm{eq}$) for 18 h as above to give crude 5,5 -bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$ -tetraethyl-3,7-dioxa-1,9-nonanediamine (4.14) that was converted to the title hydrochloride (4.18) as above. It was a colorless solid, yield 0.92 g , that was crystallized from ethyl acetate and acetone to
give colorless granules: yield $0.84 \mathrm{~g}, 51 \%$; mp $144{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.63$ (96:4 dichloromethane : ethanol); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26\left(\mathrm{brs}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.42(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{x} \mathrm{Me})$, 1.51 (pentet, $4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 3.21 (very br AB part of ABX_{3} pattern, $8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), 3.26 (br t, 4H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.30 ($\mathrm{s}, 4 \mathrm{H}, \operatorname{decylOCH} 2 \mathrm{C}$), $3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, decyl OCH_{2}), 3.44 (s , $\left.4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH} \mathrm{O}_{2} \mathrm{C}\right), 3.92\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 12.05(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right)$, $70.7\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5\left(\mathrm{CCH}_{2} \mathrm{Odecyl}\right), 65.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $51.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.4$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.2(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.73,29.70,29.57\left(\right.$ decyl $\left.\mathrm{CH}_{2}\right), 29.40\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}), 8.8(\mathrm{Me}) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 615.6040, found 615.6036.

5,5-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetraethyl-3,7-dioxa-1,9-nonanediaminium

dihydrochloride (4.19) Treatment of compound 11 ($9.38 \mathrm{~g}, 0.0198 \mathrm{~mol}$) in THF (500 mL) with sodium hydride ($7.90 \mathrm{~g}, 0.198 \mathrm{~mol}, 10 \mathrm{eq}$) and 2-bromo- N, N-diethylethylamine hydrobromide (20.7 g , $0.079 \mathrm{~mol}, 4 \mathrm{eq})$ as above gave a crude product, 5,5 -bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetraethyl-3,7-dioxa-1,9-nonanediamine (4.15) that was converted to the title hydrochloride (4.19), a colorless solid that was crystallized from ethyl acetate and acetone to give colorless granules: yield $10.4 \mathrm{~g}, 71 \%$; mp $150{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.65$ (96:4 dichloromethane : ethanol); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26 (brs, $36 \mathrm{H}, 18 \mathrm{x} \mathrm{CH}_{2}$), $1.42(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \times \mathrm{Me}), 1.51\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.21$ (very br AB part of ABX_{3} pattern, $8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), 3.26 (br t, $4 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $3.30(\mathrm{~s}, 4 \mathrm{H}$, dodecylOCH 2 C), $3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.44\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.92(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}$ $\left.=4.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 12.05($ br s, $2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.8\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right)$, $69.5\left(\mathrm{CCH}_{2}\right.$ Ododecyl), $66.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 51.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.2$ (q C), 32.0 $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.79, 29.63, 29.46 (dodecyl $\left.\mathrm{CH}_{2}\right)$, $26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me})$, $8.8(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{87} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 671.6666, found 671.6669.

$N, N, N^{\prime}, N^{\prime}$-Tetraethyl-3,7-dioxa-5,5-bis(tetradecyloxymethyl)-1,9-nonanediaminium

dihydrochloride (4.20) Treatment of compound 12 ($10.0 \mathrm{~g}, 0.0189 \mathrm{~mol}$) in THF (500 mL) with sodium hydride ($7.57 \mathrm{~g}, 0.189 \mathrm{~mol}, 10 \mathrm{eq}$) and 2-bromo- N, N-diethylethylamine hydrobromide (19.7 g , $0.076 \mathrm{~mol}, 4 \mathrm{eq})$ as above to give a crude light yellow syrup, $N, N, N^{\prime}, N^{\prime}$-tetraethyl-5,5-bis(tetradecyloxymethyl)-3,7-dioxa-1,9-nonanediamine (4.16). The syrup was taken up in dichloromethane (50 mL) and the solution was shaken with ice cold $2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ as for $\mathbf{4 . 1 7}$ to give a colorless solid that was crystallized from ethyl acetate and acetone to give colorless granules: yield $11.5 \mathrm{~g}, 76 \%$; mp $146{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.69$ (96:4 dichloromethane : ethanol); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26\left(\mathrm{brs}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.41(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \times \mathrm{Me}), 1.51$ (pentet, $4 \mathrm{H}, \mathrm{J}=6.4$ $\mathrm{Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 3.20 (very br AB part of ABX_{3} pattern, $8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), 3.24 (br t, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.30 ($\mathrm{s}, 4 \mathrm{H}$, tetradecylOCH $\left.\mathrm{C}_{2} \mathrm{C}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, tetradecyl $\left.\mathrm{OCH}_{2}\right), 3.44\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right)$, $3.91\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 12.05(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}),{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.8$ $\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5\left(\mathrm{CCH}_{2}\right.$ Otetradecyl), $66.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 51.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, $45.2(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.72$, 29.77, 29.65, 29.47 (tetradecyl $\left.\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}), 8.9(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{95} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 727.7292$, found 727.7293.

General procedure for reaction of amines with ethyl bromide: $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexaethyl-5,5-bis(octyloxymethyl)-3,7-dioxa-1,9-nonanediammonium dibromide (4.21). Salt 4.17 (1.44g, 2.28 mmol) was dissolved in a NaOH solution ($2 \mathrm{M}, 15 \mathrm{~mL}$). The resulting mixture was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) to yield a colorless syrup of $N, N, N^{\prime}, N^{\prime}$-tetraethyl-5,5-bis(octyloxymethyl)-3,7-dioxa-1,9-nonanediamine (4.13), yield $1.08 \mathrm{~g}, 85 \% ; \mathrm{R}_{\mathrm{F}} 0.43$ on basic alumina (dichloromethane : ethanol, 98:2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.03(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, 4 \mathrm{x}$ Me) 1.28 (br s, $20 \mathrm{H}, 10 \times \mathrm{CH}_{2}$), 1.51 (pentet , $\left.4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.57(\mathrm{q}, 8 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.65\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.35\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}\right.$, octyl $\left.\mathrm{OCH}_{2}\right), 3.35(\mathrm{~s}, 4 \mathrm{H}$,
decylOCH $\left.{ }_{2} \mathrm{C}\right), 3.38\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.47\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.4\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 70.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.8\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ octyl), $52.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.8$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.4(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.8,29.6,29.5,29.3\left(\right.$ octyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}), 12.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl bromide ($98 \%, 2.78 \mathrm{~mL}, 37.3 \mathrm{mmol}, 20.0 \mathrm{eq}$) was added to a stirred solution of compound $4.13(1.04 \mathrm{~g}, 1.86 \mathrm{mmol})$ in a mixture of THF and ethanol (6 mL) (2:1). Potassium carbonate ($0.5 \mathrm{~g}, 3.7 \mathrm{mmol}, 2 \mathrm{eq}$) was added and the resulting mixture was refluxed for 26 h , then cooled to rt , filtered, and the filtrate was concentrated to give the title compound (4.21) as a colorless sticky solid $(1.92 \mathrm{~g})$. The salt precipitated from ethyl acetate containing a few drops of methanol, yield $1.13 \mathrm{~g}, 78 \% ; \mathrm{mp} 157{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.53$ on basic alumina (butanol: water: methanol 20: 5: 2); ${ }^{1} \mathrm{H} \mathrm{NMR} \delta$ $0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.28\left(\mathrm{br} \mathrm{s}, 20 \mathrm{H}, 10 \mathrm{xCH}_{2}\right), 1.41(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, 6 \times \mathrm{Me}), 1.51$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.28(\mathrm{~s}, 4 \mathrm{H}$, octylOCH 2 C$), 3.33\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, octyl $\left.\mathrm{OCH}_{2}\right)$, $3.47\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.47\left(\mathrm{q}, 12 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.79\left(\mathrm{AA}^{`}\right.$ part of AA`BB` pattern, $\left.4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.94\left(\mathrm{BB}^{`}\right.$ part of $\mathrm{AA}^{\wedge} \mathrm{BB}^{`}$ pattern, $\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.1\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ octyl $), 65.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $57.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 54.4$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.3(\mathrm{q} \mathrm{C}), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.7,29.6$, 29.4, (octyl CH 2$), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}), 8.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{80} \mathrm{~N}_{2} \mathrm{O}_{4} / 2(\mathrm{M}-2 \mathrm{Br}) / 2$ 308.3054, found 308.3038.

5,5-Bis(decyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexaethyl-3,7-dioxa-1,9-nonanediammonium dibromide

(4.22). Salt 4.18 ($0.87 \mathrm{~g}, 1.26 \mathrm{mmol}$) was dissolved in a NaOH solution ($2 \mathrm{M}, 10 \mathrm{~mL}$). The resulting mixture was extracted with dichloromethane (3 x 5 mL) to yield a colorless syrup of 5,5-bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetraethyl-3,7-dioxa-1,9-nonanediamine (4.14), yield $0.69 \mathrm{~g}, 89 \%$; R_{F} 0.44 on basic alumina (dichloromethane : ethanol, $98: 2) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me})$, $1.03(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, 4 \mathrm{x} \mathrm{Me}) 1.26$ (br s, $28 \mathrm{H}, 14 \times \mathrm{CH}_{2}$), 1.52 (pentet, $4 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, 2$
$\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.57\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{J}=7.14 \mathrm{~Hz}, 2 \times \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.65\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.35(\mathrm{t}$, $\left.\mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{decyl} \mathrm{OCH}_{2}\right), 3.35(\mathrm{~s}, 4 \mathrm{H}, \operatorname{decylOCH} 2 \mathrm{C}), 3.38\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.47(\mathrm{t}, \mathrm{J}=6.2$ $\left.\mathrm{Hz}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.4\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 70.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.8$ $\left(\mathrm{CCH}_{2}\right.$ Odecyl), $52.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.3(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.7,29.6,29.5$, 29.3 (decyl $\left.\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0(\mathrm{Me}), 11.90\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl bromide ($98 \%, 1.71 \mathrm{~mL}, 22.5 \mathrm{mmol}, 20.0 \mathrm{eq}$) was added to a stirred solution of compound $4.14(0.69 \mathrm{~g}, 1.12 \mathrm{mmol})$ in a mixture of THF and ethanol (6 mL) (2:1). Potassium carbonate ($0.13 \mathrm{~g}, 2.24 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added and the resulting mixture was refluxed for 26 h , then cooled to rt, filtered, and the filtrate was concentrated to give the title compound (4.22) as a colorless crystalline solid, yield $0.78 \mathrm{~g}, 86 \% ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.43 (butanol: water: methanol 20: 5: 2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.27\left(\mathrm{br} \mathrm{s}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.40(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, 6 \times \mathrm{Me})$, 1.51 (pentet, $4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.28(\mathrm{~s}, 4 \mathrm{H}, \operatorname{decylOCH} 2 \mathrm{C}), 3.33(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}$, decyl $\left.\mathrm{OCH}_{2}\right), 3.46\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.57\left(\mathrm{q}, 12 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.78\left(\mathrm{AA}^{\wedge}\right.$ part of AA`BB` pattern, $4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $3.90\left(\mathrm{BB}^{`}\right.$ part of AA`BB` pattern, $\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR δ $71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.3\left(\mathrm{CCH}_{2} \mathrm{Odecyl}\right), 64.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 57.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $54.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.0(\mathrm{q} \mathrm{C}), 31.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.5,29.5,29.5,29.4,29.2\left(\right.$ decyl $\left.\mathrm{CH}_{2}\right), 26.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0(\mathrm{Me}), 8.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{88} \mathrm{BrN}_{2} \mathrm{O}_{4}$ (M-Br) 751.5927, found 751.5925.

5,5-Bis(dodecyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexaethyl-3,7-dioxa-1,9-nonanediammonium

dibromide (4.23). Salt 4.19 ($5.5 \mathrm{~g}, 7.4 \mathrm{mmol}$) was dissolved in a NaOH solution ($2 \mathrm{M}, 30 \mathrm{~mL}$). The resulting mixture was extracted with diethyl ether ($2 \times 25 \mathrm{~mL}$) to yield a colorless syrup of 5,5-bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetraethyl-3,7-dioxa-1,9-nonanediamine (4.15), yield $4.66 \mathrm{~g}, 94 \%$; $\mathrm{R}_{\mathrm{F}} 0.46$ on basic alumina (dichloromethane : ethanol, $98: 2$), ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me})$, $1.03(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 12 \mathrm{H}, 4 \times \mathrm{Me}) 1.27\left(\right.$ brs, $36 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.52 (pentet, $4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$),
$2.58\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \times \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.67\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.35(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, 4 H , dodecyl OCH_{2}), $3.35(\mathrm{~s}, 4 \mathrm{H}$, dodecylOCH 2 C$), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.48(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}$, $\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.0\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 70.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.5$ $\left(\mathrm{CCH}_{2}\right.$ Ododecyl), $51.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.2(\mathrm{q} \mathrm{C}), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.5,29.4,29.2$ (dodecyl CH2), $26.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $13.9(\mathrm{Me})$, $11.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Ethyl bromide ($21.0 \mathrm{~mL}, 276 \mathrm{mmol}, 40.0 \mathrm{eq}$) was added to a stirred solution of compound $\mathbf{4 . 1 5}$ $(4.66 \mathrm{~g}, 6.96 \mathrm{mmol})$ in a mixture of THF and ethanol (3:2) (50 mL). Potassium carbonate ($2.37 \mathrm{~g}, 17.2$ $\mathrm{mmol}, 2.5 \mathrm{eq}$) was added and the resulting mixture was refluxed for 33 h , cooled to rt , filtered, and the filtrate was concentrated to give the title compound (4.23) as a colorless solid. Crystallization from ethyl acetate and acetone gave colorless granules: yield $4.79 \mathrm{~g}, 78 \% ; \mathrm{mp} 185{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.46 (butanol: water: methanol 20: $5: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.27 (brs, 36 H , $\left.18 \times \mathrm{CH}_{2}\right), 1.41(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, 6 \times \mathrm{Me}), 1.51\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.27(\mathrm{~s}, 4 \mathrm{H}$, dodecylOCH 2 C), $3.32\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.58(\mathrm{q}, 12 \mathrm{H}$, $\left.\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.81\left(\mathrm{AA}^{`}\right.$ part of $\mathrm{AA}^{`} \mathrm{BB} `$ pattern, $\left.4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.95\left(\mathrm{BB}^{`}\right.$ part of AA`BB` pattern, $\left.4 \mathrm{H}, \quad 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.0\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5$ $\left(\mathrm{CCH}_{2}\right.$ Ododecyl), $64.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 57.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 54.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.2(\mathrm{q} \mathrm{C}), 31.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.7, 29.6, 29.4 (dodecyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1(\mathrm{Me})$, $8.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{96} \mathrm{BrN}_{2} \mathrm{O}_{4}(\mathrm{M}-\mathrm{Br})$ 807.6553, found 807.6549.
$N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexaethyl-3,7-dioxa-5,5-bis(tetradecyloxymethyl)-1,9-nonanediammonium
dibromide (4.24). Salt $4.20(5.42 \mathrm{~g}, 6.79 \mathrm{mmol})$ was dissolved in a 2 M NaOH solution (30 mL). The resulting mixture was extracted with diethyl ether ($2 \times 25 \mathrm{~mL}$) to yield a colorless syrup of $N, N, N^{\prime}, N^{\prime}-$ tetraethyl-5,5-bis(tetradecyloxymethyl)-3,7-dioxa-1,9-nonanediamine (4.16): yield $4.11 \mathrm{~g}, 84 \%$; R_{F} 0.48 on basic alumina (dichloromethane : ethanol 98:2), ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x} \mathrm{Me}$), $1.02(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \times \mathrm{Me}), 1.28\left(\right.$ brs, $\left.44 \mathrm{H}, 22 \mathrm{x} \mathrm{CH}_{2}\right), 1.52$ (pentet, $4 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$),
$2.57\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.65\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.35(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, tetradecyl $\left.\mathrm{OCH}_{2}\right), 3.35(\mathrm{~s}, 4 \mathrm{H}$, tetradecylOCH 2 C$), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.48(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, $\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.4\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 70.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.7$ $\left(\mathrm{CCH}_{2}\right.$ Otetradecyl), $52.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 47.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 45.4(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.8$, 29.7, 29.6, 29.4 (tetradecyl CH_{2}), $26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $14.1(\mathrm{Me})$, $12.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Treatment of a mixture of ethyl bromide ($16.9 \mathrm{~mL}, 224 \mathrm{mmol}, 40.0 \mathrm{eq}$) and compound $\mathbf{4 . 1 6}$ $(4.11 \mathrm{~g}, 5.66 \mathrm{mmol})$ in a THF ethanol solution (3:2) (50 mL) containing potassium carbonate $(1.95 \mathrm{~g}$, $14.2 \mathrm{mmol}, 2.5 \mathrm{eq}$) as above gave the title compound (4.24), as colorless solid. It was recrystallized from ethyl acetate and acetone to give colorless granules: yield $4.50 \mathrm{~g}, 85 \% ; \mathrm{mp} 180{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.49 (butanol: water: methanol 20: $5: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.26 (brs, $44 \mathrm{H}, 22 \times \mathrm{CH}_{2}$), $1.41\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}, 6 \times \mathrm{Me}\right.$), 1.50 (pentet, $4 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.27(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{x}$ tetradecylOCH 2 C$), 3.32\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, decyl $\left.\mathrm{OCH}_{2}\right), 3.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right)$, $3.58\left(\mathrm{q}, 12 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.81\left(\mathrm{AA}^{`}\right.$ part of an AA`BB` pattern, $\left.4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $3.95\left(\mathrm{BB}^{`}\right.$ part of $\mathrm{AA}{ }^{`} \mathrm{BB} `$ pattern, $\left.4 \mathrm{H}, 2 \quad \mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9$ $\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.4\left(\mathrm{CCH}_{2}\right.$ Otetradecyl), $64.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 57.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 54.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, $45.0(\mathrm{q} \mathrm{C}), 31.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.6,29.6,29.5,29.3$ (tetradecyl $\left.\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.0(\mathrm{Me}), 8.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{104} \mathrm{BrN}_{2} \mathrm{O}_{4}(\mathrm{M}-\mathrm{Br}) 863.7179$, found 863.7178 .

5,5-Bis(dodecyloxymethyl)- N, N^{\prime}-diethyl- $N, N, N^{\prime}, N^{\prime}$-dimethyl-3,7-dioxa-1,9-nonanediammonium

dibromide (4.25). Ethyl bromide ($2.3 \mathrm{~mL}, 31 \mathrm{mmol}, 10 \mathrm{eq}$), then sodium bicarbonate ($1.30 \mathrm{~g}, 15.5$ $\mathrm{mmol}, 5.0 \mathrm{eq})$ were added to a stirred solution of compound $4.3(2.13 \mathrm{~g}, 3.10 \mathrm{mmol})$ in THF (30 mL) and the resulting mixture was refluxed for 12 h , cooled to rt , filtered, and the filtrate was concentrated to give the title compound as a colorless solid. Crystallization from ethyl acetate and acetone gave colorless granules: yield $2.37 \mathrm{~g}, 91.1 \%$; $\mathrm{mp} 185{ }^{\circ} \mathrm{C}$; R_{F} on basic alumina 0.45 (butanol, water,
methanol 20: 5: 2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.27-1.31\left(\mathrm{br} \mathrm{s}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right)$, $1.45\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) 1.51$ (pentet, $4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.28(\mathrm{~s}, 4 \mathrm{H}$, dodecyl $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.32\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.43\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{x} \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.47(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.81\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \times \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.92\left(\mathrm{AA}^{`}\right.$ part of AA`BB` pattern, $4 \mathrm{H}, 2$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.97\left(\mathrm{BB}^{`}\right.$ part of AA`BB` pattern, $\left.4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right)$, $70.9\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.4\left(\mathrm{CCH}_{2} \mathrm{Od}\right.$ dedecyl), $65.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), \quad 61.0$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right) 51.3\left(\mathrm{NCH}_{3}\right)_{2}, 45.1(\mathrm{q} \mathrm{C}), 31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.7$, 29.7, 29.5, 29.4 (dodecyl CH_{2}), 26.3 $\left(C_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $14.2(\mathrm{Me}), 8.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{88} \mathrm{BrN}_{2} \mathrm{O}_{4}$ (M-Br) 751.5927, found 751.5922.

5,5-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-dimethyl-3,7-dioxa- N, N^{\prime}-dipropyl-1,9-nonanediammonium

dibromide (4.26). 1-Bromopropane ($5.4 \mathrm{~mL}, 59 \mathrm{mmol}, 10 \mathrm{eq}$), then sodium bicarbonate ($2.47 \mathrm{~g}, 29.4$ $\mathrm{mmol}, 5.0 \mathrm{eq})$ were added to a stirred solution of compound $4.3(4.05 \mathrm{~g}, 5.89 \mathrm{mmol})$ in THF (50 mL) and the resulting mixture was refluxed for 26 h , cooled to rt , filtered, and the filtrate was concentrated to give the title compound as a colorless solid. Crystallization from ethyl acetate and acetone gave colorless crystals: yield $4.83 \mathrm{~g}, 95.5 \%$; mp $62^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.50 (butanol, water, methanol 20: 5: 2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.05\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right)$ 1.26-1.31 (br s, $36 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.51 (pentet, $4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $1.86\left(\mathrm{AA}^{`}\right.$ part of $\mathrm{AA}^{`} \mathrm{XXX}^{`}$ pattern, $4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.28(\mathrm{~s}, 4 \mathrm{H}$, dodecylOCH 2 C$), 3.32\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right)$, $3.44\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{xN}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.63(\mathrm{XX}$ `part of AA`XX` pattern \(4 \mathrm{H}, 2 \mathrm{x}\) \(\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.93\left(\mathrm{AA}^{`}\right.\) part of $\mathrm{AA}^{`} \mathrm{BB}^{`}$ pattern, $4 \mathrm{H}, 2, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$, $) 3.99\left(\mathrm{BB}^{`}\right.$ part of AA`BB` pattern, $\left.4 \mathrm{H}, \quad 2, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9 \quad\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5$ $\left(\mathrm{CCH}_{2}\right.$ Ododecyl), $67.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 65.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 51.9\left(\mathrm{NCH}_{3}\right)_{2}, 45.2(\mathrm{q}$ C), $31.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.7, 29.5, 29.4 (dodecyl $\left.\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$,
$16.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}), 10.8\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right)$; HR ESI MS m/z calcd for $\mathrm{C}_{43} \mathrm{H}_{92} \mathrm{BrN}_{2} \mathrm{O}_{4}(\mathrm{M}-\mathrm{Br})$ 779.6234, found 779.6209.
N, N^{\prime}-Dibutyl-5,5-bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-dimethyl-3,7-dioxa-1,9-nonanediammonium
dibromide (4.27). 1-Bromobutane ($4.70 \mathrm{~mL}, 44.0 \mathrm{mmol}, 10 \mathrm{eq}$), then sodium bicarbonate $(1.84 \mathrm{~g}$, $22.0 \mathrm{mmol}, 5.0 \mathrm{eq}$), were added to a stirred solution of compound $4.3(3.03 \mathrm{~g}, 4.4 \mathrm{mmol})$ in THF (40 mL) and the resulting mixture was refluxed for 33 h , cooled to rt , filtered, and the filtrate was concentrated to give the title compound as a colorless solid. Crystallization from ethyl acetate and methanol gave colorless crystals: yield $3.46 \mathrm{~g}, 88.7 \%$; mp $110^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.53 (butanol, water, methanol 20: 5: 2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88 \mathrm{ppm}(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.01(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{x}$ $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right) 1.26-1.31\left(\right.$ br s, $\left.36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.48$ (sextet, $4 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.51 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.78\left(\mathrm{AA}^{\wedge}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX}$ pattern, $4 \mathrm{H}, 2 \mathrm{x}$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.28(\mathrm{~s}, 4 \mathrm{H}$, dodecylOCH 2 C$), 3.32\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.35(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.44\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{xN}\left(\mathrm{CH}_{3}\right)_{2}\right) 3.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.65(\mathrm{XX}$ `part of AA`XX` pattern, \(4 \mathrm{H}, 2 \times \mathrm{NCH} \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\)), 3.94 (AA` part of $\mathrm{AA}^{`} \mathrm{BB}$ ` pattern, \(4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\)), \(3.99(\mathrm{BB}\) part of AA`BB` pattern, $\left.4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.0\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right)$, $69.5\left(\mathrm{CCH}_{2}\right.$ Ododecyl), $65.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 65.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 51.8$ $\left(\mathrm{NCH}_{3}\right)_{2,} 45.2(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.8, 29.7, 29.6, 29.4 (dodecyl $\left.\mathrm{CH}_{2}\right)$, $26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $24.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}), 13.9\left(\mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{96} \mathrm{BrN}_{2} \mathrm{O}_{4}$ (M-Br) 807.6553, found 807.6548.

General procedure for reaction with 3-chloro-N,N-dimethyl-1-propanamine hydrochloride:

 $N, N, N^{\prime}, N^{\prime}$-Tetramethyl-6,6-bis(octyloxymethyl)-4,8-dioxa-1,11-undecanediamine (5.1). Sodium hydride ($1.33 \mathrm{~g}, 55.4 \mathrm{mmol}$) was added slowly to a stirred solution of 2,2-dioctyloxymethyl-1,3propanediol (9) (2.0 g, 5.5 mmol$)$ in DMF $(100 \mathrm{~mL})$ under an N_{2} atmosphere at $50{ }^{\circ} \mathrm{C}$. The mixture was then stirred at $80^{\circ} \mathrm{C}$ for 1 h . After the reaction mixture had been allowed to cool to rt , 3-chloroN, N-dimethyl-1-propanamine hydrochloride $(1.93 \mathrm{~g}, 12.2 \mathrm{mmol})$ was added in portions and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ under nitrogen for another 24 h , then quenched with methanol and filtered. The filtrate was concentrated, and the residue was taken up in ethyl acetate (50 mL). This solution was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to a residue that was purified by flash column chromatography. Elution using a gradient of 10 to 15% methanol in dichloromethane gave compound $\mathbf{5 . 1}$ as a light brown liquid: yield $1.6 \mathrm{~g}(54 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.6 (dichloromethane: methanol 93:7); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2$ $\left.\mathrm{CH}_{3}\right), 1.26-1.35\left(\mathrm{~m}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.52\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.71(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2$ $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.32\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{NCH}_{2}\right), 3.34(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2$ $\left.\mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{2} \mathrm{O}\right), 3.35\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.37\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 71.7\left(\right.$ octyl $\left.\mathrm{CH}_{2} \mathrm{O}\right), 70.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.85\left(\mathrm{OCH}_{2} \mathrm{C}\right), 69.78\left(\mathrm{OCH}_{2} \mathrm{C}\right), 57.0\left(\mathrm{NCH}_{2}\right)$, $45.64\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.59(\mathrm{qC}), 32.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.82,29.63,29.49\left(3\right.$ octyl $\left.\mathrm{CH}_{2}\right), 28.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right) ;$ HR ESI MS m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 531.5095, found 531.5087.6,6-Bis(decyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-4,8-dioxa-1,11-undecanediamine (5.2). Sodium hydride ($0.57 \mathrm{~g}, 24.0 \mathrm{mmol}$), 2,2-didecyloxymethyl-1,3-propanediol (10) ($1.0 \mathrm{~g}, 2.4 \mathrm{mmol}$) in DMF $(100 \mathrm{~mL})$ and 3-chloro- N, N-dimethyl-1-propanamine hydrochloride $(1.8 \mathrm{~g}, 12 \mathrm{mmol})$ were reacted as above to give compound $\mathbf{5 . 2}$ as a light brown liquid: yield $0.7 \mathrm{~g}(50 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.44 (dichloromethane: methanol 95:5); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28-1.32(\mathrm{~m}, 28$
$\left.\mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.52\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.70\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.22(\mathrm{~s}, 12 \mathrm{H}, 2$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.31\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.34\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.35\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.37(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.40\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 71.7\left(\right.$ decyl $\left.\mathrm{CH}_{2} \mathrm{O}\right), 70.0$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.9\left(\mathrm{OCH}_{2} \mathrm{C}\right), 69.8\left(\mathrm{OCH}_{2} \mathrm{C}\right), 57.0\left(\mathrm{NCH}_{2}\right), 45.7\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.6(\mathrm{qC}), 32.1$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.85(\mathrm{x} 2), \quad 29.79,29.70,29.52\left(5\right.$ decyl $\left.\mathrm{CH}_{2}\right), 28.20\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 26.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; ESI MS m/z calcd for $\mathrm{C}_{35} \mathrm{H}_{75} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H}) 587.5712$, found 587.5742.

6,6-Bis(dodecyloxymethyl)- $N, N, N^{\prime}, N^{\prime}$-tetramethyl-4,8-dioxa-1,11-undecanediamine (5.3). Sodium hydride ($1.0 \mathrm{~g}, 42 \mathrm{mmol}$), 2,2-didodecyloxymethyl-1,3-propanediol (11) ($2.0 \mathrm{~g}, 4.2 \mathrm{mmol}$), and 3-chloro- N, N-dimethyl-1-propanamine hydrochloride $(2.60 \mathrm{~g}, 16.9 \mathrm{mmol})$ was reacted together as above. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ under N_{2} for another 36 h , then quenched with methanol, and filtered and worked up as above to give $\mathbf{5 . 3}$ as a light brown liquid: yield $1.4 \mathrm{~g}(51 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.5 (dichloromethane: methanol 97:5); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.24-1.38 (m, $36 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.52 (pentet, $4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 1.72 (pentet, $4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.32\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5, \mathrm{NCH}_{2}\right), 3.35\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.36($ $\left.\mathrm{s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.37\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 71.6$ (dodecyl $\left.\mathrm{CH}_{2} \mathrm{O}\right), 69.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.72\left(\mathrm{OCH}_{2} \mathrm{C}\right), 69.67\left(\mathrm{OCH}_{2} \mathrm{C}\right), 56.9\left(\mathrm{NCH}_{2}\right), 45.5\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.5$ (qC), $31.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 29.75-29.65(5 \mathrm{C}), 29.56,29.38\left(7\right.$ dodecyl $\left.\mathrm{CH}_{2}\right), 28.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{83} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 643.6347, found 643.6331.

$N, N, N^{\prime}, N^{\prime}$-Tetramethyl-4,8-dioxa-6,6-bis(tetradecyloxymethyl)-1,11-undecanediamine (5.4).

Sodium hydride ($2.2 \mathrm{~g}, 95 \mathrm{mmol}$), 2,2-tetradecyloxymethyl-1,3-propanediol (12) ($5.0 \mathrm{~g}, 9.4 \mathrm{mmol}$), and 3-chloro- N, N-dimethyl-1-propanamine hydrochloride ($5.98 \mathrm{~g}, 37.9 \mathrm{mmol}$) were reacted as for compound $\mathbf{5 . 3}$ and worked up as previously to give compound $\mathbf{5 . 4}$ as a light brown liquid: yield 2.2 g
$(35 \%) ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.50 (dichloromethane: methanol 97:5); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}$ $\left.=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.34\left(\mathrm{~m}, 44 \mathrm{H}, 22 \times \mathrm{CH}_{2}\right), 1.52\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.71(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.5, \mathrm{NCH}_{2}\right), 3.34(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.35\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.36\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.41\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 71.7 (tetradecyl CH2 O), $70.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $69.9\left(\mathrm{OCH}_{2} \mathrm{C}\right)$, $69.8\left(\mathrm{OCH}_{2} \mathrm{C}\right)$, $57.0\left(\mathrm{NCH}_{2}\right), 45.7$ $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, 44.8(\mathrm{qC}), 32.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 29.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 29.72,29.53,28.14,26.4\left(\right.$ decyl $\left.\mathrm{CH}_{2}\right), 22.9$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{91} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})$ 699.6973, found 699.6986 .

$N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexamethyl-6,6-bis(octyloxymethyl)-4,8-dioxa-1,11-undecanediammonium

diiodide (5.5). Methyl iodide ($1.6 \mathrm{~g}, 11 \mathrm{mmol}$) was added to a stirred solution of amine $\mathbf{5 . 1}(0.6 \mathrm{~g}, 1.1$ mmol) in THF (50 mL) and the reaction mixture was stirred for 36 h , then allowed to cool to rt. The reaction mixture was concentrated and the residue was purified by flash chromatography using as eluant a gradient of 10 to 15% methanol in dichloromethane to give the title salt as an off-white solid: yield 0.7 g (68%); mp 212-215 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.4$ on basic alumina (8% methanol in dichloromethane); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.25-1.37\left(\mathrm{~m}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 1.49(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=6.5$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.96\left(4 \mathrm{H}, \mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.11\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.31(\mathrm{~s}$, 4 H, octy $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.36\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.38(4 \mathrm{H}, \mathrm{BB}$ ' part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern, $\left.\mathrm{NCH}_{2}\right), 3.42\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 70.7\left(\right.$ octyl $\left.\mathrm{CH}_{2} \mathrm{O}\right), 69.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 68.8\left(\mathrm{OCH}_{2} \mathrm{C}\right), 67.7\left(\mathrm{OCH}_{2} \mathrm{C}\right), 63.3\left(\mathrm{NCH}_{2}\right), 52.3\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 45.0(\mathrm{qC}), 31.1$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 28.74,28.65,25.63($ decyl CH 2$), 23.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{72} \mathrm{IN}_{2} \mathrm{O}_{4}$ (M-I) 687.4531, found 687.4522.

6,6-Bis(decyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-4,8-dioxa-1,11-undecanediammmonium
diiodide (5.6). Methyl iodide ($1.3 \mathrm{~g}, 9.5 \mathrm{mmol}$) was added to a stirred solution of amine $5.2(0.7 \mathrm{~g}, 1.2$ $\mathrm{mmol})$ in THF (70 mL) and the reaction mixture was stirred for 36 h , then allowed to cool to rt. The reaction mixture was concentrated and the residue was purified by flash chromatography using as
eluant a gradient of 10 to 15% methanol in dichloromethane to give 1.5 .10 as an off-white solid: yield $0.7 \mathrm{~g}(68 \%) ; \mathrm{mp} 219-222{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.5$ on basic alumina (7% methanol in dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.35\left(\mathrm{~m}, 28 \mathrm{H}, 14 \times \mathrm{CH}_{2}\right), 1.50(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.31(\mathrm{~s}, 4 \mathrm{H}, \operatorname{decylOCH} 2 \mathrm{C}), 3.36\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.41$ $\left(\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.48\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.60\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 71.8\left(\right.$ decyl $\left.\mathrm{CH}_{2} \mathrm{O}\right), 70.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.3\left(\mathrm{OCH}_{2} \mathrm{C}\right), 67.8\left(\mathrm{OCH}_{2} \mathrm{C}\right), 65.2$ $\left(\mathrm{NCH}_{2}\right), 54.2\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 45.6(\mathrm{q}, \mathrm{C}), 32.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 29.87,29.81,29.72,28.51,26.4($ decyl CH 2$)$, $24.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right) ;$ HR ESI MS m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{80} \mathrm{IN}_{2} \mathrm{O}_{4}$ (M-I) 743.5157, found 743.5130.

6,6-Bis(dodecyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-4,8-dioxa-1,11-undecanediammmonium
diiodide (5.7). Methyl iodide ($1.5 \mathrm{~g}, 11 \mathrm{mmol}$) was added to a stirred solution of amine $5.3(0.70 \mathrm{~g}$, $1.1 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ and the reaction mixture was stirred for 36 h , then allowed to cool to rt . The reaction mixture was concentrated and the residue was purified by flash chromatography using as eluant a gradient of 10 to 15% methanol in dichloromethane .to give compound $\mathbf{5 . 7}$ as an off-white solid: yield $0.82 \mathrm{~g}(82 \%) ; \mathrm{mp} 230-234{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.58$ on basic alumina (7% methanol in dichloromethane $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24-1.35\left(\mathrm{~m}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right)$, $1.51\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.10\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.31(\mathrm{~s}, 4 \mathrm{H}, \operatorname{decylOCH} 2 \mathrm{C}), 3.35(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}$ $\left.=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.40\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.48\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.60\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right)$, $3.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 71.8\left(\right.$ dodecyl $\left.\mathrm{CH}_{2} \mathrm{O}\right), 70.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 69.4$ $\left(\mathrm{OCH}_{2} \mathrm{C}\right), 67.9\left(\mathrm{OCH}_{2} \mathrm{C}\right), 65.3\left(\mathrm{NCH}_{2}\right), 54.3\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}\right), 45.7(\mathrm{qC}), 32.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 29.89,29.74$, 29.54, 26.4 (decyl CH_{2}), $24.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $22.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{88} \mathrm{IN}_{2} \mathrm{O}_{4}$ (M-I) 799.5783, found 799.5815.
$N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-Hexamethyl-4,8-dioxa-6,6-bis(tetradecyloxymethyl)-1,11-
undecanediammmonium diiodide (5.8). Methyl iodide ($3.1 \mathrm{~g}, 22 \mathrm{mmol}$) was added to a stirred
solution of amine $5.4(1.50 \mathrm{~g}, 2.23 \mathrm{mmol})$ in THF (100 mL) and the reaction mixture was stirred for 36 h then allowed to cool to rt . The reaction mixture was concentrated and the solid residue was crystallized from dichloromethane to give pure 5.8 as a shiny white solid: yield $1.5 \mathrm{~g}(70 \%)$; mp 222 $225{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}} 0.6$ on basic alumina (7% methanol in dichloromethane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}$ $\left.=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.37\left(\mathrm{~m}, 44 \mathrm{H}, 22 \mathrm{xCH}_{2}\right), 1.51\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.09(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.31(\mathrm{~s}, 4 \mathrm{H}, \operatorname{decylOCH} 2 \mathrm{C}), 3.35\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.41\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}\right), 3.48$ $\left(\mathrm{s}, 18 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.61\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 71.8$ (tetradecyl $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, $70.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $69.4\left(\mathrm{OCH}_{2} \mathrm{C}\right), 67.8\left(\mathrm{OCH}_{2} \mathrm{C}\right), 65.2\left(\mathrm{NCH}_{2}\right), 54.2$ $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right), 45.7(\mathrm{qC}), 32.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 29.87,29.72,29.51$, 26.4 (tetradecyl $\left.\mathrm{CH}_{2}\right), 24.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $22.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{96} \mathrm{~N}_{2} \mathrm{O}_{4}$ (M-I) 855.6409, found 855.6432. 2,2-Bis(decyloxymethyl)-7-dimethylamino-4-oxa-1-heptanol (5.9). Sodium hydride (0.57 g, 24.0 $\mathrm{mmol})$ was added slowly to a stirred solution of 2,2-didecyloxymethyl-1,3-propanediol (10) (1.0 g, 2.4 $\mathrm{mmol})$ in DMF $(100 \mathrm{~mL})$ under an N_{2} atmosphere at $50^{\circ} \mathrm{C}$. The mixture was then stirred at $80^{\circ} \mathrm{C}$ for 1 h. The reaction mixture was cooled to rt and 3-(dimethylamino) propyl chloride hydrochloride (1.89 g , 12 mmol) was added in portions. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for another 12 h , then quenched with methanol. The mixture was filtered, concentrated and the residue was taken up in ethyl acetate (50 mL). This solution was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to a residue that was purified by flash column chromatography. Elution using a gradient of 3 to $5 \% \mathrm{MeOH}$ in dichloromethane gave 5.9 as a light brown liquid: yield 0.56 g (40\%); R_{F} on basic alumina 0.55 (dichloromethane: methanol 96: 4); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 6 \mathrm{H}$, $\left.\mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28-1.32\left(\mathrm{~m}, 28 \mathrm{H}, 14 \mathrm{xCH}_{2}\right), 1.52\left(\mathrm{p}, 4 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 1.71(\mathrm{p}, 2 \mathrm{H}, \mathrm{J}=$ $\left.6.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.33\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.38(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.42\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.44\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 71.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 67.0\left(\mathrm{OCH}_{2} \mathrm{C}\right), 66.3\left(\mathrm{OCH}_{2} \mathrm{C}\right), 62.8\left(\mathrm{HOCH}_{2} \mathrm{C}\right), 56.9$
$\left(\mathrm{NCH}_{2}\right), 45.5\left(\mathrm{NCH}_{3}\right), 44.9(\mathrm{qC}), 31.9\left(\mathrm{OCH}_{2}\right), 29.66,29.61,29.50,29.36,27.8,26.2($ decyl CH 2$)$, $22.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

General procedure for reaction with ethyl bromoacetate: diethyl 3,13-diazonia-3,3,13,13-tetramethyl-8,8-bis(octyloxymethyl)-6,10-dioxa-pentadecanedioate dibromide (6.1). When a solution of compound $4.1(0.61 \mathrm{~g}, 1.21 \mathrm{mmol})$ and ethyl bromoacetate ($0.31 \mathrm{~mL}, 2.79 \mathrm{mmol}, 2.3 \mathrm{eq}$) in diethyl ether (20 mL) was stirred for 26 h , a colorless solid formed that was isolated by filtration, then washed with ether. The solid was crystallized from ethyl acetate and methanol to give the title compound as a colorless crystalline solid: yield $0.88 \mathrm{~g}, 84 \% ; \mathrm{mp} 110-111{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.59 (butanol: water: methanol 20: 5:2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.27$ (brs, 20H, $\left.10 \times \mathrm{CH}_{2}\right), 1.32(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.50\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.28(\mathrm{~s}, 4 \mathrm{H}$, octyl $\mathrm{OCH}_{2} \mathrm{C}$), $3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, octyl $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.50\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.71(\mathrm{~s}, 12 \mathrm{H}$, $\left.2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.96$ (br AA` part of AA`BB` pattern, \(\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.27(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}\), \(\mathrm{OCH}_{2} \mathrm{CH}_{3}\)), 4.32 (br BB` part of $\mathrm{AA}^{`} \mathrm{BB}^{`}$ pattern, $4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.96 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOR}$); ${ }^{13} \mathrm{C}$ NMR $\delta 164.9\left(\mathrm{CH}_{2} \mathrm{COOR}\right)$, $71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right)$, $71.1\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right)$, $69.4\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ octyl), 65.4 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 64.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 62.7\left(\mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 62.3\left(\mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 52.4\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 45.1(qC), $32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.6$, 29.5, 29.3, (octyl $\left.\mathrm{CH}_{2}\right)$, $26.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $14.12(\mathrm{Me}), 14.06\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; HR ESI MS m / z calc for $\mathrm{C}_{37} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{8} / 2((\mathrm{M}-2 \mathrm{Br}) / 2) 338.2795$, found 338.2811 .

Diethyl 3,13-diazonia-8,8-bis(decyloxymethyl)-3,3,13,13-tetramethyl-6,10-dioxapentadecane-

 dioate dibromide (6.2). A solution of compound 4.2 ($1.86 \mathrm{~g}, 3.33 \mathrm{mmol}$) and ethyl bromoacetate ($0.85 \mathrm{~mL}, 7.66 \mathrm{mmol}, 2.3 \mathrm{eq}$) in diethyl ether (35 mL) was stirred for 26 h then filtered and concentrated to give a colorless solid that was crystallized from ethyl acetate and methanol to give the title compound as a colorless crystalline solid, yield: $2.66 \mathrm{~g}, 90 \%$; mp $114-115{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.61 (butanol: water: methanol 20: 5: 2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}$), 1.27(brs, $28 \mathrm{H}, 14 \mathrm{xCH}_{2}$), $1.32\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{Me}\right.$), 1.50 (pentet, $4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 3.27 (s, 4H, decyl, $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.32\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}\right.$, decyl $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.71(\mathrm{~s}$, $\left.12 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.94$ (br AA` part of AA`BB` pattern, \(\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.27(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}\), \(\mathrm{OCH}_{2} \mathrm{CH}_{3}\)), 4.31 (br BB` part of AA`BB` pattern, $4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.96\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOR}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 165.0\left(\mathrm{CH}_{2} \mathrm{COOR}\right), 71.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.1\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.4\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ decyl $), 65.4$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 64.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 62.8\left(\mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 62.4\left(\mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 52.5\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 45.2 (qC), $32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.8,29.7$, 29.6 , $\left.29.5(\text { decylCH })_{2}\right), 26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}), 14.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; HR ESI MS m/z calc for $\mathrm{C}_{41} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{8} / 2((\mathrm{M}-2 \mathrm{Br}) / 2) 366.3108$, found 366.3112 .

Diethyl 3,13-diazonia-8,8-bis(dodecyloxymethyl)-3,3,13,13-tetramethyl-6,10-dioxapentadecane-

 dioate dibromide (6.3). A solution of compound 4.3 ($1.77 \mathrm{~g}, 2.88 \mathrm{mmol}$) and ethyl bromoacetate $(0.73 \mathrm{~mL}, 6.60 \mathrm{mmol}, 2.3 \mathrm{eq})$ in diethyl ether $(35 \mathrm{~mL})$ was treated as above to give the title compound as a colorless solid that was crystallized from ethyl acetate and methanol to give a colorless crystalline solid, yield: $2.05 \mathrm{~g}, 73 \%$; mp 119-120 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.63 (butanol: water: methanol 20: 5 : 2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26\left(\mathrm{brs}, 36 \mathrm{H}, 18 \times \mathrm{CH}_{2}\right), 1.32(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{x}$ $\mathrm{Me}), 1.51$ (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.27\left(\mathrm{~s}, 4 \mathrm{H}\right.$, dodecyl, $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.33(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}$, dodecyl, $\mathrm{OCH}_{2} \mathrm{C}$), $3.49\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.70\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.95$ (br AA` part of AA`BB` pattern, \(\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.26\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.31\) (br BB` part of AA`BB` pattern, $\left.4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.94\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOR}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 164.9\left(\mathrm{CH}_{2} \mathrm{COOR}\right), 71.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right)$, $71.1\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right)$, $69.4\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ dodecyl), $65.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $64.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $62.7\left(\mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 62.3\left(\mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 52.4\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.1(\mathrm{qC}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.5, $29.4\left(\right.$ dodecylCH 2), $26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.12(\mathrm{Me}), 14.06\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; HR ESI MS m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{92} \mathrm{~N}_{2} \mathrm{O}_{8} / 2((\mathrm{M}-2 \mathrm{Br}) / 2) 394.3421$, found 394.3424 .
Diethyl 3,13-diazonia-3,3,13,13-tetramethyl-6,10-dioxa-8,8-bis(tetradecyloxymethyl)penta-

 decanedioate dibromide (6.4). A solution of compound $4.4(0.78 \mathrm{~g}, 1.22 \mathrm{mmol})$ and ethyl bromoacetate $(0.31 \mathrm{~mL}, 2.80 \mathrm{mmol}, 2.3 \mathrm{eq})$ in diethyl ether $(25 \mathrm{~mL})$ was treated as above to give the title compound (6.4) as a colorless solid that precipitated from ethyl acetate and methanol to give a colorless amorphous solid, yield: $0.89 \mathrm{~g}, 71 \%$; mp $116-117^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.66 (butanol: water: methanol 20: $5: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26\left(\mathrm{brs}, 44 \mathrm{H}, 22 \mathrm{x} \mathrm{CH}_{2}\right), 1.32$ $(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.50\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.27\left(\mathrm{~s}, 4 \mathrm{H}\right.$, tetradecyl, $\left.\mathrm{OCH}_{2} \mathrm{C}\right)$, $3.32\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}\right.$, tetradecyl, $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.48\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.71\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.93 (br AA` part of AA`BB` pattern, \(4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\)), \(4.26\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{CH}_{3}\right), 4.30\) (br BB` part of AA`BB` pattern, $4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.95 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOR}$); ${ }^{13} \mathrm{C}$ NMR $\delta 164.9$ $\left(\mathrm{CH}_{2} \mathrm{COOR}\right), 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 71.1\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.4\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ tetradecyl), 65.4 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 64.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 62.7\left(\mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 62.4\left(\mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 52.5\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $45.1(\mathrm{qC}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.8,29.7,29.6$, 29.4 (tetradecyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.8$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2(\mathrm{Me}), 14.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ;$ HR ESI MS m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{100} \mathrm{~N}_{2} \mathrm{O}_{8} / 2((\mathrm{M}-2 \mathrm{Br}) / 2)$ 422.3734, found 422.3721.General procedure for ester hydrolysis: 3,13-Diazonia-3,3,13,13-tetramethyl-8,8-bis(octyloxymethyl)-6,10-dioxapentadecanedioate (6.5). Compound $6.1(0.44 \mathrm{~g}, 0.51 \mathrm{mmol})$ and IRA-400 anion-exchange resin $\left(\mathrm{OH}^{-}\right)(11.0 \mathrm{~g})$ in ethanol $(30 \mathrm{~mL})$ were stirred at rt for 24 h . The reaction mixture was filtered and the filtrate was concentrated to a semi-solid residue that precipitated from ethyl acetate and methanol to give the title compound as a colorless waxy mass, yield: $0.28 \mathrm{~g}, 90$ $\% ; \operatorname{mp} 183{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.37 (butanol: water: methanol 20: $5: 2$) ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}$ $=6.7 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.28-1.32\left(\right.$ brs, $\left.20 \mathrm{H}, 10 \mathrm{xCH}_{2}\right), 1.51\left(\right.$ pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.29(\mathrm{~s}$, 4 H , octyl $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}\right.$, octyl $\left.\mathrm{OCH}_{2}\right), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.39(\mathrm{~s}, 12 \mathrm{H}$, $\left.2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.82$ (br AA` part of AA`BB` pattern, \(4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\)), 3.99 (BB` part of AA`BB` pattern, $\left.4 \mathrm{H}, \quad 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.99\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}^{-}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.2\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right), 71.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right)$, $70.6\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right)$, $69.2\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ octyl), $65.46\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 65.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $62.4\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right), 52.0\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.7(\mathrm{q} \mathrm{C}), 31.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \mathrm{H}_{3}\right), 29.3$, 29.2, $29.1\left(\right.$ octyl $\left.\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.8(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})$ 619.4892, found 619.4859.

3,13-Diazonia-8,8-bis(decyloxymethyl)-3,3,13,13-tetramethyl-6,10-dioxapentadecanedioate (6.6).

 Compound $6.2(2.21 \mathrm{~g}, 2.55 \mathrm{mmol})$ and IRA-400 anion-exchange resin $\left(\mathrm{OH}^{-}\right)(11.6 \mathrm{~g})$ in ethanol (40 mL) were stirred at rt as above. The reaction mixture was filtered and concentrated to a semi-solid residue that precipitated from ethyl acetate and methanol to give the title compound as a colorless waxy solid, yield: $1.47 \mathrm{~g}, 89 \%$; $\mathrm{mp} 175^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.35 (butanol: water: methanol 20: 5 : 2); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}\right.$), 1.21-1.32 (brs, $28 \mathrm{H}, 14 \times \mathrm{CH}_{2}$, , 1.51 (pentet, $4 \mathrm{H}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.28(\mathrm{~s}, 4 \mathrm{H}$, decylOCH 2 C$), 3.33\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}, \operatorname{decyl} \mathrm{OCH}_{2}\right), 3.38(\mathrm{~s}, 12 \mathrm{H}$, $\left.2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.81$ (br AA` part of AA`BB` pattern, \(\left.4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\), \(3.95\left(\mathrm{BB}^{`}\right.\) part of $\mathrm{AA}^{`} \mathrm{BB}^{`}$ pattern, $4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $4.12\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}^{-}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 167.9$ $\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right), 71.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.8\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.3\left(\mathrm{CCH}_{2} \mathrm{Odecyl}\right), 65.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 65.5$$\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 63.1\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right), 52.1\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.1(\mathrm{q} \mathrm{C}), 32.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 29.7,29.7,29.6,29.4$ (decyl $\left.\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1(\mathrm{Me})$; HR ESI MS m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 697.5337, found 697.5304.

3,13-Diazonia-8,8-bis(dodecyloxymethyl)-3,3,13,13-tetramethyl-6,10-dioxapentadecanedioate

(6.7). Compound $6.3(1.54 \mathrm{~g}, 1.62 \mathrm{mmol})$ and IRA-400 anion-exchange resin $\left(\mathrm{OH}^{-}\right)(12.0 \mathrm{~g})$ in ethanol (50 mL) were stirred at rt as above. The reaction mixture was filtered and concentrated to semi-solid residue that was crystallized from ethyl acetate and methanol to give the title compound (6.7) as a colorless granules: yield $1.1 \mathrm{~g}, 93 \%$; mp $170-171^{\circ} \mathrm{C}$; R_{F} on basic alumina 0.33 (butanol: water: methanol 20: $5: 2$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}\right.$), 1.26 (brs, $36 \mathrm{H}, 18 \times \mathrm{CH}_{2}$), 1.51 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.28\left(\mathrm{~s}, 4 \mathrm{H}\right.$, dodecyl $\left.\mathrm{OCH}_{2} \mathrm{C}\right), 3.33(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}$, dodecyl $\left.\mathrm{OCH}_{2}\right), 3.39\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) 3.4\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.83($ br AA` part of AA`BB` pattern, \(4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\)), \(3.99\left(\mathrm{BB}^{`}\right.\) part of AA`BB` pattern, $4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.99 (s, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}^{-}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 166.3\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right), 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5\left(\mathrm{CCH}_{2} \mathrm{O}\right.$ dodecyl), $65.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 65.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 62.7\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right), 52.4\left(\mathrm{~N}^{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 45.1(\mathrm{q} \mathrm{C}), 32.0\right.$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.7, 29.6, 29.4 (dodecyl CH_{2}), $26.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 14.1 (Me); HR ESI MS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{83} \mathrm{~N}_{2} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H}) 731.6144$, found 731.6117.

3,13-Diazonia-3,3,13,13-tetramethyl-6,10-dioxa-8,8-bis(tetradecyloxymethyl)pentadecanedioate

(6.8). Compound $6.4(0.89 \mathrm{~g}, 0.88 \mathrm{mmol})$ and IRA-400 anion-exchange resin $\left(\mathrm{OH}^{-}\right)(11.2 \mathrm{~g})$ in ethanol $(30 \mathrm{~mL})$ were stirred at rt for 24 h . The reaction mixture was filtered and the filtrate was concentrated to a colorless semi-solid residue that was crystallized from ethyl acetate and methanol to give the title compound as a colorless powder: yield $0.65 \mathrm{~g}, 92 \% ; \mathrm{mp} 168^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{F}}$ on basic alumina 0.30 (butanol: water: methanol 20: $5: 2) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Me}), 1.26-1.31$ (brs, $44 \mathrm{H}, 22 \times \mathrm{CH}_{2}$), 1.50 (pentet, $\left.4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.28(\mathrm{~s}, 4 \mathrm{H}$, tetradecylOCH 2 C$), 3.33(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz}$, tetradecyl $\left.\mathrm{OCH}_{2}\right), 3.40\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.40\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 3.83$ (br AA` part of

AA`BB` pattern, $4 \mathrm{H}, 2 \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.98\left(\mathrm{BB}^{`}\right.$ part of AA`BB` pattern, $\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.10(\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}^{-}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.1\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right), 71.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}\right), 70.9\left(\mathrm{CCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 69.5$ $\left(\mathrm{CCH}_{2}\right.$ Odecyl), $65.7\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 65.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 62.9\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right), 52.4\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 45.2(\mathrm{q} \mathrm{C}), ~}^{\text {, }}\right.$ $32.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 29.9, 29.8, 29.7, 29.5 (tetradecyl $\left.\mathrm{CH}_{2}\right)$, $26.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $22.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 14.2 (Me); HR ESI MS m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{90} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 809.6589, found 809.6567.
500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 5,5'-bis(octyloxymethyl)-2-phenyl-1,3-dioxane (5) in CDCl_{3}

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5,5'-bis(octyloxymethyl)-2-phenyl-1,3dioxane (5) in chloroform- d

125.7 MHz ${ }^{13}$ CNMR spectrum of 5,5'-bis(octyloxymethyl)-2-phenyl-1,3-dioxane (5)
in chloroform- d

\%	¢®®入
$\dot{\sim}$	$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$
	$1 / 1$

$\begin{array}{lllllllllll}130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}$
Expansions of parts of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 5,5'-bis(octyloxymethyl)-2-phenyl-1,3dioxane (5) in CDCl_{3}

$72 \quad 71$ ppm

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5,5'-bis(decyloxymethyl)-2-phenyl-1,3-dioxane (6) in chloroform- d

Expansions of parts of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5,5'-bis(decyloxymethyl)-2-phenyl-1,3dioxane (6) in CDCl_{3}

125.7 MHz ${ }^{13}$ CNMR spectrum of 5,5'-bis(decyloxymethyl)-2-phenyl-1,3-dioxane (6) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 5,5'-bis(decyloxymethyl)-2-phenyl-1,3dioxane (6) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5,5 '-bis(dodecyloxymethyl)-2-phenyl-1,3-dioxane (7)

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 5,5'-bis(dodecyloxymethyl)-2-phenyl-1,3dioxane (7) in chloroform- d

$125.7 \mathrm{MHz}^{13} \mathrm{CNMR}$ spectrum of 5,5'-bis(dodecyloxymethyl)-2-phenyl-1,3-dioxane (7) in chloroformd

\bigcirc	® $7 \stackrel{\infty}{\sim}$
$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$
	11

$$
\begin{gathered}
\infty \\
\infty \\
\stackrel{-}{-} \\
\stackrel{-}{1} \\
\mid
\end{gathered}
$$

Exapansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{CNMR}$ spectrum of 5,5'-bis(dodecyloxymethyl)-2-phenyl-1,3dioxane (7) in chloroform- d

500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 2-phenyl-5,5'-bis(tetradecyloxymethyl)-1,3-dioxane (8) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2-phenyl-5,5'-bis(tetradecyloxymethyl)-1,3dioxane (8) in chloroform- d

The $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2-phenyl-5,5'-bis(tetradecyloxymethyl)-1,3-dioxane ($\mathbf{8}$) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2-phenyl-5,5'-bis(tetradecyloxymethyl)-1,3dioxane (8) in CDCl_{3}

500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(octyloxymethyl)-1,3-propanediol (9) in chloroform-d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(octyloxymethyl)-1,3-propanediol (9) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2, 2'-bis(octyloxymethyl)-1,3-propanediol (9) in chloroform- d
 $\stackrel{\rightharpoonup}{\stackrel{1}{\infty}}$

.	

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(octyloxymethyl)-1,3-propanediol (9) in CDCl_{3}

$500.1 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of $2,2^{\prime}$-bis(decyoxymethyl)-1,3-propanediol (10) in chloroform-d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(decyoxymethyl)-1,3-propanediol (10) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(decyoxymethyl)-1,3-propanediol (10) in chloroform- d

$\llcorner 6$	7
$\checkmark-$	\not
$m \sim$	ค
「	6

$\begin{aligned} & 9 \\ & b \\ & \dot{7} \\ & 7\end{aligned}$
1

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(decyoxymethyl)-1,3-propanediol (10) in chloroform- d

500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(dodecyoxymethyl)-1,3-propanediol (11) in chloroform-d

Expansion of part of the $500.1 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(dodecyoxymethyl)-1,3-propanediol (11) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(dodecyoxymethyl)-1,3-propanediol (11) in chloroform-d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(dodecyoxymethyl)-1,3-propanediol (11) in chloroform- d

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(tetradecyloxymethyl)-1,3-propanediol(12) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(dodecyoxymethyl)-1,3-propanediol (12) in CDCl_{3}

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(tetradecyloxymethyl)-1,3propanediol (12) in chloroform- d

500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 1,3-diiodo-2,2'-bis(octyloxymethyl)propane (13) in chloroform-d

$125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 1,3-diiodo-2,2'-bis(octyloxymethyl)propane (13) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 1,3-diiodo-2,2'-bis(octyloxymethyl)propane (13) in CDCl_{3}

500.1 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(decyloxymethyl)-1,3-diiodopropane (14) in chloroform- d

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(decyloxymethyl)-1,3-diiodopropane (14) in chloroform-d

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(decyloxymethyl)-1,3-diiodopropane (14) in CDCl_{3}

500.1 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2'-bis(dodecyloxymethyl)-1,3-diiodopropane (15) in chloroform-d

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(dodecyloxymethyl)-1,3-diiodopropane (15) in chloroform-d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2,2'-bis(dodecyloxymethyl)-1,3diiodopropane (15) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-diiodo-2,2'-bis(tetradecyloxymethyl)propane (16) in chloroformd

125.75 MHz ${ }^{13}$ C NMR spectrum of 1,3-diiodo-2,2'-bis(tetradecyloxymethyl)propane (16) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 1,3-diiodo-2,2'bis(tetradecyloxymethyl)propane (16) in CDCl_{3}

500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N N^{\prime}, N$-tetramethyl-2,2-bis(octyloxymethyl)-1,3-
propanediaminium dichloride (1.5) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N N^{\prime}, N^{1}$-tetramethyl-2,2-
bis(octyloxymethyl)-1,3-propanediaminium dichloride(1.5) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of N, N, N, N^{\prime}-tetramethyl-2,2-bis(octyloxymethyl)-1,3-
propanediaminium dichloride (1.5) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of N, N, N ',N^{\prime}-tetramethyl-2,2-bis(octyloxymethyl)-1,3-propanediaminium dichloride (1.5) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(decyloxymethyl)-1,3-
propanediaminium dichloride (1.6) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of N, N, N, N^{\prime}-tetramethyl-2,2-bis(decyloxymethyl)-1,3-propanediaminium dichloride (1.6) in CDCl_{3}

$\begin{aligned} & { }_{\infty}^{+1} \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	+	$\begin{gathered} -1 \\ \infty \\ \text { ob } \\ \forall \end{gathered}$	
$\dot{m} \dot{m}$	\dot{m}	$\dot{m} \dot{m} \dot{m}$	$\dot{\sim} \dot{\sim}$
11		111	1

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(decyloxymethyl)-1,3propanediaminium dichloride (1.6) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of N, N, N ', N^{\prime}-tetramethyl-2,2-bis(decyloxymethyl)-1,3-propanediaminium dichloride (1.6) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(dodecyloxymethyl)-1,3propanediaminium dichloride (1.7) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of N, N, N, N^{\prime}-tetramethyl-2,2-bis(dodecyloxymethyl)-1,3-propanediaminium dichloride (1.7) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C} \quad$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(dodecyloxymethyl)-1,3propanediaminium dichloride (1.7) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of N, N, N ',N^{\prime}-tetramethyl-2,2-bis(dodecyloxymethyl)-1,3-propanediaminium dichloride (1.7) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(tetradecyloxymethyl)-1,3propanediaminium dichloride (1.8) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of N, N, N, N^{\prime}-tetramethyl-2,2-
bis(tetradecyloxymethyl)-1,3-propanediaminium dichloride (1.8) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N^{\prime}, N^{\prime}$-tetramethyl-2,2-bis(tetradecyloxymethyl)-1,3propanediaminium dichloride (1.8) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of N, N, N ', N^{\prime}-tetramethyl-2,2-bis(tetradecyloxymethyl)-1,3-propanediaminium dichloride (1.8) in CDCl_{3}

$500.1 \mathrm{MHz} \quad{ }^{1} \mathrm{H} \quad$ NMR spectrum of $\quad N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(octyloxymethyl)-1,3propanediammonium diiodide (1.9) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(octyloxymethyl)-1,3-propanediammonium diiodide (1.9) in chloroform- d

125.7 MHz ${ }^{13} \mathrm{C} \quad$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(octyloxymethyl)-1,3propanediammonium diiodide (1.9) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(octyloxymethyl)-1,3-propanediammonium diiodide (1.9) in CDCl_{3}

$500.1 \mathrm{MHz} \quad{ }^{1} \mathrm{H} \quad$ NMR spectrum of 2,2-bis(decyloxymethyl)- $N, N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3propanediammonium diiodide (1.10) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(decyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}-$ hexamethyl-1,3-propanediammonium diiodide (1.10) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(decyloxymethyl)- $N, N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3propanediammonium diiodide (1.10) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of bis(decyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}-$ hexamethyl-2,2-1,3-propanediammonium diiodide (1.10) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)- $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3propanediammonium diiodide (1.11) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}-$ hexamethyl-1,3-propanediammonium diiodide (1.11) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-1,3propanediammonium diiodide (1.11) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)- $N, N, N, N N^{\prime}, N^{\prime}, N^{\prime}-$ hexamethyl-1,3-propanediammonium diiodide (1.11) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(tetradecyloxymethyl)-1,3propanediammonium diiodide (1.12) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(tetradecyloxymethyl)-1,3-propanediammonium diiodide (1.12) in chloroform- d

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(tetradecyloxymethyl)-1,3propanediammonium diiodide (1.12) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of $N, N, N, N^{\prime}, N^{\prime}, N^{\prime}$-hexamethyl-2,2-bis(tertradecyloxymethyl)-1,3-propanediammonium diiodide (1.12) in chloroform- d
$\left.\right|^{\circ}$

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(octyloxymethyl)propane dihydrochloride (1.17) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2bis(octyloxymethyl)propane dihydrochloride (1.17) in CDCl_{3}

125.7 MHz ${ }^{13}$ C NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(octyloxymethyl)propane dihydrochloride (1.17) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2bis(octyloxymethyl)propane dihydrochloride (1.17) in CDCl_{3}

500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(decyloxymethyl)propane dihydrochloride (1.18) in CDCl_{3}

Expansion of part of the $500.1 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2bis(decyloxymethyl)propane dihydrochloride (1.18) in CDCl_{3}

125.7 MHz ${ }^{13}$ C NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(decyloxymethyl)propane dihydrochloride (1.18) in CDCl_{3}

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{CNMR}$ spectrum of 1,3-bis(1-azacyclopentyl)-2,2bis(decyloxymethyl)propane dihydrochloride (1.18) in CDCl_{3}

500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(dodecyloxymethyl)propane dihydrochloride (1.19) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2bis(dodecyloxymethyl)propane dihydrochloride (1.19) in CDCl_{3}

125.7 MHz ${ }^{13}$ C NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(dodecyloxymethyl)propane dihydrochloride (1.19) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2bis(dodecyloxymethyl)propane dihydrochloride (1.19) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(tetradecyloxymethyl)propane dihydrochloride (1.20) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2bis(tetradecyloxymethyl)propane dihydrochloride (1.20) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2-bis(tetradecyloxymethyl)propane dihydrochloride (1.20) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-azacyclopentyl)-2,2bis(tetradecyloxymethyl)propane dihydrochloride (1.20) in CDCl_{3}

500.1 MHz ${ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2
bis(octyloxymethyl)propane diiodide (1.21) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2 bis(octyloxymethyl) propane diiodide (1.21) in CDCl_{3}

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2
bis(octyloxymethyl)propane diiodide (1.21) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(1-methyl-1-azoniacyclopentyl)-2,2 bis(octyloxymethyl)propane diiodide (1.21) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(decyloxymethyl)-1,3-bis(1-methyl-1-azoniacyclopentyl)propane diiodide (1.22) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(decyloxymethyl)-1,3-bis(1-methyl-1-azoniacyclopentyl)propane diiodide (1.22) in CDCl_{3}

125.7 MHz ${ }^{13}$ C NMR spectrum of 2,2-bis(decyloxymethyl)-1,3-bis(1-methyl-1-azoniacyclopentyl)propane diiodide (1.22) in chloroform- d

\circ
$\stackrel{O}{N}$
$\dot{\sim}$
$\stackrel{1}{1}$

Expansion of part of the $125.7 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 2,2 bis(decyloxymethyl)-1,3-bis(1-methyl-1-azoniacyclopentyl)propane diiodide (1.22) in CDCl_{3}

$500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)-1,3-bis(1-methyl-1-
azoniacyclopentyl)propane diiodide (1.23) in chloroform- d

Expansion of part of the $500.1 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)-1,3-bis(1-methyl-1-azoniacyclopentyl)propane diiodide (1.23) in chloroform- d

125.7 MHz ${ }^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)-1,3-bis(1-methyl-1azoniacyclopentyl)propane diiodide (1.23) in chloroform- d

Expansion of part of the $125.7 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 2,2-bis(dodecyloxymethyl)-1,3-bis(1-methyl-1-azoniacyclopentyl)propane diiodide (1.23) in CDCl_{3}

