## Supporting Information

## Heptosides from Galactose based Oxepanes via Stereoselective Addition Reactions

Rhys Batchelor, $\dagger$ Joanne E. Harvey, $\dagger$ Peter T. Northcote,$\dagger$ Paul Teesdale-Spittle $\dagger$ and John O. Hoberg*

School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand and Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071
hoberg@uwyo.edu
Page \#:
2: General
3-8: Experimental for compounds 3.3, 3.4, 3.5, 3.9, 3.10. 3.11, 3.12 and 3.13
9-39: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $2,3.1 \mathbf{- 3 . 1 3}$

General. General: All reagents were of commercial quality and solvents were dried using standard procedures. Standard syring techniques were used and all reactions were carried out under argon unless otherwise noted. Reaction progress was monitored using aluminium backed TLC plates pre-coated with silica UV254 and visualised by either UV radiation ( 254 nm ) or ceric ammonium molybdate dip. Flash chromatography was performed using silica gel $60(220-240$ mesh $)$ with the solvent systems as indicated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova at 300 and 75 MHz , respectively; and referenced to solvent peaks ( ${ }^{1} \mathrm{H}$ - residual $\mathrm{CHCl}_{3} ;{ }^{13} \mathrm{C}-\mathrm{CDCl}_{3}$ ). Accurate masses were recorded on a Mariner time of flight spectrometer. Splitting patterns are designated as s , singlet; d , doublet; t , triplet; q , quarted; m , multiplet; b , broad and coupling constant are reported in hertz.

## Deprotection of 3.1 to give 3.3.


3.3

To a solution of dibromide $3.1(32 \mathrm{mg}, 0.057 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at ambient temperature was added TBAF ( 1 M in hexanes, $171 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 3 \mathrm{eq}$ ) and the reaction stirred for 2 h . The resulting mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic phase was dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Flash chromatography on silica with $9: 1$ hexanes: ethyl acetate gave 14 mg of $\mathbf{3 . 3}$ as a colorless oil $(58 \%) .{ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}=4.51(\mathrm{dt}, J=11.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4,43(\mathrm{t}, J=1.7$ Hz, 1H, H-5), 4.34 ( dd, $J=10.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ ), 4.25 (dd, $J=10.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, $4.18\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Me}\right), 3.84(\mathrm{td}, J=4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.78$ (dd, $J=11.7$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 3.71$ (dd, $J=11.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$ ), 2.50 (ddd, $J=15,3.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-2), 2.23 (ddd, $J=15.1,12.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), 1.28 (t, J7.1 Hz, 3H, H-Et-me), 1.18, (s, $3 \mathrm{H}, \mathrm{H}-9), 1.159 \mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}=177.2(\mathrm{C}-11), 78.9(\mathrm{C}-1), 76.0(\mathrm{C}-5), 74.9$ (C-6), 65.4 (C-7), 63.5 (C-4), $61.2\left(-\mathrm{OCH}_{2} \mathrm{Me}\right), 53.7$ (C-3), 47.8 (C-8), 39.7 (C-2), 22.4 (C-9), $18.8(\mathrm{C}-10), 14.1\left(-\mathrm{OCH}_{2} \underline{\text { Me }}\right)$. IR (neat): $3440,2930,2860,1718 \mathrm{~cm}^{-1}$.
(1R,7R)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-( $t$-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-6(S)-bromo-5(R)-undecanol (3.4).

3.4

To a solution of oxepine $\mathbf{2}(103 \mathrm{mg}, 0.258 \mathrm{mmol})$ in a mixture of 1:1 THF: $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ at ambient temperature was added NBS ( $55 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.2 \mathrm{eq}$ ) with vigorous stirring. After $1 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the mixture stirred an additional five minutes. The resulting mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The organic phase was dried over $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Flash chromatography on silica with 9:1 hexanes:EtOAc gave 99 mg of a colorless oil (77\%) as a $5: 1$ mixture of isomers. ${ }^{1} \mathrm{H}$ NMR major isomer: $\delta_{\mathrm{H}}=4.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 4.25-4.0(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-4$, $\left.\mathrm{H}-7,-\mathrm{OCH}_{2} \mathrm{Me}\right), 3.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6), 2.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.18$ (dd, $J=15.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 2), $1.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.25\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right), 1.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-9), 1.15(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}-10), 1.07(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.05(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}=176.1(\mathrm{C}-8), 77.7(\mathrm{C}-1), 74.5$ (C-5), 71.3 (C-6), 70.7 (C-7), 69.8 (C-3), 67.6 (C-4), $60.7\left(-\mathrm{OCH}_{2} \mathrm{Me}\right), 48.0(\mathrm{C}-8), 33.2$ $(\mathrm{C}-2), 27.6(t \mathrm{Bu}), 27.5(t \mathrm{Bu}), 21.8(\mathrm{C}-9), 21.5(\mathrm{C}-10), 20.7(\mathrm{Si}-\mathrm{C}), 14.1\left(-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right)$. IR (neat): $3446,2859,1718 \mathrm{~cm}^{-1}$.
(1R,7R)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-( $t$-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-6(S)-bromo-5-(R)-O-acetyl-undecanol (3.5).

3.5

Bromohydrin 3.4 was acetylated using the general procedure (see manuscript) to give $\mathbf{3 . 5}$ as a clear oil in an $85 \%$ yield. ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}=5.14(\mathrm{td}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.53(\mathrm{~d}$, $1 \mathrm{H}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.2-4.0\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-4, \mathrm{H}-7,-\mathrm{OCH}_{2} \mathrm{Me}\right), 3.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-6)$, 2.09 (s, 3H, Ac), 1.96 (m, 2H, H-2), 1.24 (t, $\left.3 \mathrm{H}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right), 1.15$ (s, 3 H ,
$\mathrm{H}-9), 1.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 1.06(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}=176.0(\mathrm{C}-11), 169.6(\mathrm{Ac})$, 78.0 (C-1), 74.3 (C-5), 72.1 (C-3), $70.5(\mathrm{C}-7), 60.8\left(-\mathrm{OCH}_{2} \mathrm{Me}\right), 58.7(\mathrm{C}-4), 47.8(\mathrm{C}-8)$, 33.3 (C-2), $27.6(t \mathrm{Bu}), 23.7$ (Si-C), 21.7 (C-9), $21.0(\mathrm{C}-10), 20.7(\mathrm{Ac}), 14.1\left(-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right)$. IR (neat): 2935, 2860, 2254, 1725, 1474, 1387, 1366, 1237, 1157, $1126 \mathrm{~cm}^{-1}$. HRMS $m / z$ : calculated for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{BrSi}+\mathrm{Na}=559.1703$. Found 559.1710.
(1R,7R)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-( $t$-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-5(R),6(R)-di-undecanol (3.9).


To a solution of oxepine 2 in a $1: 1$ mix of $\mathrm{Et}_{2} \mathrm{O}: \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ at ambient temperature was added a $2.5 \%$ solution of $\mathrm{OsO}_{4}$ in water ( $126 \mu \mathrm{~L}, 3.2 \mathrm{mg}, 0.026 \mathrm{mmol}, 5 \%$ ) and NMO ( $118 \mathrm{mg}, 0.27 \mathrm{mmol}, 1.1 \mathrm{eq}$ ). After 1 h , the mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and dried over $\mathrm{MgSO}_{4}$. Concentration in vacuo followed by flash chromatography on silica in 9:1 hexanes:EtOAc gave 64 mg of a colorless oil (59\%). ${ }^{1}{ }^{H}$ NMR: $\delta_{H}=4.15-3.95\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-7,-\mathrm{OCH}_{2} \mathrm{Me}\right), 3.80(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-6), 2.7$ (bs, 2H, OH), 2.34 (q, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 1.51$ (dd, $J=14.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{~b}), 1.19\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right), 1.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-9), 1.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 0.96(\mathrm{~s}$, $9 \mathrm{H}, t \mathrm{Bu}), 0.95(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}=176.6(\mathrm{C}-8), 78.3(\mathrm{C}-1), 75.5(\mathrm{C}-3), 75.0(\mathrm{C}-$ 4), 70.1 (C-7), $70.0(\mathrm{C}-5), 68.2(\mathrm{C}-6), 60.7\left(-\mathrm{OCH}_{2} \mathrm{Me}\right), 47.9(\mathrm{C}-8), 28.3(\mathrm{C}-2), 27.6$ $(t \mathrm{Bu}), 27.5(t \mathrm{Bu}), 21.9(\mathrm{C}-9), 21.2(\mathrm{C}-10), 20.7(\mathrm{Si}-\mathrm{C}), 14.1\left(-\mathrm{OCH}_{2}\right.$ Me). IR (neat): 3433, 2933, 2859, 1713, 1473, 1387, 1364, 1262, 1131, 1081, 1022, 930, 910, 825, 756, 738 $\mathrm{cm}^{-1}$.
(1R,7R)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-( $t$-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-5(R),6(R)-O-acetyl--di-undecanol (3.10).


Diol 3.9 was acetylated using the general procedure to give $\mathbf{3 . 1 0}$ in a $79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR: $\delta_{H}=5.24(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.19(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.2-4.05(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}-1, \mathrm{H}-7,-\mathrm{OCH}_{2} \mathrm{Me}$ ), 3.99 (d, J=3.7 Hz, 1H, H-5), 3.81 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6$ ), 2.49 (td, J=12.5, $10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.14(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.67(\mathrm{dd}, J=13.4,3.0 \mathrm{~Hz}, \mathrm{H}-2)$, $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Et}-\mathrm{Me}), 1.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-9), 1.17(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 1.03(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$, $1.01(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}=176.1(\mathrm{C}-11), 169.9(\mathrm{Ac}), 167.7(\mathrm{Ac}), 78.5(\mathrm{C}-1), 74.0$ (C-4), 73.5 (C-5), 70.6 (C-3), $70.4(\mathrm{C}-7), 68.6(\mathrm{C}-6), 60.7\left(-\mathrm{OCH}_{2} \mathrm{Me}\right), 47.7(\mathrm{C}-8), 27.5$ $(t \mathrm{Bu}), 27.4(t \mathrm{Bu}), 27.0(\mathrm{C}-2), 23.5(\mathrm{Si}-\mathrm{C}), 22.4(\mathrm{Si}-\mathrm{C}), 21.5(\mathrm{C}-9), 21.2(\mathrm{C}-10), 21.1(\mathrm{Ac})$, $20.8(\mathrm{Ac}), 14.1\left(-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right)$. IR (neat): 2933, 2860, 1739, 1474, 1369, 1244, 1223, 1132, 1097, 1027, 916, 826, $731 \mathrm{~cm}^{-1}$. HRMS m/z: calculated for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{9} \mathrm{Si}+\mathrm{Na} 539.2652$. Found 539.2652.
(1R,7R)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-( $t$-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-6(S)-undecanol (3.11).


To a solution of oxepine $2(78 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added 2 M $\mathrm{BH}_{3}$-DMS complex ( $198 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$ ). After stirring 1 h at $0^{\circ} \mathrm{C}$ the reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ and stirred for 5 min . To the mixture was added $3 \mathrm{M} \mathrm{NaOH}(0.2 \mathrm{~mL})$ and $3 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}(0.2 \mathrm{~mL})$. This was warmed to ambient temperature and stirred overnight. The mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{MgSO}_{4}$. Concentration in vacuo followed by flash chromatography on silica with 9:1 hexanes:EtOAc gave 32 mg of a colorless oil (40\%) and 20 mg recovered starting material $(26 \%) .{ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}=4.2-3.95(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5$, $\left.\mathrm{H}-6, \mathrm{H}-7,-\mathrm{OCH}_{2} \mathrm{Me}\right), 3.89(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 2.05-1.8(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3)$, 1.48 (m, 1H, H-3), 1.25 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-\mathrm{Et}-\mathrm{Me}), 1.18$ (s, 3H, H-9), 1.12 (s, 3H, H10), $1.03(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.02(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}=176.7(\mathrm{C}-11), 81.7(\mathrm{C}-1), 78.6$ (C-6), 70.9 (C-5), 69.7 (C-7), 68.8 (C-4), $60.5\left(-\mathrm{OCH}_{2} \mathrm{Me}\right), 48.1$ (C-8), 28.0 (C-2), 27.5 $(t \mathrm{Bu}), 23.2(t \mathrm{Bu}), 21.7(\mathrm{C}-9), 21.4(\mathrm{C}-10), 20.9(\mathrm{Si}-\mathrm{C}), 19.3(\mathrm{Si}-\mathrm{C}), 14.1\left(-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right)$. IR (neat): $3450,2934,2859,1712,1473 \mathrm{~cm}^{-1}$.
(1R,7R)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-(tert-butyl)-2,8,10-trioxa-9silabicyclo [5.4.0]-6(S)-O-acetyl-undecanol (3.12).

3.12

Alcohol 3.11 was acetylated using the general procedure to give $\mathbf{3 . 1 2}$ in a $68 \%$ yield. ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}=4.96(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.2-4.0\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7,-\mathrm{OCH}_{2} \mathrm{Me}\right), 3.89(\mathrm{dd}$, $J=12.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.82(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$
2), $1.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 1.26\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Me}\right), 1.19(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}-9), 1.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 1.03(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}-t \mathrm{Bu}), 1.02(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}-t \mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}=176.6$ (C-11), 169.7 (C-Ac), 82.4 (C-1), 75.7 (C-5), 73.3 (C-4), 70.6 (C-7), 68.9 (C-6), 60.5 ($\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 48.0(\mathrm{C}-8), 27.6(t \mathrm{Bu}), 27.4(t \mathrm{Bu}), 25.5(\mathrm{C}-3), 22.0(\mathrm{Si}-\mathrm{C}), 21.7(\mathrm{C}-9), 21.3$ (C-10), $20.8(\mathrm{Ac}), 19.7(\mathrm{C}-2), 14.1\left(-\mathrm{OCH}_{2} \underline{\mathrm{Me}}\right)$. IR (neat): 2935, 2859, 1728, $1474 \mathrm{~cm}^{-1}$.

HRMS $m / z$ : calculated for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na} 481.2598$. Found 481.2602.
(1R,7R)-3-(12,12-dimethyl-13-ethanol)-9,9-di-(t-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]undec-5-ene (3.13).


To a solution of the oxepine $2(65 \mathrm{mg}, 0.163 \mathrm{mmol})$ in $1 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added DIBAL 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(163 \mu \mathrm{~L}, 0.163 \mathrm{mmol})$. After stirring for $2 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$ was added and the reaction warmed to ambient temperature. The mixture was poured into $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and dried over $\mathrm{MgSO}_{4}$. Concentration in vacuo followed by flash chromatography on silica in 9:1 hexanes:EtOAc gave 31 mg of the alcohol as a colorless oil (54\%) and 15 mg recovered starting material ( $23 \%$ ). ${ }^{1} \mathrm{H}$ NMR: $\delta_{\mathrm{H}}=5.87$ (tdd, $\left.J=9.0,3.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.74$ (ddd, $J=11.2,4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 4.85 (m, 1H, H-5), 4.26 (s, 2H, H-11), 4.06 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6$ ), 4.01 (dd, $J=11.5,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 3.46$ (dd, $J=56.4,9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$ ), 2.52 (ddd, $J=16.8,11.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 2.14 (qd, $J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 1.08(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.07(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 0.97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-9)$, $0.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR: $\delta_{\mathrm{C}}=132.1(\mathrm{C}-4), 128.0(\mathrm{C}-3), 86.1(\mathrm{C}-1), 75.0(\mathrm{C}-5), 72.8$ (C-7), 72.2 (C-6), 68.7 (C-11), $39.0(\mathrm{C}-8), 27.7(t \mathrm{Bu}), 27.2(t \mathrm{Bu}), 25.7(\mathrm{C}-2), 22.7(\mathrm{C}-9)$, 20.6 (C-10), 18.2 (Si-C). IR (neat): 3420, 2934, 2859, 1716, 1472, 1364, 1097, 826, 737 $\mathrm{cm}^{-1}$.




N









$\qquad$

022
 $\omega$
$\dot{\omega}$




$\qquad$

nown



22 $\qquad$





022 $\qquad$













，
$n$
$n$
n
y
n


## ，

－

001
－



21.5959
0
3
妾
21.186 $\stackrel{\omega}{\bullet}$


022

097
081
002
 021 $0 ヤ T$ ！！1．1．11，1，11




0 I・モ

$\qquad$ mavicaind



 $\qquad$ $\ldots$



09

$\stackrel{\sim}{0}$

02
$\square$
TI• $\varepsilon$






wdd 0

0 こと $\qquad$ 4 $\cdots$正 $-3$ | 007 |
| :--- |
| 1 | 1

-1
$\circ-1$
$\circ-1$
$\stackrel{\rightharpoonup}{\circ}$
$\circ$
0
002
$\stackrel{\sim}{\infty}$ 08
097
$\perp .1 .1 .1$


$$
\infty
$$


正 －


## $\stackrel{\square}{-}$ <br> 09 <br> 09

wiondiny
udd 0


