Supporting Information

Heptosides from Galactose based Oxepanes via **Stereoselective Addition Reactions**

Rhys Batchelor, † Joanne E. Harvey, † Peter T. Northcote, † Paul Teesdale-Spittle † and John O. Hoberg*

School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand and Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

hoberg@uwyo.edu

Page #:

2: General

3-8: Experimental for compounds **3.3**, **3.4**, **3.5**, **3.9**, **3.10**. **3.11**, **3.12** and **3.13** 9-39: Copies of ¹H and ¹³C NMR spectra of compounds **2**, **3.1** – **3.13**

General. General: All reagents were of commercial quality and solvents were dried using standard procedures. Standard syring techniques were used and all reactions were carried out under argon unless otherwise noted. Reaction progress was monitored using aluminium backed TLC plates pre-coated with silica UV254 and visualised by either UV radiation (254 nm) or ceric ammonium molybdate dip. Flash chromatography was performed using silica gel 60 (220-240 mesh) with the solvent systems as indicated. ¹H and ¹³C NMR spectra were recorded on a Varian Inova at 300 and 75 MHz, respectively; and referenced to solvent peaks (¹H - residual CHCl₃; ¹³C - CDCl₃). Accurate masses were recorded on a Mariner time of flight spectrometer. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quarted; m, multiplet; b, broad and coupling constant are reported in hertz.

Deprotection of 3.1 to give 3.3.

To a solution of dibromide **3.1** (32 mg, 0.057 mmol) in THF (1 mL) at ambient temperature was added TBAF (1 M in hexanes, 171 μ L, 0.17 mmol, 3 eq) and the reaction stirred for 2 h. The resulting mixture was poured into Et₂O (20 mL) and washed with H₂O (3 x 20 mL). The organic phase was dried over MgSO₄ and concentrated *in vacuo*. Flash chromatography on silica with 9:1 hexanes: ethyl acetate gave 14 mg of **3.3** as a colorless oil (58%). ¹H NMR: $\delta_{\rm H}$ = 4.51 (dt, *J*=11.0, 3.7 Hz, 1H, H-3), 4,43 (t, *J*=1.7 Hz, 1H, H-5), 4.34 (dd, *J*=10.5, 1.0 Hz, 1H, H-1), 4.25 (dd, *J*=10.7, 1.9 Hz, 1H, H-4), 4.18 (t, *J*=7.3 Hz, 2H, -O<u>CH</u>₂Me), 3.84 (td, *J*=4.1, 1.7 Hz, 1H, H-6), 3.78 (dd, *J*=11.7, 4.1 Hz, 1H, H-7), 3.71 (dd, *J*=11.7, 4.1 Hz, 1H, H-7), 2.50 (ddd, *J*=15, 3.7, 1.2 Hz, 1H, H-2), 2.23 (ddd, *J*=15.1, 12.2, 10.5 Hz, 1H, H2), 1.28 (t, J7.1 Hz, 3H, H-Et-me), 1.18, (s, 3H, H-9), 1.15 9s, 3H, H-10). ¹³C NMR: $\delta_{\rm C}$ = 177.2 (C-11), 78.9 (C-1), 76.0 (C-5), 74.9 (C-6), 65.4 (C-7), 63.5 (C-4), 61.2 (-O<u>CH</u>₂Me), 53.7 (C-3), 47.8 (C-8), 39.7 (C-2), 22.4 (C-9), 18.8 (C-10), 14.1 (-OCH₂<u>Me</u>). IR (neat): 3440, 2930, 2860, 1718 cm⁻¹.

(1*R*,7*R*)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-(*t*-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-6(*S*)-bromo-5(*R*)-undecanol (3.4).

To a solution of oxepine **2** (103 mg, 0.258 mmol) in a mixture of 1:1 THF:H₂O (2 mL) at ambient temperature was added NBS (55 mg, 0.31 mmol, 1.2 eq) with vigorous stirring. After 1 h, H₂O (2 mL) was added and the mixture stirred an additional five minutes. The resulting mixture was poured into Et₂O (20 mL) and washed with H₂O (2 x 20 mL). The organic phase was dried over MgSO₄ and concentrated *in vacuo*. Flash chromatography on silica with 9:1 hexanes:EtOAc gave 99 mg of a colorless oil (77%) as a 5:1 mixture of isomers. ¹H NMR major isomer: $\delta_{\rm H}$ = 4.50 (s, 1H, H-5), 4.25-4.0 (m, 7H, H-1, H-3, H-4, H-7, -O<u>CH₂Me</u>), 3.80 (s, 1H, H-6), 2.39 (s, 1H, OH), 2.18 (dd, *J*=15.6, 3.2 Hz, 1H, H-2), 1.25 (t, *J*=7.1 Hz, 3H, -OCH₂Me), 1.18 (s, 3H, H-9), 1.15 (s, 3H, H-10), 1.07 (s, 9H, *t*Bu), 1.05 (s, 9H, *t*Bu). ¹³C NMR: $\delta_{\rm C}$ = 176.1 (C-8), 77.7 (C-1), 74.5 (C-5), 71.3 (C-6), 70.7 (C-7), 69.8 (C-3), 67.6 (C-4), 60.7 (-O<u>CH₂Me</u>), 48.0 (C-8), 33.2 (C-2), 27.6 (*t*Bu), 27.5 (*t*Bu), 21.8 (C-9), 21.5 (C-10), 20.7 (Si-C), 14.1 (-OCH₂Me). IR (neat): 3446, 2859, 1718 cm⁻¹.

(1*R*,7*R*)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-(*t*-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-6(*S*)-bromo-5-(*R*)-O-acetyl-undecanol (3.5).

Bromohydrin **3.4** was acetylated using the general procedure (see manuscript) to give **3.5** as a clear oil in an 85% yield. ¹H NMR: $\delta_{\rm H} = 5.14$ (td, J=10.4, 1.6 Hz, 1H, H-3), 4.53 (d, 1H, J=3.3 Hz, 1H, H-5), 4.2-4.0 (m, 6H, H-1, H-4, H-7, -O<u>CH₂Me</u>), 3.80 (s, 1H, H-6), 2.09 (s, 3H, Ac), 1.96 (m, 2H, H-2), 1.24 (t, 3H, J=7.0 Hz, 3H, -OCH₂Me), 1.15 (s, 3H,

H-9), 1.12 (s, 3H, H-10), 1.06 (s, 18H, *t*Bu). ¹³C NMR: $\delta_{\rm C} = 176.0$ (C-11), 169.6 (Ac), 78.0 (C-1), 74.3 (C-5), 72.1 (C-3), 70.5 (C-7), 60.8 (-O<u>CH₂</u>Me), 58.7 (C-4), 47.8 (C-8), 33.3 (C-2), 27.6 (*t*Bu), 23.7 (Si-C), 21.7 (C-9), 21.0 (C-10), 20.7 (Ac), 14.1 (-OCH₂<u>Me</u>). IR (neat): 2935, 2860, 2254, 1725, 1474, 1387, 1366, 1237, 1157, 1126 cm⁻¹. HRMS *m/z*: calculated for C₂₃H₄₂O₇BrSi + Na = 559.1703. Found 559.1710.

(1*R*,7*R*)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-(*t*-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-5(*R*),6(*R*)-di-undecanol (3.9).

To a solution of oxepine **2** in a 1:1 mix of Et₂O:H₂O (2 mL) at ambient temperature was added a 2.5% solution of OsO₄ in water (126 μ L, 3.2 mg, 0.026 mmol, 5%) and NMO (118 mg, 0.27 mmol, 1.1 eq). After 1 h, the mixture was poured into Et₂O (20 mL), washed with H₂O (20 mL) and dried over MgSO₄. Concentration *in vacuo* followed by flash chromatography on silica in 9:1 hexanes:EtOAc gave 64 mg of a colorless oil (59%). ¹H NMR: $\delta_{\rm H}$ = 4.15-3.95 (m, 8H, H-1, H-3, H-4, H-5, H-7, -O<u>CH₂Me</u>), 3.80 (s, 1H, H-6), 2.7 (bs, 2H, OH), 2.34 (q, *J*=12.9 Hz, 1H, H-2a), 1.51 (dd, *J*=14.4, 1.3 Hz, 1H, H-2b), 1.19 (t, *J*=7.1 Hz, 3H, -OCH₂Me), 1.12 (s, 3H, H-9), 1.07 (s, 3H, H-10), 0.96 (s, 9H, *t*Bu), 0.95 (s, 9H, *t*Bu). ¹³C NMR: $\delta_{\rm C}$ = 176.6 (C-8), 78.3 (C-1), 75.5 (C-3), 75.0 (C-4), 70.1 (C-7), 70.0 (C-5), 68.2 (C-6), 60.7 (-O<u>CH₂</u>Me), 47.9 (C-8), 28.3 (C-2), 27.6 (*t*Bu), 27.5 (*t*Bu), 21.9 (C-9), 21.2 (C-10), 20.7 (Si-C), 14.1 (-OCH₂Me). IR (neat): 3433, 2933, 2859, 1713, 1473, 1387, 1364, 1262, 1131, 1081, 1022, 930, 910, 825, 756, 738 cm⁻¹.

(1*R*,7*R*)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-(*t*-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-5(*R*),6(*R*)-O-acetyl--di-undecanol (3.10).

Diol **3.9** was acetylated using the general procedure to give **3.10** in a 79% yield. ¹H NMR: $\delta_{\rm H} = 5.24$ (d, J=1.7 Hz, 1H, H-4), 5.19 (d, J=10.5 Hz, 1H, H-3), 4.2-4.05 (m, 5H, H-1, H-7, -O<u>CH</u>₂Me), 3.99 (d, J=3.7 Hz, 1H, H-5), 3.81 (s, 1H, H-6), 2.49 (td, J=12.5, 10.5 Hz, 1H, H-2), 2.14 (s, 3H, Ac), 2.02 (s, 3H, Ac), 1.67 (dd, J=13.4, 3.0 Hz, H-2), 1.27 (t, J=7.1 Hz, 3H, H-Et-Me), 1.19 (s, 3H, H-9), 1.17 (s, 3H, H-10), 1.03 (s, 9H, *t*Bu), 1.01 (s, 9H, *t*Bu). ¹³C NMR: $\delta_{\rm C} = 176.1$ (C-11), 169.9 (Ac), 167.7 (Ac), 78.5 (C-1), 74.0 (C-4), 73.5 (C-5), 70.6 (C-3), 70.4 (C-7), 68.6 (C-6), 60.7 (-O<u>CH</u>₂Me), 47.7 (C-8), 27.5 (*t*Bu), 27.4 (*t*Bu), 27.0 (C-2), 23.5 (Si-C), 22.4 (Si-C), 21.5 (C-9), 21.2 (C-10), 21.1 (Ac), 20.8 (Ac), 14.1 (-OCH₂<u>Me</u>). IR (neat): 2933, 2860, 1739, 1474, 1369, 1244, 1223, 1132, 1097, 1027, 916, 826, 731 cm⁻¹. HRMS *m/z*: calculated for C₂₃H₄₄O₉Si + Na 539.2652. Found 539.2652.

(1*R*,7*R*)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-(*t*-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]-6(*S*)-undecanol (3.11).

To a solution of oxepine **2** (78 mg, 0.20 mmol) in THF (1 mL) at 0 °C was added 2 M BH₃-DMS complex (198 μ L, 0.39 mmol). After stirring 1 h at 0 °C the reaction was quenched by the addition of H₂O (100 μ L) and stirred for 5 min. To the mixture was added 3 M NaOH (0.2 mL) and 3 M H₂O₂ (0.2 mL). This was warmed to ambient temperature and stirred overnight. The mixture was poured into Et₂O (20 mL), washed with H₂O (2 x 20 mL) and dried over MgSO₄. Concentration *in vacuo* followed by flash chromatography on silica with 9:1 hexanes:EtOAc gave 32 mg of a colorless oil (40%) and 20 mg recovered starting material (26%). ¹H NMR: $\delta_{\rm H}$ = 4.2-3.95 (m, 7H, H-4, H-5, H-6, H-7, -O<u>CH₂Me)</u>, 3.89 (dd, *J*=12.5, 4.0 Hz, 1H, H-1), 2.05-1.8 (m, 3H, H-2, H-3), 1.48 (m, 1H, H-3), 1.25 (t, *J*=7.1 Hz, 3H, H-Et-Me), 1.18 (s, 3H, H-9), 1.12 (s, 3H, H-10), 1.03 (s, 9H, *t*Bu), 1.02 (s, 9H, *t*Bu). ¹³C NMR: $\delta_{\rm C}$ = 176.7 (C-11), 81.7 (C-1), 78.6 (C-6), 70.9 (C-5), 69.7 (C-7), 68.8 (C-4), 60.5 (-O<u>CH₂Me)</u>, 48.1 (C-8), 28.0 (C-2), 27.5 (*t*Bu), 23.2 (*t*Bu), 21.7(C-9), 21.4 (C-10), 20.9 (Si-C), 19.3 (Si-C), 14.1 (-OCH₂Me). IR (neat): 3450, 2934, 2859, 1712, 1473 cm⁻¹.

(1*R*,7*R*)-3-(ethyl-2-methyl-2-propanoate)-9,9-di-(*tert*-butyl)-2,8,10-trioxa-9silabicyclo [5.4.0]-6(*S*)-O-acetyl-undecanol (3.12).

Alcohol **3.11** was acetylated using the general procedure to give **3.12** in a 68% yield. ¹H NMR: $\delta_{\rm H} = 4.96$ (t, J=3.4 Hz, 1H, H-4), 4.2-4.0 (m, 5H, H-5, H-7, -O<u>CH₂</u>Me), 3.89 (dd, J=12.5, 4.4 Hz, 1H, H-1), 3.82 (t, J=2.0 Hz, 1H, H-6), 2.08 (s, 3H, Ac), 2.00 (m, 1H, H- 2), 1.92 (m, 2H, H-3), 1.51 (m, 1H, H-2), 1.26 (t, J=7.0 Hz, 3H, -OCH₂<u>Me</u>), 1.19 (s, 3H, H-9), 1.15 (s, 3H, H-10), 1.03 (s, 9H, H-*t*Bu), 1.02 (s, 9H, H-*t*Bu). ¹³C NMR: $\delta_{\rm C}$ = 176.6 (C-11), 169.7 (C-Ac), 82.4 (C-1), 75.7 (C-5), 73.3 (C-4), 70.6 (C-7), 68.9 (C-6), 60.5 (-O<u>CH₂</u>Me), 48.0 (C-8), 27.6 (*t*Bu), 27.4 (*t*Bu), 25.5 (C-3), 22.0 (Si-C), 21.7 (C-9), 21.3 (C-10), 20.8 (Ac), 19.7 (C-2), 14.1 (-OCH₂<u>Me</u>). IR (neat): 2935, 2859, 1728, 1474 cm⁻¹. HRMS *m/z*: calculated for C₂₃H₄₂O₇Si + Na 481.2598. Found 481.2602.

(1*R*,7*R*)-3-(12,12-dimethyl-13-ethanol)-9,9-di-(*t*-butyl)-2,8,10-trioxa-9-silabicyclo [5.4.0]undec-5-ene (3.13).

To a solution of the oxepine **2** (65 mg, 0.163 mmol) in 1 mL CH₂Cl₂ at -78 °C was added DIBAL 1 M in CH₂Cl₂ (163 µL, 0.163 mmol). After stirring for 2h, H₂O (500 µL) was added and the reaction warmed to ambient temperature. The mixture was poured into Et₂O (20 mL), washed with H₂O (2 x 20 mL) and dried over MgSO₄. Concentration *in vacuo* followed by flash chromatography on silica in 9:1 hexanes:EtOAc gave 31 mg of the alcohol as a colorless oil (54%) and 15mg recovered starting material (23%). ¹H NMR: $\delta_{\rm H} = 5.87$ (tdd, *J*=9.0, 3.1, 1.2 Hz, 1H, H-3), 5.74 (ddd, *J*=11.2, 4.4, 2.6 Hz, 1H, H-4), 4.85 (m, 1H, H-5), 4.26 (s, 2H, H-11), 4.06 (s, 1H, H-6), 4.01 (dd, *J*=11.5, 1.7 Hz, 1H, H-1), 3.46 (dd, *J*=56.4, 9.0 Hz, 2H, H-7), 2.52 (ddd, *J*=16.8, 11.5, 2.7 Hz, 1H, H-2), 2.14 (qd, *J*=9.0, 2.0 Hz, 1H, H-2), 1.08 (s, 9H, *t*Bu), 1.07 (s, 9H, *t*Bu), 0.97 (s, 3H, H-9), 0.82 (s, 3H, H-10). ¹³C NMR: $\delta_{\rm C} = 132.1$ (C-4), 128.0 (C-3), 86.1 (C-1), 75.0 (C-5), 72.8 (C-7), 72.2 (C-6), 68.7 (C-11), 39.0 (C-8), 27.7 (*t*Bu), 27.2 (*t*Bu), 25.7 (C-2), 22.7 (C-9), 20.6 (C-10), 18.2 (Si-C). IR (neat): 3420, 2934, 2859, 1716, 1472, 1364, 1097, 826, 737 cm⁻¹.

andreas en en la contra d'activa de 1000 en 1000 en la contra de la contra de la contra de la contra de la cont A contra de la contra

.

.

