## Supporting Information

Synthesis, Biological Evaluation, and Structure-Activity Relationships for 5-[(E)-2-Arylethenyl]-3-isoxazolecarboxylic Acid Alkyl Ester Derivatives as Valuable Antitubercular Chemotypes.

Marco Pieroni, ${ }^{\dagger}$ Annamaria Lilienkampf, ${ }^{\dagger}$ Baojie Wan, ${ }^{\dagger}$ Yuehong Wang, ${ }^{\dagger}$ Scott G. Franzblau, ${ }^{\dagger}$ and Alan P. Kozikowski ${ }^{*}$, ${ }^{\dagger}$
${ }^{\dagger}$ Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, ${ }^{*}$ Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612

1. HPLC purity determinations for the target compounds 6-49 S2
2. Brief description of the biological assays S4
3. Activity toward other microorganisms

## 1. HPLC purity determinations for the target compounds 6-49

Method 1. Flow rate $=1.4 \mathrm{~mL} / \mathrm{min}$; gradient eluation over 20 minutes, from $30 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ to $100 \% \mathrm{CH}_{3} \mathrm{CN}$ with $0.05 \% \mathrm{TFA}$.

Method 2. Flow rate $=1.4 \mathrm{~mL} / \mathrm{min}$; gradient eluation over 20 minutes, from $10 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ to $100 \% \mathrm{CH}_{3} \mathrm{CN}$ with $0.05 \% \mathrm{TFA}$.
Method 3. Flow rate $=1.4 \mathrm{~mL} / \mathrm{min}$; gradient eluation over 20 minutes, from $50 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ to $70 \% \mathrm{CH}_{3} \mathrm{CN}$ with $0.05 \%$ TFA.

Table 1(SI). HPLC purity of the target compounds

| Compd | HPLC |  |  |  | HPLC |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Gradient <br> Method | WL <br> $(\mathrm{nM})$ | $t_{\mathrm{R}}$ <br> $(\mathrm{min})$ | Purity <br> $(\%)$ | $\mathbf{C o m p d}$ | Gradient <br> Method | WL <br> $(\mathrm{nM})$ | $t_{\mathrm{R}}$ <br> $(\mathrm{min})$ | Purity <br> $(\%)$ |
|  | 2 | 254 | 15.4 | 98.1 | $\mathbf{2 8}$ | 1 | 280 | 7.85 | 98.4 |
| $\mathbf{7}$ | 1 | 254 | 1.91 | 97.9 | $\mathbf{2 9}$ | 1 | 280 | 8.48 | 97.9 |
| $\mathbf{8}$ | 1 | 280 | 9.86 | 97.8 | $\mathbf{3 0}$ | 1 | 280 | 9.85 | 97.9 |
| $\mathbf{9}$ | 3 | 254 | 7.54 | 99.1 | $\mathbf{3 1}$ | 1 | 280 | 9.63 | 99.3 |
| $\mathbf{1 0}$ | 1 | 280 | 10.9 | 99.0 | $\mathbf{3 2}$ | 1 | 280 | 8.97 | 96.7 |
| $\mathbf{1 1}$ | 1 | 280 | 10.6 | 99.7 | $\mathbf{3 3}$ | 2 | 254 | 8.85 | 97.2 |
| $\mathbf{1 2}$ | 1 | 254 | 10.1 | 98.0 | $\mathbf{3 4 a}$ | 1 | 280 | 9.36 | 98.3 |
| $\mathbf{1 3}$ | 1 | 280 | 11.9 | 98.7 | $\mathbf{3 4 b}$ | 1 | 280 | 10.2 | 97.7 |
| $\mathbf{1 4}$ | 1 | 280 | 11.3 | 96.9 | $\mathbf{3 5}$ | 1 | 280 | 11.2 | 99.1 |
| $\mathbf{1 5}$ | 1 | 280 | 11.9 | 98.5 | $\mathbf{3 6}$ | 1 | 280 | 10.4 | 99.0 |
| $\mathbf{1 6}$ | 1 | 280 | 10.1 | 99.8 | $\mathbf{3 7}$ | 3 | 254 | 1.51 | 99.5 |
| $\mathbf{1 7}$ | 1 | 280 | 11.0 | 99.2 | $\mathbf{3 8}$ | 3 | 254 | 4.4 | 97.2 |
| $\mathbf{1 8}$ | 1 | 280 | 10.7 | 99.4 | $\mathbf{3 9}$ | 1 | 280 | 8.1 | 100 |
| $\mathbf{1 9 a}$ | 2 | 254 | 13.1 | 99.7 | $\mathbf{4 0}$ | 3 | 254 | 8.5 | 98.3 |
| $\mathbf{1 9 b}$ | 2 | 254 | 14.0 | 99.2 | $\mathbf{4 1}$ | 1 | 280 | 10.6 | 99.8 |
| $\mathbf{2 0}$ | 1 | 254 | 10.4 | 97.2 | $\mathbf{4 2}$ | 1 | 280 | 11.0 | 99.4 |
| $\mathbf{2 1}$ | 1 | 280 | 11.8 | 99.2 | $\mathbf{4 3}$ | 1 | 280 | 14.3 | 99.2 |


| $\mathbf{2 2}$ | 1 | 254 | 12.5 | 98.8 | $\mathbf{4 4}$ | 1 | 280 | 14.1 | 99.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 3}$ | 1 | 280 | 11.9 | 99.5 | $\mathbf{4 5}$ | 1 | 280 | 14.0 | 99.5 |
| $\mathbf{2 4 a}$ | 1 | 280 | 8.6 | 98.2 | $\mathbf{4 6}$ | 1 | 280 | 6.59 | 97.9 |
| $\mathbf{2 4 b}$ | 2 | 254 | 13.2 | 98.1 | $\mathbf{4 7}$ | 2 | 254 | 13.6 | 95.3 |
| $\mathbf{2 5}$ | 1 | 280 | 11.8 | 99.5 | $\mathbf{4 8}$ | 2 | 254 | 13.9 | 99.1 |
| $\mathbf{2 6}$ | 1 | 280 | 10.2 | 99.5 | $\mathbf{4 9}$ | 1 | 280 | 11.5 | 99.6 |
| $\mathbf{2 7}$ | 1 | 280 | 3.09 | 98.5 |  |  |  |  |  |

## 2. Brief description of the biological assays

Microplate Alamar Blue assay (MABA). Briefly, the test compound MICs against Mtb $\mathrm{H}_{37} \mathrm{RV}$ (ATCC\# 27294) were assessed by the MABA using rifampin, isoniazid and moxifloxacin as positive controls. Compound stock solutions were prepared in DMSO at a concentration of 12.8 mM , and the final test concentrations ranged from $128 \mu \mathrm{M}$ to $0.5 \mu \mathrm{M}$. Two fold dilutions of compounds were prepared in Middlebrook 7H12 medium ( 7 H 9 broth containing $0.1 \% \mathrm{w} / \mathrm{v}$ casitone, $5.6 \mu \mathrm{~g} / \mathrm{mL}$ palmitic acid, $5 \mathrm{mg} / \mathrm{mL}$ bovine serum albumin, $4 \mathrm{mg} / \mathrm{mL}$ catalase, filtersterilized) in a volume of $100 \mu \mathrm{~L}$ in 96-well microplates (BD Optilux ${ }^{\mathrm{TM}}, 96$-well Microplates, black/clear flat bottom). TB cultures ( $100 \mu \mathrm{~L}$ inoculum of $2 \times 105 \mathrm{cfu} / \mathrm{mL}$ ) was added, yielding a final testing volume of $200 \mu \mathrm{~L}$. The plates were incubated at $37^{\circ} \mathrm{C}$. On the seventh day of incubation $12.5 \mu \mathrm{~L}$ of $20 \%$ Tween 80 , and $20 \mu \mathrm{~L}$ of Alamar Blue (Invitrogen BioSource ${ }^{\mathrm{TM}}$ ) were added to the wells of test plate. After incubation at $37{ }^{\circ} \mathrm{C}$ for $16-24 \mathrm{~h}$, fluorescence of the wells was measured (ex 530, em 590 nm ). The MICs ware defined as the lowest concentration effecting a reduction in fluorescence of $\geq 90 \%$ relative to the mean of replicate bacteria-only controls.

Low-oxygen recovery assay (LORA). Briefly, a low-oxygen adapted culture of recombinant $\mathrm{H}_{37} \mathrm{Rv}$ (pFCA-luxAB), expressing a Vibrio harveyii luciferase gene with an acetamidase promoter, was grown in a BiostatQ fermentor. Cells were collected on ice, washed in PBS, and stored at $-80^{\circ} \mathrm{C}$. Circa $10^{5} \mathrm{cfu} / \mathrm{mL}$ of thawed NRP cells were exposed to 2 -fold serial dilutions of test compound in 7 H 9 broth in black 96 -well plates, which were incubated 10 days anaerobically at $37{ }^{\circ} \mathrm{C}$. Luminescence readings were obtained following a 28 h recovery in an aerobic environment $\left(5 \% \quad \mathrm{CO}_{2}\right)$. The data were analyzed graphically, and the lowest concentration of test compound preventing metabolic recovery ( $90 \%$ reduction relative to untreated cultures) was determined as described previously.

Cytotoxicity assay. Cytotoxicity was determined by exposing different concentrations of samples to Vero cells. Samples were dissolved at 12.8 mM in DMSO. Geometric three-fold dilutions were performed in growth medium MEM (Gibco, Grand Island, NY), containing $10 \%$
fetal bovine serum (HyClone, Logan, UT), $25 \mathrm{mM} N$-(2-hydroxyethyl)-piperazine- $N^{\prime}-2$ ethanesulfonic acid (HEPES, Gibco), $0.2 \% \mathrm{NaHCO}_{3}$ (Gibco), and 2 mM glutamine (Irvine Scientific, Santa Ana, CA). Final DMSO concentrations did not exceed $1 \% \mathrm{v} / \mathrm{v}$. Drug dilutions were distributed in duplicate in 96-well tissue culture plates (Becton Dickinson Labware, Lincoln Park, NJ) at a volume of $50 \mu \mathrm{~L}$ per well. An equal volume containing either $5 \times 10^{5} \mathrm{log}$ phase Vero cells (CCL-81; American Type Culture Collection, Rockville, MD) was added to each well and the cultures were incubated at $37{ }^{\circ} \mathrm{C}$ in an atmosphere containing $5 \%$ of $\mathrm{CO}_{2}$. After 72 h , cell viability was measured using the CellTiter 96 aqueous non-radioactive cell proliferation assay (Promega Corp., Madison, WI) according to the manufacturer's instructions. Absorbance at 490 nm was read in a Victor ${ }^{2}$ multilabel reader (PerkinElmer). The $\mathrm{IC}_{50}$ s were determined using a curve-fitting program.

## 3. Activity toward other microorganisms

Table 2(SI). MICs of selected compounds toward selected microorganisms

| Compd | S. aureus | E. Coli | C. albicans | M. smegmatis |
| :---: | :---: | :---: | :---: | :---: |
|  | MIC $(\mu \mathrm{M})$ |  |  |  |
| $\mathbf{9}$ | $>100$ | $>100$ | $>100$ | $>100$ |
| $\mathbf{3 0}$ | $>100$ | $>100$ | $>100$ | 94.4 |

