## Supporting Information

## Incorporation of different end-groups in

# conjugated polymers using functional nickel 

## initiators

Alfons Smeets, Karlien Van den Bergh , Julien De Winter, Pascal Gerbaux, Thierry<br>Verbiest, and Guy Koeckelberghs*

Supporting Information ..... S1
General ..... S2
Synthesis of tetrakistriphenylphosphinenickel(0) ..... S3
Synthesis of 4-bromo-3-methylbenzylalcohol (2a) ..... S3
1-bromo-4-[[[(1,1-dimethylethyl)dimethylsilyl]oxy]methyl]-2-methylbenzene (2c) ..... S3
Synthesis of 1-bromo-2-methyl-4-[2-(trimethylsilyl)ethynyl]benzene (2d) ..... S4
Synthesis of bromo(phenyl)bis(triphenylphosphine)nickel(II) (3a) ..... S4
Analysis of decomposition of 3a ..... S5
Synthesis of bromo(o-tolyl)bis(triphenylphosphine)nickel(II) (3b) ..... S5
Synthesis of bromo(2-(4-((tert-butyldimethylsilyloxy)methyl)-2- methylphenyl))bis(triphenylphosphine)nickel(II) (3c) ..... S5
Synthesis of bromo(2-methyl-4-
((trimethylsilyl)ethynyl)phenyl)bis(triphenylphosphine)nickel(II) (3d) ..... S6
Synthesis of 2-bromo-3-hexyl-5-iodothiophene (4) ..... S6
Synthesis of the polymers ..... S6
Synthesis of P1 ..... S6
Synthesis of P2 ..... S7
Synthesis of P3 ..... S7
Synthesis of P4 ..... S7
Synthesis of P5 ..... S7
Synthesis of P6 ..... S7
Synthesis of P7 ..... S7
Synthesis of P8 ..... S8
Synthesis of P9 ..... S8
NMR spectra of initiators and monomers ..... S9
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 2 a ..... S9
${ }^{1}$ H-NMR of 2 c ..... S9
${ }^{13} \mathrm{C}$-NMR of 2 c ..... S10
${ }^{1} \mathrm{H}$-NMR of 2 d ..... S10
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 2 d ..... S11
${ }^{1} \mathrm{H}$-NMR of decomposition of 3 a ..... S11
${ }^{1} \mathrm{H}$-NMR of 3b ..... S12
${ }^{31}$ P-NMR of 3 b ..... S13
${ }^{1} \mathrm{H}$-NMR of 3 c ..... S13
${ }^{31}$ P-NMR of 3 c ..... S14
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3 d ..... S14
${ }^{31}$ P-NMR of 3d ..... S15
${ }^{1} \mathrm{H}$-NMR of 4 ..... S15
NMR spectra of polymers ..... S16
${ }^{1} \mathrm{H}$-NMR of P 1 ..... S16
1H-NMR of P2 ..... S16
${ }^{1} \mathrm{H}$-NMR of P 3 ..... S17
${ }^{1} \mathrm{H}$-NMR of P 4 ..... S17
${ }^{1} \mathrm{H}$-NMR of P5 ..... S18
${ }^{1}$ H-NMR of P6 ..... S18
${ }^{1} \mathrm{H}$-NMR of P 7 ..... S19
${ }^{1}$ H-NMR of P8 ..... S19
1H-NMR of P9 ..... S20
MALDI-ToF spectra of polymers ..... S21
MALDI-ToF of P1 ..... S21
MALDI-ToF of P2 ..... S22
MALDI-ToF of P3 ..... S23
MALDI-ToF of P4 ..... S24
MALDI-ToF of P5 ..... S25
MALDI-ToF of P6 ..... S26
MALDI-ToF comparison of P1, P5 and P6 ..... S27
MALDI-ToF of P7 ..... S27
MALDI-ToF of P8 ..... S28
MALDI-ToF of P9 ..... S29

## General

All reagents were purchased from Sigma-Aldrich, Acros Organics, Merck, Fluka and Alfa Aesar. ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) measurements were carried out with Bruker Avance 300 MHz , Bruker Avance 400 MHz and Bruker Avance II 600 MHz . Reagent grade solvents were dried and purified by distillation. $i \mathrm{PrMgCl}$ and $i \mathrm{PrMgCl} . \mathrm{LiCl}$ were titrated before use with salicylaldehyde phenylhydrazone ${ }^{1}$ in order to determine their exact concentration. 2-bromo-3-hexylthiophene ${ }^{2}$, 5-bromo-2-bromomagnesio-3-( $S$ )-3,7-dimethyloctylthiothiophene ${ }^{3}$, 5-bromo-2-bromomagnesio-3-(S)-3,7-dimethyloctyloxythiophene ${ }^{4}$ and 1-bromo-5-iodo-2,4-dioctyloxybenzene ${ }^{5}$ were prepared according to literature procedures. MALDI mass spectra were recorded using
our Waters QToF Premier mass spectrometer equipped with a nitrogen laser, operating at 337 nm with a maximum output of $500 \mathrm{~J} / \mathrm{m}^{2}$ delivered to the sample in 4 ns pulses at 20 Hz repeating rate. Time-of-flight mass analysis were performed in the reflectron mode at a resolution of about 10000 . The matrix, trans-2-[3-(4-t-Butyl-phenyl)-2-methyl-2propenylidene]malononitrile (DCTB), was prepared as $20 \mathrm{mg} / \mathrm{mL}$ solution in chloroform. The matrix solution ( $1 \mu \mathrm{~L}$ ) was applied to a stainless steel target and air dried. Polymer samples were dissolved in chloroform to obtain $1 \mathrm{mg} / \mathrm{mL}$ solutions. $1 \mu \mathrm{~L}$ aliquots of these solutions were applied onto the target area already bearing the matrix crystals, and then air dried.

## Synthesis of tetrakistriphenylphosphinenickel(0)

$\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(9.51 \mathrm{~g}, 40.0 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(48.3 \mathrm{~g}, 184 \mathrm{mmol})$ were dissolved in ethanol $(250 \mathrm{~mL})$ and allowed to react for 30 minutes under reflux. The resulting dark green solution was allowed to cool to room temperature, after which zinc powder ( $3.92 \mathrm{~g}, 60.0$ mmol ) was added under a flow of argon. The mixture was then heated to reflux for two hours, during which a dark red precipitate was formed. After cooling to room temperature, the product was filtered and washed successively with ethanol ( $2 \times 100 \mathrm{~mL}$ ) and finally with diethylether $(100 \mathrm{~mL})$. The product was then dissolved in THF ( 500 mL ) and precipitated in ice-cooled ethanol ( 1 L ). Filtration under argon atmosphere yielded a dark purple, extremely air sensitive powder which was stored under $\mathrm{N}_{2}$ atmosphere.
Yield: 23.2 g (53\%)

## Synthesis of 4-bromo-3-methylbenzylalcohol (2a)

A solution of methyl 4-bromo-3-methylbenzoate ( $4.58 \mathrm{~g}, 20.0 \mathrm{mmol}$ ) in dry THF (100 mL ) was cannulated to an ice-cooled suspension of $\mathrm{LiAlH}_{4}(0.759 \mathrm{~g}, 20.0 \mathrm{mmol})$ in dry THF ( 20 mL ). The reaction was maintained at $0^{\circ} \mathrm{C}$ for 30 minutes and was then allowed to warm to room temperature. After completion of the reaction (TLC-monitoring, $\mathrm{SiO}_{2}$, $\mathrm{EtOAc} /$ hexane $(50 / 50)$ ), water was carefully added and after addition of $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, and after filtration, the solvent was removed using rotary evaporation. This afforded white crystals, which were used without further purification.
Yield: 3.12 g (78\%)
${ }^{1} \mathrm{H}-\mathrm{NMR}:\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.49(1 \mathrm{H}, \mathrm{d}, 7.8 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{d}, 7.8 \mathrm{~Hz})$, $4.57(2 \mathrm{H}, \mathrm{d}), 4.27(1 \mathrm{H}, \mathrm{t}), 2.36(3 \mathrm{H}, \mathrm{s})$
mp: $32.5-34.7^{\circ} \mathrm{C}$ (lit: $\left.31-32^{\circ} \mathrm{C}\right)^{6}$

## 1-bromo-2-methyl-4-[[[(t-butyl)dimethylsilyl]oxy]methyl]benzene (2c)

4-bromo-3-methylbenzylalcohol ( $1.01 \mathrm{~g}, 5.00 \mathrm{mmol}$ ) and imidazole ( $0.904 \mathrm{~g}, 6.00 \mathrm{mmol}$ ) were dissolved in dry DMF ( 50 mL ), after which a solution of tert-butyldimethylsilyl
chloride in dry DMF ( 50 mL ) was added. After completion of the reaction (TLCmonitoring, $\mathrm{SiO}_{2}$, $\mathrm{EtOAc} /$ hexane (50/50)), water was added and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, and after filtration, the solvent was removed using rotary evaporation. The product was isolated as a white solid and used without further purification. Yield: 1.38 g (87\%)
mp: 130-143 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}-\mathrm{NMR}:\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.51(1 \mathrm{H}, \mathrm{d}, 7.8 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{d}, 7.8 \mathrm{~Hz})$, $4.71(2 \mathrm{H}, \mathrm{s}), 2.37(3 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.11(6 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ ): 141.58, 138.26, 132.71, 129.27, 125.86, 123.61, 65.00, 26.50, 23.51, 19.03, -4.73

MS: $315\left(\mathrm{M}^{+}\right), 299\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 259\left(\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 183\left(\mathrm{M}^{+}-\mathrm{TBDMS}-\mathrm{CH}_{3}\right)$

## Synthesis of 1-bromo-2-methyl-4-[2(trimethylsilyl)ethynyl]benzene (2d)

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}(0.227 \mathrm{~g}, 0.36 \mathrm{mmol}), \mathrm{CuI}(22.9 \mathrm{mg}, 0.120 \mathrm{mmol})$ and 2-bromo-5iodotoluene ( $3.56 \mathrm{~g}, 12.0 \mathrm{mmol}$ ) were weighed in a flask and flushed with argon. Then, a solution of trimethylsilylacetylene ( $1.28 \mathrm{~g}, 13.0 \mathrm{mmol}$ ) in THF ( 45 mL ) and $\mathrm{Et}_{3} \mathrm{~N}$ ( 45 mL ) was cannulated into the flask. After completion of the reaction (TLC-monitoring, $\mathrm{SiO}_{2}$, petroleum ether), water was added and the aqueous layer was extracted with petroleum ether. The combined organic layers were dried using $\mathrm{MgSO}_{4}$, and after filtration, the solvents were removed using rotary evaporation. After having passed through a short column $\left(\mathrm{SiO}_{2}\right.$, petroleum ether), the product was isolated as a pale-yellow oil.
Yield: 3.11 g (97\%)
${ }^{1}$ H-NMR: ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ): $7.46(1 \mathrm{H}, \mathrm{d}, 8.7 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{d}, 8.7 \mathrm{~Hz})$, $2.35(3 \mathrm{H}, \mathrm{s}), 0.23(9 \mathrm{H}, \mathrm{s})$
${ }^{13} \mathrm{C}-\mathrm{NMR}:\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ : $138.75,134.48,132.81,131.04,125.83,122.85,104.44$, 95.55, 74.56, 23.02, 0.07

MS: $267\left(\mathrm{M}^{+}\right), 253\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$

## Synthesis of bromo(phenyl)bis(triphenylphosphine)nickel(II) (3a)

A solution of 2-bromobenzene $(0.149 \mathrm{~g}, 0.950 \mathrm{mmol})$ in toluene $(3.5 \mathrm{~mL})$ was purged with argon and cannulated into a flask containing $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{4}(0.222 \mathrm{~g}, 0.200 \mathrm{mmol})$. The resulting mixture was stirred for 15 minutes and allowed to stand overnight, after which the crude product was dissolved in the smallest possible amount of toluene and immediately precipitated in $n$-hexane. After washing with $n$-hexane ( 100 mL ), methanol $(25 \mathrm{~mL})$ and finally $i \operatorname{PrOH}(50 \mathrm{~mL})$, the product was dried under vacuum to afford a yellow, air-stable powder.
Yield: 0.136 g (92\%)

## Analysis of decomposition of 3a

3a ( $0.129 \mathrm{~g}, 0.174 \mathrm{mmol}$ ) was dissolved under stirring in toluene ( 25 mL ), during which the solution gradually lost its yellow color and a white; flocky precipitate formed. This reaction was allowed to proceed overnight, after which the toluene solution was filtered and concentrated in vacuo. The resulting product was purified using column chromatography $\left(\mathrm{SiO}_{2}, n\right.$-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(8: 2)$ ) and found to consist of mainly biphenyl and $\mathrm{PPh}_{3}$. A standard gravimetrical test for $\mathrm{Ni}^{2+}$, using $40 \% \mathrm{NH}_{3}$ and dimethylglyoxime $1 \%$ in ethanol proved that the residue which was insoluble in toluene contained $\mathrm{Ni}^{2+}$.

## Synthesis of bromo-(o-tolyl)bis(triphenylphosphine)nickel(II)

 (3b)A solution of 2-bromotoluene ( $0.513 \mathrm{~g}, 3.00 \mathrm{mmol}$ ) in toluene $(25 \mathrm{~mL})$ was purged with argon and cannulated into a flask containing $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{4}(2.21 \mathrm{~g}, 2.00 \mathrm{mmol})$. The reaction was allowed to proceed overnight, after which toluene ( 100 mL ) was added and the resulting solution was filtered. The filtrate was then concentrated through rotary evaporation and the crude product was precipitated in $n$-hexane. After washing with pentane $(100 \mathrm{~mL})$, methanol $(25 \mathrm{~mL})$ and finally $i \operatorname{PrOH}(50 \mathrm{~mL})$, the product was dried under vacuum to afford a yellow, air-stable powder.
Yield: 1.37 g (91\%)
${ }^{1}$ H-NMR: ( $300 \mathrm{Mhz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ): $7.50(12 \mathrm{H}, \mathrm{m}), 7.34(6 \mathrm{H}, \mathrm{t}), 7.24(12 \mathrm{H}, \mathrm{t}), 7.15(1 \mathrm{H}, \mathrm{d}, 7.4$
${ }_{31} \mathrm{~Hz}$, $6.27(2 \mathrm{H}, \quad \mathrm{m}), \quad 5.90(1 \mathrm{H}, \quad \mathrm{d}, \quad 7.4 \mathrm{~Hz}), \quad 2.06 \quad(3 \mathrm{H}, \quad \mathrm{s})$
${ }^{31}$ P-NMR: ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ): 22.5 ppm vs $\mathrm{H}_{3} \mathrm{PO}_{4}$
mp : decomposes at $174^{\circ} \mathrm{C}$

## Synthesis of bromo-[2-methyl-2-[(tert-butyldimethylsilyloxy)methyl]phenyl]bis(triphenylphosphine)nickel(II) (3c)

The synthesis is analogous to that of $\mathbf{3 b}$, using $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{4}(2.21 \mathrm{~g}, 2.00 \mathrm{mmol})$ and $\mathbf{2 c}$ ( $0.631 \mathrm{~g}, 2.00 \mathrm{mmol}$ ).
Yield: 0.719 g (40\%)
${ }^{1}$ H-NMR: ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ): $7.49(12 \mathrm{H}, \mathrm{m}), 7.32(6 \mathrm{H}, \mathrm{m}), 7.24(8 \mathrm{H}, \mathrm{t}), 7.06(1 \mathrm{H}, \mathrm{d}, 8.1$ $\mathrm{Hz}), 6.26(1 \mathrm{H}, \mathrm{d}, 8.1 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}, \mathrm{s}), 2.02(2 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.04(6 \mathrm{H}$, s)
${ }^{31}$ P-NMR: ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ): 22.4 ppm vs $\mathrm{H}_{3} \mathrm{PO}_{4}$
mp : decomposes at $135^{\circ} \mathrm{C}$

## Synthesis of bromo-[2-methyl-4[(trimethylsilyl)ethynyl]phenyl]bis(triphenylphosphine)nickel(II) (3d)

The synthesis is analogous to that of $\mathbf{3 b}$, using $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{4}(2.21 \mathrm{~g}, 2.00 \mathrm{mmol})$ and $\mathbf{2 d}$ ( $0.802 \mathrm{~g}, 3.00 \mathrm{mmol}$ ).
Yield: 0.425 g (25\%)
${ }^{1} \mathrm{H}-\mathrm{NMR}:\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 7.51(12 \mathrm{H}, \mathrm{m}), 7.38(6 \mathrm{H}, \mathrm{t}), 7.27(12 \mathrm{H}, \mathrm{t}), 7.08(1 \mathrm{H}, \mathrm{dd}$, $21.0 \mathrm{~Hz}, 7.8 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{m}), 5.99(1 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 0.16(9 \mathrm{H}, \mathrm{s})$
${ }^{31}$ P-NMR: ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ): 22.3 ppm vs $\mathrm{H}_{3} \mathrm{PO}_{4}$
mp : decomposes at $183^{\circ} \mathrm{C}$

## Synthesis of 2-bromo-3-hexyl-5-iodothiophene (4)

2-bromo-3-hexylthiophene ( $30.9 \mathrm{~g}, 125 \mathrm{mmol}$ ) was dissolved in a mixture of $\mathrm{CHCl}_{3}(120$ mL ) and acetic acid ( 60 mL ) and shielded from light. Then, $N$-iodosuccinimide ( 38.3 g , 170 mmol ) was added and the reaction was allowed to proceed overnight. The solution was then concentrated in vacuo, neutralized with $\mathrm{NaHCO}_{3}$ and extracted with $n$-hexane. Next, the combined fractions were dried over $\mathrm{MgSO}_{4}$ and the solvent was removed in vacuo. Finally, the product was then passed over a short column $\left(\mathrm{SiO}_{2}\right.$, petroleum ether) and distilled under vacuum ( $2 \mathrm{Torr}, 135^{\circ} \mathrm{C}$ ) to yield a yellow fluid.
Yield: 36.3 g (78\%)
${ }^{1} \mathrm{H}-\mathrm{NMR}:\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.96(1 \mathrm{H}, \mathrm{s}), 2.52(2 \mathrm{H}, \mathrm{t}), 1.54(2 \mathrm{H}, \mathrm{m}), 1.29(6 \mathrm{H}, \mathrm{m}), 0.89$ (3H, t)
Lit: $\left(105^{\circ} \mathrm{C}, 0.004 \text { Torr }\right)^{7}$

## Synthesis of the polymers

## Synthesis of P1

To a solution of 2-bromo-3-hexyl-5-iodothiophene ( $0.373 \mathrm{~g}, 1.00 \mathrm{mmol}$ ) in dry THF ( 15 mL ) a solution of $i \mathrm{PrMgCl}$ in THF ( $0.530 \mathrm{~mL}, 1.05 \mathrm{mmol}$ ) was added and the mixture was allowed to react for 1 h at room temperature. This solution was then cannulated to a solution containing 3b ( 0.07 mmol ) in dry THF ( 5 mL ) The polymerization was then allowed to proceed for 2 hours, after which it was quenched with 1 M HCl in THF. The polymer was precipitated in methanol ( 200 mL ) and filtrated. After Soxhlet extractions using subsequently acetone and chloroform, the latter fraction, being the high-molecular weight fraction, was concentrated in vacuo and precipitated in methanol. Finally, filtration and drying under vacuum yielded a dark purple solid.
Yield: 84.7 mg (51\%)

## Synthesis of P2

A solution of $\mathbf{3 b}(0.0226 \mathrm{~g}, 0.03 \mathrm{mmol})$ in dry THF ( 3 mL ) was added via syringe to a solution of 5-bromo-2-bromomagnesio-3-(S)-3,7-dimethyloctyloxythiophene ( 0.254 g , $0.60 \mathrm{mmol})$ in dry THF ( 3 mL ). The reaction was allowed to proceed at 0 C for 3 h after which it was quenched with HCl in MeOH . Finally, the polymer was precipitated in methanol, yielding a blue solid.
Yield: 96.6 mg (68\%)

## Synthesis of P3

The synthesis is analogous to that of $\mathbf{P} \mathbf{2}$, but using 5-bromo-2-bromomagnesio-3-(S)-3,7dimethyloctylthiothiophene ( $0.263 \mathrm{~g}, 0.60 \mathrm{mmol}$ ). The polymer was isolated as a red solid.
Yield: 68.1 mg (45\%)

## Synthesis of P4

To a solution of 1-bromo-4-iodo-2,5-dioctyloxybenzene in dry THF (3 mL) $i \mathrm{PrMgCl} . \mathrm{LiCl}(0.488 \mathrm{~mL}, 0.60 \mathrm{mmol})$ in THF was added via syringe. The reaction was allowed to proceed for 2 h at room temperature after which the solution was transferred through cannula to a solution of $\mathbf{3 b}(22.6 \mathrm{mg}, 0.0300 \mathrm{mmol})$ and dppe $(12.0 \mathrm{mg}, 0.0300$ mmol ) in dry THF ( 3 mL ). After 3h at room temperature the polymer was precipitated in methanol, filtrated and dried in vacuo to yield a yellow solid.
Yield: 49.0 mg (25\%)

## Synthesis of P5

The synthesis is analogous to that of $\mathbf{P} \mathbf{1}$, but with addition of dppp ( $29.0 \mathrm{mg}, 0.0700$ mmol ) to the solution of $\mathbf{3} \mathbf{b}$ prior to monomer addition.
Yield: 74.8 mg (45\%)

## Synthesis of P6

The synthesis is analogous to that of $\mathbf{P 1}$, but with addition of dppp ( $58 \mathrm{mg}, 0.140 \mathrm{mmol}$ ) to the solution of $\mathbf{3 b}$ prior to monomer addition.
Yield: 106 mg (64\%)

## Synthesis of P7

The synthesis is analogous to that of $\mathbf{P 6}$, using $\mathbf{3 c}(62.9 \mathrm{mg}, 0.0700 \mathrm{mmol})$ instead of $\mathbf{3 b}$. Yield: 40.9 mg (25\%)

## Synthesis of P8

The synthesis is analogous to that of $\mathbf{P 6}$, using $\mathbf{3 d}(59.5 \mathrm{mg}, 0.0700 \mathrm{mmol})$ instead of $\mathbf{3 b}$. Yield: 45.7 mg (28\%)

## Synthesis of P9

To a solution of 2-bromo-3-hexyl-5-iodothiophene ( $0.755 \mathrm{~g}, 2.00 \mathrm{mmol}$ ) in dry THF ( 25 $\mathrm{mL})$ a solution of $i \mathrm{PrMgCl}$ in THF $(1.10 \mathrm{~mL}, 2.10 \mathrm{mmol})$ was added and the mixture was allowed to react for 1 h at room temperature. This solution was then cannulated to a solution containing 3b $(0.07 \mathrm{mmol})$ in dry THF ( 5 mL ) and the polymerization was allowed to proceed for 30 min , after which one part of the mixture was quenched with HCl , while the other part was quenched with 4-chloromagnesio-anisol ( $1 \mathrm{~mL}, 1.00 \mathrm{mmol}$ ) in THF. The latter fraction was allowed to react for 30 min , after which the polymer was precipitated in methanol. After Soxhlet extractions using subsequently acetone and chloroform, the latter fraction, being the high-molecular weight fraction, was concentrated in vacuo and precipitated in methanol. Finally, filtration and drying under vacuum yielded a dark purple solid.
Yield: 27.5 mg (17\%)

NMR spectra of initiators and monomers
${ }^{1}$ H-NMR of 2a


## ${ }^{1}$ H-NMR of 2 C



## ${ }^{13}$ C-NMR of 2 C



## ${ }^{1}$ H-NMR of 2d



## ${ }^{13}$ C-NMR of 2d



Biphenyl:


## ${ }^{1}$ H-NMR of $3 b$



After 1 hour:


## ${ }^{31}$ P-NMR of 3b


${ }^{1}$ H-NMR of 3 C

${ }^{31}$ P-NMR of 3 C


## ${ }^{1} H-N M R$ of $3 d$


${ }^{31}$ P-NMR of 3d

${ }^{1} \mathrm{H}$-NMR of 4












## MALDI-ToF spectra of polymers

MALDI-ToF of P1
P1


$$
m / z
$$

Zone A :


## MALDI-ToF of P2

P2


Zone A :


## MALDI-ToF of P3



Zone A :


## MALDI-ToF of P4




## MALDI-ToF of P5

P5


## MALDI-ToF of P6 <br> P6



Zone A :


## MALDI-ToF comparison of P1, P5 and P6



## MALDI-ToF of P7



Zone A :

$m / z$

## MALDI-ToF of P8



## MALDI-ToF of P9



Zone A :

(1) Love, B.E., Jones, E.G. J. Org. Chem., 1999, 64, 3755-3756
(2) Yokoyama, A., Miyakoshi, R., Yokozawa, T. Macromolecules, 2004, 37, 1169-1171
(3) Vandeleene, S., Van den Bergh, K., Verbiest., T., Koeckelberghs, G.

Macromolecules, 2008, 41, 5123-5131
(4) Koeckelberghs, G.; Vangheluwe, M.; Samyn, C.; Persoons, A.; Verbiest, T. Macromolecules, 2005, 38, 5554-5559.
(5) Yokoyama, A., Rato, A. Miyakoshi, R., Yokozawa, T. Macromolecules, 2008, 41, 7271-7273
(6) Hanessian, S., Papeo, G., Angiolini, M., Fettis, K., Beretta, M., Munro, A. J. Org. Chem., 2003, 68, 7204-7218
(7) Cremer, J., Mena-Osteritz, E., G. Pschierer, N., Müllen, K., Bäuerle, P. Org. Biomol. Chem., 2005, 3, 985-995

