Supporting Information for # Tuning electronic properties of hydro-boron-carbon compounds by hydrogen and boron contents: a first principles study ## Yi Ding, and Jun Ni* Department of Physics and Key Laboratory of Atomic and Molecular Nanoscience (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China ### Figure S1: the convergence with respect to the k-point sampling for BC₃ sheet. #### Figure S2: the convergence with respect to the plane-wave cutoff energies for BC3 sheet. #### Figure S3: the convergence with respect to the k-point sampling for all-H type of hydro-BC $_3$ compound. ## Figure S4: the convergence with respect to the plane-wave cutoff energies for all-H type of $hydro-BC_3$ compound. #### Figure S5: The energy bands of BC₃ sheet and hydro-BC₃ compounds by PAW pseudopotentials. Figure S1: The total energies of BC₃ sheet versus different $k \times k \times 1$ k-mesh. The plane-wave cutoff energy is fixed as 350 eV. **Figure S2:** The total energies of BC₃ sheet versus different plane-wave cutoff energies. The k-mesh is fixed as $15 \times 15 \times 1$. **Figure S3:** The total energies for all-H type of hydro-BC₃ compound versus different $k \times k \times 1$ k-mesh. The plane-wave cutoff energy is fixed as 350 eV. Figure S4: The total energies for all-H type of hydro-BC₃ compound versus different plane-wave cutoff energies. The k-mesh is fixed as $15 \times 15 \times 1$. **Figure S5:** The energy bands of (a) the BC_3 sheet, (b) the C-H type and (c) the all-H type of hydro- BC_3 compounds. The Fermi level is indicated as the line at E = 0.0 eV.