## **Supporting Information for**

# Tuning electronic properties of hydro-boron-carbon compounds by hydrogen and boron contents: a first principles study

## Yi Ding, and Jun Ni\*

Department of Physics and Key Laboratory of Atomic and Molecular Nanoscience (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China

### Figure S1:

the convergence with respect to the k-point sampling for BC<sub>3</sub> sheet.

#### Figure S2:

the convergence with respect to the plane-wave cutoff energies for BC3 sheet.

#### Figure S3:

the convergence with respect to the k-point sampling for all-H type of hydro-BC $_3$  compound.

## Figure S4:

the convergence with respect to the plane-wave cutoff energies for all-H type of  $hydro-BC_3$  compound.

#### Figure S5:

The energy bands of BC<sub>3</sub> sheet and hydro-BC<sub>3</sub> compounds by PAW pseudopotentials.



Figure S1: The total energies of BC<sub>3</sub> sheet versus different  $k \times k \times 1$  k-mesh. The plane-wave cutoff energy is fixed as 350 eV.



**Figure S2:** The total energies of BC<sub>3</sub> sheet versus different plane-wave cutoff energies. The k-mesh is fixed as  $15 \times 15 \times 1$ .



**Figure S3:** The total energies for all-H type of hydro-BC<sub>3</sub> compound versus different  $k \times k \times 1$  k-mesh. The plane-wave cutoff energy is fixed as 350 eV.



Figure S4: The total energies for all-H type of hydro-BC<sub>3</sub> compound versus different plane-wave cutoff energies. The k-mesh is fixed as  $15 \times 15 \times 1$ .



**Figure S5:** The energy bands of (a) the  $BC_3$  sheet, (b) the C-H type and (c) the all-H type of hydro- $BC_3$  compounds. The Fermi level is indicated as the line at E = 0.0 eV.