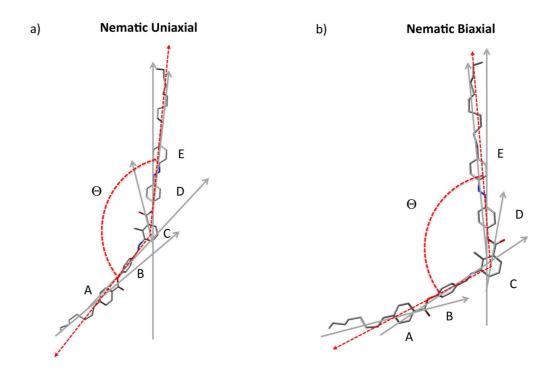
Supporting Material for the paper:

"Conformational Study of a Bent-core Liquid Crystal: ¹³C NMR

and DFT Computation Approach"


by

Ronald Y. Dong and Alberto Marini

Table S.1: Relative energies (in kcal/mol) and populations in (%) for ABC_i , BCD_i and CDE_i conformers.

Conformation	ψ_2 (°)	ψ_4 (°)	$\Delta ~ {\rm E}({\rm Kcal}/{ m mol})$	P(%)
ABC_1	30	60	0.102	13.0
ABC_2	-30	60	0.000	16.0
ABC_3	150	60	0.212	11.0
ABC_4	-150	60	0.263	10.0
ABC_5	30	-60	0.000	16.0
ABC_6	-30	-60	0.102	13.0
ABC_7	150	-60	0.263	10.0
ABC_8	-150	-60	0.212	11.0
Conformation	ψ_4 (°)	ψ_5 (°)	$\Delta ~ { m E(Kcal/mol)}$	P(%)
BCD_1	45	-165	0.000	30.0
BCD_2	45	-15	1.665	1.9
BCD_3	45	15	2.315	0.6
BCD_4	45	165	0.325	17.5
BCD_5	-45	-165	0.325	17.5
BCD_6	-45	-15	2.315	0.6
BCD_7	-45	15	1.665	1.9
BCD_8	-45	165	0.000	30.0
Conformation	ψ_5 (°)	ψ_7 (°)	$\Delta ~ { m E(Kcal/mol)}$	P(%)
CDE_1	30	0	0.685	6.0
CDE_2	-30	0	0.685	6.0
CDE_3	150	0	0	19.0
CDE_4	-150	0	0	19.0
CDE_5	30	180	0.685	6.0
CDE_6	-30	180	0.685	6.0
CDE_7	150	180	0	19.0
CDE_8	-150	180	0	19.0

Figure S.1: Plot of the relevant fragmental angles (with respect to the *para* axis of ring D) and Cartesian z-axis systems for the two distinct conformational states of A131 in its N_u (a) and N_b (b) phases. For the sake of clarity, only the carbon skeletal has been reported for each conformation, together with the proper formulae for the estimations of the bent angle of A131. UL and LL refer to Upper and Lower Limit (based on fragmental angles that are average values in the respective phases) of the bend angle, respectively.

LL(N_u): Θ =180°- Θ B+ Θ E- Θ A=180°-35°+18°-10°=153° UL(N_u): Θ =180°- Θ B+ Θ E=180°-35°+18°=163°

LL(N_b): ⊖=180°-0B-0E-0A=180°-32°-19°-18°=111° UL(N_b): ⊖=180°-0B-0E=180°-32°-19°=129°