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Analytical Methods  

DOC, DON, and UVA measurements were performed on samples that had been filtered 

(using 0.45-µm membrane filters [e.g., polyethersulfone] prewashed with organic-free water).  

Analyses for DOC, UVA, bromide, and ammonia were carried out according to Standard 

Methods (1).  The DON method employed a prolonged (48-hr) dialysis pretreatment to separate 

dissolved inorganic nitrogen from total dissolved nitrogen, so as to reduce analytical error (2).  

Dialysis pretreatment used cellulose ester dialysis tubes with a nominal molecular weight cutoff 

of 100 Da.  DON by this method was comparable to total Kjeldahl nitrogen (TKN) minus the 

ammonia concentration for well nitrified effluents.  Total iodine, the sum of organic iodine and 

inorganic iodide, was measured with inductively coupled plasma (ICP)/MS.  Organic iodine can 

include iodine-containing X-ray contrast agents, which would typically be present at ng/L levels.  

It is the inorganic iodide that can act as a DBP precursor. 

 THMs, HANs, and chloropicrin were measured using USEPA Method 551.1 (3).  The 

MRL for each THM was 0.5 µg/L, and the MRL for each HAN or chloropicrin was 0.25 µg/L.  

HAAs were measured using USEPA Method 552.2 (4).  The MRL for each HAA was 1.0 µg/L, 

except for monochloro- and tribromoacetic acid, which each had an MRL of 2.0 µg/L.  

Haloacetaldehydes, dihalogenated halonitromethanes, and iodinated THMs were analyzed for 

using either a liquid/liquid extraction–GC/electron capture detection or a solid-phase extraction 

(SPE)–GC/MS method (5).  For the latter two methods, the MRL for individual species was 

typically ~1 µg/L; for some DBPs during certain analytical runs, the MRLs were ~2-5 µg/L.  

Nitrosamine samples were concentrated using SPE with Ambersorb (6) and were analyzed using 

chemical ionization GC/MS (7).  The MRL for each nitrosamine was 2 ng/L. 
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DBP Precursors:  EfOM, Bromide, and Iodide 

 The impact of WWTP processes on organic DBP precursors (DOC, DON, UVA) in this 

study has been discussed elsewhere (8).  The range (and median) levels of DOC for WWTPs 

with no nitrification and good nitrification were 7.9–16.5 (12.1) and 4.8–15.5 (7.0) mg/L, 

respectively, whereas DON was 0.53–2.40 (1.10) and 0.15–1.25 (0.52) mg/L as N, respectively.  

The specific UVA (SUVA) (i.e., UVA [in m
-1

]/DOC) was 0.98–1.86 (1.50) and 1.22–2.74 

(2.08) L/mg-m.  On a central tendency basis (e.g., based on median data), good nitrification 

resulted in less DOC and DON, but higher SUVA than no nitrification; the higher SUVA infers 

that biological treatment preferentially removed the portions of the DOC that absorbed UV 

weakly (8) and/or added organic matter with a higher degree of humidification during 

nitrification.  

The observed bromide levels at the WWTPs were higher than those typically observed 

for drinking water sources.  The 25th percentile, median, and maximum levels of bromide were 

0.12, 0.19, and 0.42 mg/L, respectively, for the WWTPs that did not use RO.  In a survey of U.S. 

drinking waters, bromide (seasonal averages) in randomly selected sources that supplied large 

utilities ranged from 0.004 to 0.43 mg/L (median = 0.057 mg/L) (9).  Likewise, the concentration 

of total iodine at the WWTP effluents without activated carbon or RO (14–91 [median = 

49] µg/L) was higher than at the drinking water plants surveyed in this study (ND to 22 µg/L, 

median = 6 µg/L).  Bromide and iodide are not expected to be removed during biological 

wastewater treatment.  The drinking-water treatment plants were in the same communities as the 

WWTPs.   
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Finally, the effluent pH was 6.2–8.1 (7.1) and 6.4–7.7 (7.0), respectively, and 

temperature was 15.0–27.0 (22.3) and 5.7–31.5 (22.0)ºC, respectively, for no nitrification and 

good nitrification. 

 

Bromine Incorporation into DBPs 

The bromine incorporation factor (BIF) was determined for the different DBPs, where 

BIF equals the molar sum of bromine incorporated into a class of DBPs divided by the molar 

sum of that DBP class (10-11).  For the THMs, BIF values can theoretically range from 0 (all 

chloroform) to 3 (all bromoform).  A BIF of 1.0 corresponds to water in which the “average” 

THM species is bromodichloromethane.  For the HANs, BIF values can range from 0 (all 

dichloroacetonitrile) to 2 (all dibromoacetonitrile). 

Previous research in drinking water has shown that bromine incorporation into TXAAs 

was similar to that of the THMs (12).  Likewise, occurrence data for TXAAs, as well as for 

trihalogenated acetaldehydes, showed similar bromine incorporation as that of the THMs for the 

WWTP effluents disinfected with free chlorine (Figure 5).  However, the slopes of the regression 

lines (for the BIFs for TXAAs or trihalogenated acetaldehydes versus the BIFs for the THMs) 

were less than 1.0 (i.e., 0.91 and 0.69, respectively), which indicates that there was less bromine 

incorporation into TXAAs or trihalogenated acetaldehydes than into THMs on a central tendency 

basis.  There may have been less bromine incorporation in the TXAAs or trihalogenated 

acetaldehydes for two reasons.  Because of the presence of the functional group (e.g., carboxylic 

acid) in the TXAAs or trihalogenated acetaldehydes, there may have been steric interference in 

incorporating too many bromine atoms.  Alternatively, brominated species may have formed but 

degraded to some extent (13-14).  SI Figure 6 shows the relationship of the BIFs for the 
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dihalogenated DBPs.  The slope of the regression line for the BIFs for the dihalogenated HANs 

versus the BIFs for the DXAAs was greater than 1.0 (i.e., 1,71), which indicates that there was 

more bromine incorporation into HANs than into DXAAs on a central tendency basis.  

Obolensky and Singer (15) also saw more bromine incorporation into HANs when data from 

U.S. drinking waters were examined.  The rank order of genotoxic potency of the dihalogenated 

HANs (14) was dibromo- > bromochloro- > dichloroacetonitrile.  For other classes of DBPs, the 

bromine-containing DBPs were typically more toxic than the fully chlorinated species (16-17).  

Thus, samples with higher BIF values may be of more health concern, as they represent waters 

with higher degrees of bromine incorporation for a wide range of DBPs. 

SI Figure 7 gives an example of BIFs for drinking water, using data from a recent survey 

(18).  This is similar to what was observed at the WWTPs (Figure 5).  Although the level of 

bromide at the WWTPs was typically higher than what was in the drinking water (SI Figure 8), 

bromine incorporation is also impacted by the bromide-to-DOC ratio (11).  For the WWTP 

effluents disinfected with free chlorine, the inter-quartile range (25th to 75th percentile) of the 

ratios was 0.015 to 0.039 mg/mg, and for the drinking waters in the latter survey (18) the 

interquartile range was 0.009 to 0.019 mg/mg (SI Figure 8).  Although the ratios were lower in 

the drinking waters, there was overlap between the inter-quartile ranges. 

 

Relationships between DBPs 

In drinking water, the concentration of THMs has typically been around ten times higher 

than that of the HANs (19).  In a recent survey of drinking water treatment plant effluents (18), 

their weight ratio (25th to 75th percentile) ranged from 6.7 to 13 µg THMs/µg HANs (median = 

7.3 µg THMs/µg HANs).  However, at the WWTPs that achieved breakpoint chlorination, their 
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ratio for the inter-quartile range (25th to 75th percentile) was 3.1 to 4.4 µg THMs/µg HANs 

(median = 3.4 µg THMs/µg HANs).  In terms of their ratio of THMs to haloacetaldehydes in 

drinking water, the inter-quartile ratio (and median) was 3.7 to 7.0 (4.8) µg THMs/µg 

haloacetaldehydes, whereas at the WWTPs that chlorinated in the presence of free chlorine, their 

ratios were 1.6 to 2.1 (1.9) µg THMs/µg haloacetaldehydes. 

SI Figures 9-15 examine correlations between the concentrations of the various DBPs and 

that of the THMs in EfOM.  For the WWTP effluents disinfected with free chlorine, the 

relationship between DXAAs or TXAAs to that of THMs was fair (R
2
 = 0.52-0.58).  However, 

there was a set of data that was a substantial outlier (62 µg/L of THMs, 3 µg/L of DXAA, 

10 µg/L of TXAAs).  When that set of outliers was removed, the relationships substantially 

improved (R
2
 = 0.76-0.84).  In addition, the relationships between the haloacetaldehydes (R

2
 = 

0.79-0.93) or HANs (R
2
 = 0.69) and that of the THMs in the effluents disinfected with free 

chlorine were good.  However, there was no relationship between the formation of NDMA and 

that of THMs in the effluents disinfected with free chlorine (R
2
 = 0.21).  For the WWTP 

effluents disinfected with chloramines, there were no relationships between the formation of the 

halogenated DBPs or NDMA with that of THMs.  Only one pattern emerged from these data.  At 

a water recycling plant that used flocculation, filtration and chlorination to treat a poorly nitrified 

EfOM, they produced substantially more NDMA, dihalogenated HANs, and DHAs than the 

other WWTPs, and this plant produced some of the highest levels of DXAAs.  Results from 

various studies have shown that NDMA and certain dihalogenated DBPs (DXAAs, HANs, 

DHAs) can be preferentially formed by chloramines.  At this particular plant, there was 

something about the EfOM and/or treatment/disinfection process that maximized the formation 

of a wide range of chloramine DBPs. 
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Total Organic Halogen (TOX) 

 At selected sites, TOX was measured (1), which represents the sum of all of the 

adsorbable halogenated organic chemicals in a sample.  As an example, a WWTP with parallel 

treatment trains was sampled for TOX before and after chlorination.  Train A achieved 

nitrification and partial denitrification, whereas train B was poorly nitrified.  At train A, 

ammonia was added with the chlorine to form chloramines.  TOX at the WWTP before chlorine 

addition was 97 µg/L as Cl
-
.  Because the DBPs in this study include bromine- and chlorine-

substituted species, the results were converted to a molar basis and expressed as the amount of 

halogen (X).  Before chlorine addition, a small amount of THMs were detected and none of the 

other target DBPs in the study were detected (SI Figure 16).  The THMs accounted for only 

1 percent of the TOX (on a molar basis).  This is because wastewater can include synthetic 

organic contaminants that are halogenated (e.g., solvents, pesticides), which are not DBPs.  After 

chlorination at trains A and B, the level of DBPs and TOX went up (to 110 and 140 µg TOX/L 

as Cl
-
, respectively), but most of the TOX was still unaccounted for by the target DBPs (SI 

Figure 16).  After chlorination, the target DBPs detected accounted for 4 and 14 percent of the 

TOX (on a molar basis) at trains A and B, respectively. 

 At the example WWTP, after chlorination, the amount of TOX increased by 110 – 97 = 

13 µg/L as Cl
-
 at train A (and by 140 – 97 = 43 µg/L as Cl

-
 at train B).  These increases in TOX 

levels were most likely due to the formation of DBPs.  For example, after chlorination, the 

amount of THMs increased by 1.5 – 1.0 = 0.5 µg/L and HAAs were now present at 5.2 µg/L 

(HAAs were not detected before chlorination) at train A.  In this example, 2 and 25 percent of 

the additional TOX produced after chlorination at train A was accounted for (on a molar basis) 

by THMs and HAAs, respectively, which were formed after chlorination.  However, 73 percent 
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of the additional TOX produced was not accounted for by the target DBPs in this study.  A 

higher percentage of the TOX produced at train B was accounted for by THMs (7 percent) and 

HAAs (36 percent) that were formed after chlorination, with 57 percent unaccounted.  At both 

trains, because of the presence of ammonia, the addition of chlorine formed chloramines.  These 

results are consistent with research in drinking water, where chloramination forms very little 

TOX and that a very high percentage of the TOX formed during chloramination is not accounted 

for by THMs, HAAs, and other typically measured DBPs (20). 

 

Impact of UV and RO on Nitrosamines 

 At the WWTPs in this study that used UV for disinfection, the UV wavelength and dose 

(for those WWTPs that reported that information to the project team) were 254 or 265 nm and 

35-100 mJ/cm
2
, respectively.  At these WWTPs, the levels of nitrosamines (e.g., NDMA, 

NMOR) before and after UV disinfection were the same (SI Figure 17).  Although UV may 

destroy some of the NDMA present, its efficiency is somewhat low at germicidal UV dosages.  

However, at a water recycling plant that used UV (low-pressure, high-output lamps; dose ~300-

400 mJ/cm
2
) with hydrogen peroxide (3 mg/L) as an advanced oxidation process to treat reverse 

osmosis (RO) product water, the nitrosamines were well removed (e.g, the concentration of 

NDMA was lowered from 28-39 to 2-4 ng/L).  This difference in nitrosamine destruction may 

have been due to the use of low-pressure UV (no photolysis) and low-pressure, high-output UV 

(photolysis) and/or the use of a very high UV dose rather than the presence or absence of 

hydrogen peroxide.  (UV irradiation has been shown to remove NDMA from water to very low 

levels.  NDMA absorbs UV light in a strong band centered at 228 nm and a weak band centered 

at 340 nm.  Initial absorption of light at 228 nm results in cleavage of the N-N bond.) (21)  
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However, one cannot discount hydroxyl radical oxidation.  (UV/oxidation typically combines 

UV light with an oxidant, such as hydrogen peroxide. The process involves the generation of 

highly reactive hydroxyl radicals in sufficient quantity to affect water purification through a 

destruction process acting at near ambient or room temperatures.) (21)  Nonetheless, in other 

studies, UV treatment has been found to be very effective at removing nitrosamines, even 

without hydrogen peroxide.  In addition, the difference in nitrosamine destruction may have been 

due to matrix effects (i.e., UV treatment of secondary or tertiary effluent versus UV treatment of 

RO product water at the water recycling plant).  At this water recycling plant, RO treatment did 

not significantly remove NDMA (the concentration of NDMA in the RO feed was 47-48 ng/L 

and it was 28-39 ng/L in the product water), but NMOR was well rejected (the concentration of 

NMOR in the RO feed was 12-42 ng/L and it was ND to 3 ng/L in the product water).  At this 

WWTP, UV/hydrogen peroxide was used to ensure that NDMA levels were significantly 

minimized in the WWTP effluent. 
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SI Figure 1.  Chlorination conditions used at participating WWTPs 

SOURCE:  Reproduced from Reference 22.  Copyright 2008 Awwa Research Foundation. 
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SI Figure 2.  Occurrence of dihalogenated HAAs (DXAAs) at participating WWTPs 

SOURCE:  Reproduced from Reference 22.  Copyright 2008 Awwa Research Foundation. 
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SI Figure 3.  Occurrence of trihalogenated HAAs (TXAAs) at participating WWTPs 

SOURCE:  Reproduced from Reference 22.  Copyright 2008 Awwa Research Foundation. 
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SI Figure 4.  Occurrence of haloacetaldehydes at participating WWTPs after chlorination (25th 

percentile and median for DHAs for Cl2/N <10 mg/mg were both ND) 

SOURCE:  Reproduced from Reference 22.  Copyright 2008 Awwa Research Foundation. 
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SI Figure 5.  Occurrence of NMOR at participating WWTPs 

SOURCE:  Reproduced from Reference 22.  Copyright 2008 Awwa Research Foundation. 
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SI Figure 6.  Comparison of BIFs for dihalogenated DBPs in WWTP effluents disinfected with 

free chlorine 
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SI Figure 7.  Comparison of BIFs for trihalogenated DBPs in drinking water treatment plant 

effluents from a recent survey (excluding two outliers where the bromine-containing THAs were 

below their MRLs such that the BIFs could not be accurately determined) 
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SI Figure 8.  Comparison of bromide and bromide/DOC ratios for WWTP effluents disinfected 

with free chlorine and for drinking water from a recent survey 
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SI Figure 9.  Relationship between HAA and THM formation for WWTP effluents disinfected 

with free chlorine (excluding one set of outliers) 

 

 



S22 

 

 

 

SI Figure 10.  Relationship between haloacetaldehyde and THM formation for WWTP effluents 

disinfected with free chlorine 
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SI Figure 11.  Relationship between nitrogenous DBPs and THM formation for WWTP 

effluents disinfected with free chlorine 
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SI Figure 12.  Relationship between HAA and THM formation for WWTP effluents disinfected 

with chloramines 
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SI Figure 13.  Relationship between haloacetaldehyde and THM formation for WWTP effluents 

disinfected with chloramines 
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SI Figure 14.  Relationship between HAN and THM formation for WWTP effluents disinfected 

with chloramines 
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SI Figure 15.  Relationship between NDMA and THM formation for WWTP effluents 

disinfected with chloramines 
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SI Figure 16.  Amount of TOX accounted for by target DBPs at two parallel treatment trains of 

a participating WWTP 

SOURCE:  Reproduced from Reference 22.  Copyright 2008 Awwa Research Foundation. 
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SI Figure 17.  Example of the impact of UV disinfection on nitrosamines at one WWTP 

SOURCE:  Reproduced from Reference 22.  Copyright 2008 Awwa Research Foundation. 
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