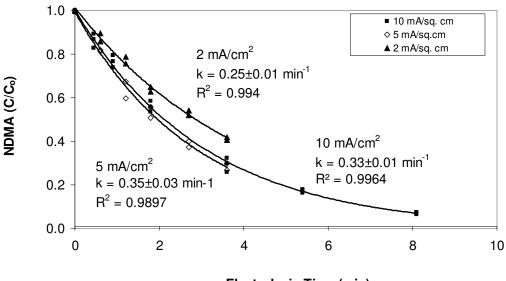
Supporting Information for Electrochemical Oxidation of N-

Nitrosodimethylamine with Boron-doped Diamond Film Electrodes

Brian P. Chaplin, Glenn Schrader, and James Farrell Department of Chemical and Environmental Engineering University of Arizona Tucson, AZ 85721

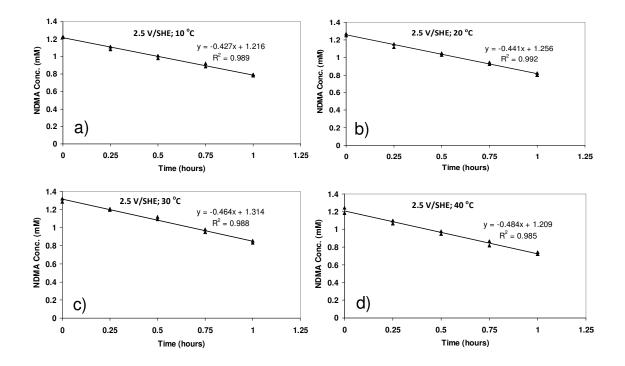
Environmental Science and Technology


Prepared September 2, 2009

6-Pages

5-Figures

1. Quantum Mechanics Simulations. Transition state searches were performed using a quadratic synchronous transit (QST) method (1) and refined using an eigenvector-following method (2). The energy optimized structures and transition states were verified by frequency calculations. Imaginary frequencies with wave numbers smaller than 10 cm⁻¹ were considered numerical artifacts of the integration grid and convergence criteria (3).


2. Flow-through Reactor.

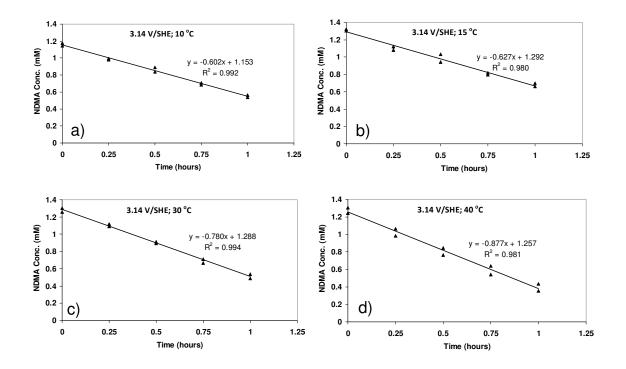

Electrolysis Time (min)

Figure S-1. Effect of current density on NDMA removal in the flow-through reactor. Solid lines represent regression of replicate experiments. Reported errors represent 95% confidence intervals.

3. Calculation of Activation Barrier for NDMA

Figure S-2. Plot of NDMA oxidation during batch experiments at a constant potential of 2.5 V/SHE, in 50 mL of a 1 M HClO₄ background electrolyte using a 1 cm² BDD electrode, at temperatures of: a) 10 $^{\circ}$ C, b) 20 $^{\circ}$ C, c) 30 $^{\circ}$ C, and d) 40 $^{\circ}$ C. Solid lines represent linear regressions of duplicate experiments.

Figure S-3. Plot of NDMA oxidation during batch experiments at a constant potential of 3.14V/SHE, in 50 mL of a 1 M HClO₄ background electrolyte using a 1 cm² BDD electrode, at temperatures of: a) 10 °C, b) 15 °C, c) 30 °C, and d) 40 °C. Solid lines represent linear regressions of duplicate experiments.

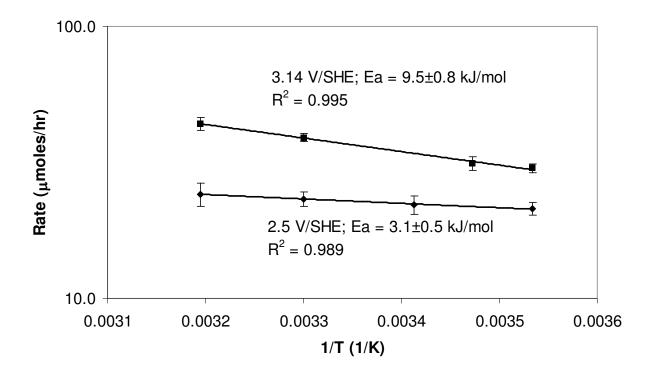


Figure S-4. Initial rates of NDMA oxidation versus reciprocal temperature at potentials of 2.5 and 3.14 V/SHE. Error bars represent 95% confidence intervals on rates. Confidence intervals (95%) are also shown for values determined for E_a . Solid lines represent regressions.

4. DFT Results. Structures from DFT calculations for NDMA, NDMA⁽⁺¹⁾, and NDMA⁽⁺²⁾/H₂O adduct are shown in Figure S-5 below. The water adduct stabilizes the NDMA⁽⁺²⁾ molecule by 201 kJ, which is close to the average N-O bond strength of 230 kJ/mol. The loss of two electrons from NDMA results in shortening of the N=O and N-N bonds from 1.255 to 1.200 Å, and 1.321 to 1.261 Å, respectively. All other bond lengths remained approximately the same.

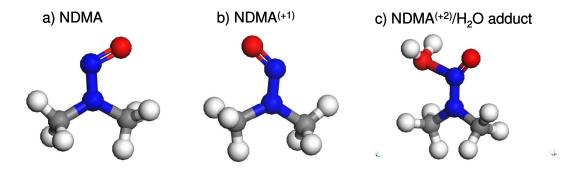


Figure S-5. Molecular structures for: a) NDMA, b) NDMA⁽⁺¹⁾, and c) NDMA⁽⁺²⁾/H₂O adduct.

Atom key: C = gray; N = blue; O = red; H = white.

5. References

- (1) Halgren, T. A.; Lipscomb, W. N., The synchronous-transit method for determining reaction pathways and locating molecular transition states. *Chem. Phys. Lett.* **1977**, *49*, 225-232.
- (2) Fischer, S. K., M., Conjugate peak refinement: An algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom. *Chem. Phys. Lett.* **1992**, *194*, 252-261.
- (3) Ochterski, J. W., Vibrational analysis in gaussian. Available at www.gaussian.com/vib.htm (accessed June 2008).