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1. Quantum Mechanics Simulations. Transition state searches were performed using a 

quadratic synchronous transit (QST) method (1) and refined using an eigenvector-following 

method (2). The energy optimized structures and transition states were verified by frequency 

calculations. Imaginary frequencies with wave numbers smaller than 10 cm-1 were considered 

numerical artifacts of the integration grid and convergence criteria (3). 

2. Flow-through Reactor. 
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Figure S-1. Effect of current density on NDMA removal in the flow-through reactor. Solid 

lines represent regression of replicate experiments. Reported errors represent 95% confidence 

intervals. 
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3. Calculation of Activation Barrier for NDMA 
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Figure S-2. Plot of NDMA oxidation during batch experiments at a constant potential of 2.5 

V/SHE, in 50 mL of a 1 M HClO4 background electrolyte using a 1 cm2 BDD electrode, at 

temperatures of: a) 10 oC, b) 20 oC, c) 30 oC, and d) 40 oC. Solid lines represent linear 

regressions of duplicate experiments. 
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Figure S-3. Plot of NDMA oxidation during batch experiments at a constant potential of 

3.14V/SHE, in 50 mL of a 1 M HClO4 background electrolyte using a 1 cm2 BDD electrode, at 

temperatures of: a) 10 oC, b) 15 oC, c) 30 oC, and d) 40 oC. Solid lines represent linear 

regressions of duplicate experiments. 
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Figure S-4. Initial rates of NDMA oxidation versus reciprocal temperature at potentials of 2.5 

and 3.14 V/SHE. Error bars represent 95% confidence intervals on rates. Confidence intervals 

(95%) are also shown for values determined for Ea. Solid lines represent regressions. 
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4. DFT Results. Structures from DFT calculations for NDMA, NDMA(+1), and NDMA(+2)/H2O 

adduct are shown in Figure S-5 below. The water adduct stabilizes the NDMA(+2) molecule by 

201 kJ, which is close to the average N-O bond strength of 230 kJ/mol. The loss of two electrons 

from NDMA results in shortening of the N=O and N-N bonds from 1.255 to 1.200 Å, and 1.321 

to 1.261 Å, respectively. All other bond lengths remained approximately the same. 

 

 

 

Figure S-5. Molecular structures for: a) NDMA, b) NDMA(+1), and c) NDMA(+2)/H2O adduct. 

Atom key: C = gray; N = blue; O = red; H = white.  
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