Supporting Information to the manuscript:

Mercury(II) Recognition and Fluorescence Imaging *in vitro* through a 3D-Complexation Structure

Mei-Lin Ho,^{†,} * Kew-Yu Chen,[‡] Gene-Hsiang Lee,[‡] Yu-Chun Chen,[‡] Chih-Chieh Wang,[†] Jyh-Fu Lee,[§]

Wen-Chun Chung^{\dagger} *and Pi-Tai Chou*^{\ddagger , *}

[†] Department of Chemistry, Soochow University, Taipei, Taiwan.

[‡] Department of Chemistry, National Taiwan University, Taipei, Taiwan.

[§] National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.

E-mail: meilin_ho@scu.edu.tw, chop@ntu.edu.tw

Supporting Information

Table of contents	S1-S2
1. ¹ H NMR spectrum of TTBQ in CDCl ₃ . (Figure S1)	S3
2. The extension of ¹ H NMR spectrum of TTBQ in CDCl ₃ . (Figure S2)	S4
3. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound TTBQ . (Figure S3)	S5
4. HRMS spectrum of TTBQ . (Figure S4)	S6

5. Job's plot of a 1:1 complex of TTBQ and Hg ²⁺ .(Figure S5)	S7
6. The plot of $A_0/(A_0-A_{352nm})$ against $1/C_g$ at 352 nm (Figure S6)	S8
7. Fluorescence responses of TTBQ to various metal ions. (Figure S7)	39
8. pH-dependent Fluorescence intensity ratio of TTBQ plus Hg^{2+} in aerated aqueous solution.	
(Figure S8)	S10
9. Association Constant Derivation from Absorption titration	1-S12

Figure S1. ¹H NMR spectra of TTBQ in CDCl₃.

Figure S2. The extension of ¹H NMR spectra of TTBQ in CDCl₃.

Figure S3. ¹³C NMR of TTBQ in CDCl₃. (125MHz)

Figure S4. HRMS of TTBQ in CDCl₃. (125MHz)

Figure S5. Job's plot of a 1:1 complex of **TTBQ** and Hg^{2+} , where the increase of absorption at 352 nm was plotted against the mole fraction of Hg^{2+} . [**TTBQ**] + [Hg^{2+}] = 1.50 μ M.

Figure S6. The plot of $A_0/(A_0-A_{352nm})$ against $1/C_g$ at 352 nm. $K_a = 13,020 \pm 520 \text{ M}^{-1}$.

Figure S7. Fluorescence responses of **TTBQ** to various metal ions. Bars represent the final integrated fluorescence response (I_f) over the initial integrated emission (I_i). Initial spectrum was acquired in aerated solution, pH 7. Black bars represent the addition of the appropriate metal ion (1 mM for Li⁺, Na⁺, K⁺, Mg²⁺ and Ca²⁺, 250 μ M for Fe²⁺ and Cu²⁺, and 300 μ M for all other cations) to a 1.5 μ M solution of **TTBQ**. Red bars represent the addition of 0.5 mM Hg²⁺ to solutions containing **TTBQ**. Excitation was provided at 352 nm, and the emission was integrated over 400 to 700 nm.

Figure S8. pH-dependent Fluorescence intensity ratio ($F_{520}/(F_0, pH = 7)$) of **TTBQ** (circle, 1.5 μ M) plus Hg²⁺ (square, 280 μ M) in aerated aqueous solution. $\lambda_{ex} = 355$ nm.

Association Constant Derivation from Absorption titration. The association constant K_a of TTBQ + Hg²⁺ complex formation calculated by the UV-Vis absorption method can be derived as follows

	TTBQ	+ Hg^{2+}	~``	TTBQ/Hg ²⁺
initial	C_0	Cg		0
final	C _M	$\sim C_g$		C_p

On the above expression the association constant is assumed to be not very large so that the concentration of the added Hg^{2+} varies negligibly during the reaction (see text). The absorbance of **TTBQ** at e.g. 352 nm prior to the addition of Hg^{2+} can be expressed by

$$A_0 = C_0 \varepsilon_M \therefore C_0 = \frac{A_0}{\varepsilon_M}$$

Upon adding the guest molecule C_g

$$C_{0} = \frac{A_{0}}{\varepsilon_{M}} = C_{M} + C_{p}$$

$$\therefore C_{p} = \frac{A_{0}}{\varepsilon_{M}} - C_{M} \qquad (1) \qquad \text{On the other hand, } K_{a} = \frac{C_{p}}{C_{M}C_{g}}$$

$$\therefore C_{p} = K_{a}C_{g}C_{M}$$
(2)
(1) = (2)
$$\therefore \frac{A_{0}}{\varepsilon_{M}} - C_{M} = K_{a}C_{g}C_{M} \Rightarrow C_{M} = \frac{A_{0}}{\varepsilon_{M}(K_{a}C_{g}+1)}$$

The absorbance of **TTBQ** and **TTBQ**/Hg²⁺ complex at a specific wavelength can be expressed by

$$A = \varepsilon_M C_M + \varepsilon_p C_p = \varepsilon_M C_M + \varepsilon_p \left(\frac{A_0}{\varepsilon_M} - C_M\right) = \left(\varepsilon_M - \varepsilon_p\right) C_M + \frac{\varepsilon_p A_0}{\varepsilon_M}$$
$$= \frac{\left(\varepsilon_M - \varepsilon_p\right) A_0}{\varepsilon_M (K_a C_g + 1)} + \frac{\varepsilon_p A_0}{\varepsilon_M}$$
$$\therefore \frac{A}{A_0} = \frac{\left(\varepsilon_M - \varepsilon_p\right)}{\varepsilon_M (K_a C_g + 1)} + \frac{\varepsilon_p}{\varepsilon_M} = \frac{\left(\varepsilon_M - \varepsilon_p\right) + \varepsilon_p (K_a C_g + 1)}{\varepsilon_M (K_a C_g + 1)}$$
(3)

Subtracting (1) from both sides of (3) we obtain

$$\therefore \frac{A}{A_0} - 1 = \frac{(\varepsilon_M - \varepsilon_p) + \varepsilon_p (K_a C_g + 1) - \varepsilon_M (K_a C_g + 1)}{\varepsilon_M (K_a C_g + 1)}$$
$$\therefore \frac{A - A_0}{A_0} = \frac{(\varepsilon_M - \varepsilon_p) + (\varepsilon_p - \varepsilon_M) (K_a C_g + 1)}{\varepsilon_M (K_a C_g + 1)} = \frac{(\varepsilon_p - \varepsilon_M) (K_a C_g)}{\varepsilon_M (K_a C_g + 1)}$$

$$\therefore \frac{A_0}{A_0 - A} = \frac{\varepsilon_M (K_a C_g + 1)}{(\varepsilon_M - \varepsilon_p)(K_a C_g)} = \left(\frac{\varepsilon_M}{\varepsilon_M - \varepsilon_p}\right) \left[\frac{1}{K_a C_g} + 1\right]$$
(4)