Supporting Information to the manuscript:

Mercury(II) Recognition and Fluorescence Imaging invitro through a 3D-Complexation Structure
Mei-Lin Ho, ${ }^{\dagger, *}$ Kew-Yu Chen, ${ }^{\ddagger}$ Gene-Hsiang Lee, ${ }^{\ddagger}$ Yu-Chun Chen, ${ }^{\ddagger}$ Chih-Chieh Wang, ${ }^{\dagger}$ Jyh-Fu Lee, ${ }^{\S}$Wen-Chun Chung ${ }^{\dagger}$ and Pi-Tai Chou ${ }^{\ddagger, *}$${ }^{\dagger}$ Department of Chemistry, Soochow University, Taipei, Taiwan.${ }^{\ddagger}$ Department of Chemistry, National Taiwan University, Taipei, Taiwan.${ }^{\text {§ }}$ National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.
E-mail: meilin_ho@scu.edu.tw, chop@ntu.edu.tw
Supporting Information
Table of contents S1-S2

1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{T T B Q}$ in CDCl_{3}. (Figure S 1). S3
2. The extension of ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{T T B Q}$ in CDCl_{3}. (Figure S 2) S4
3. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound TTBQ. (Figure S3) S5
4. HRMS spectrum of TTBQ. (Figure S4) S6
5. Job's plot of a $1: 1$ complex of TTBQ and Hg^{2+}. (Figure S5) S7
6. The plot of $\mathrm{A}_{0} /\left(\mathrm{A}_{0}-\mathrm{A}_{352 \mathrm{~nm}}\right)$ against $1 / \mathrm{C}_{\mathrm{g}}$ at 352 nm .. (Figure S 6). S8
7. Fluorescence responses of TTBQ to various metal ions. (Figure S7) S9
8. pH -dependent Fluorescence intensity ratio of TTBQ plus Hg^{2+} in aerated aqueous solution.
(Figure S8) S10
9. Association Constant Derivation from Absorption titration S11-S12

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of TTBQ in CDCl_{3}.

1H

Figure S2. The extension of ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{T T B Q}$ in CDCl_{3}.

Figure S3. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{T T B Q}$ in $\mathrm{CDCl}_{3} .(125 \mathrm{MHz})$

Figure S4. HRMS of TTBQ in CDCl_{3}. $(125 \mathrm{MHz})$

Figure S5. Job's plot of a 1:1 complex of TTBQ and Hg^{2+}, where the increase of absorption at 352 nm was plotted against the mole fraction of $\mathrm{Hg}^{2+} .[\mathbf{T T B Q}]+\left[\mathrm{Hg}^{2+}\right]=1.50 \mu \mathrm{M}$.

Figure S6. The plot of $\mathrm{A}_{0} /\left(\mathrm{A}_{0}-\mathrm{A}_{352 \mathrm{~nm}}\right)$ against $1 / \mathrm{C}_{\mathrm{g}}$ at $352 \mathrm{~nm} . \mathrm{K}_{\mathrm{a}}=13,020 \pm 520 \mathrm{M}^{-1}$.

Figure S7. Fluorescence responses of TTBQ to various metal ions. Bars represent the final integrated fluorescence response (I_{f}) over the initial integrated emission $\left(\mathrm{I}_{\mathrm{i}}\right)$. Initial spectrum was acquired in aerated solution, pH 7 . Black bars represent the addition of the appropriate metal ion (1 mM for $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Mg}^{2+}$ and $\mathrm{Ca}^{2+}, 250 \mu \mathrm{M}$ for Fe^{2+} and Cu^{2+}, and $300 \mu \mathrm{M}$ for all other cations) to a $1.5 \mu \mathrm{M}$ solution of TTBQ. Red bars represent the addition of $0.5 \mathrm{mM} \mathrm{Hg}^{2+}$ to solutions containing TTBQ. Excitation was provided at 352 nm , and the emission was integrated over 400 to 700 nm .

Figure S8. pH -dependent Fluorescence intensity ratio $\left(\mathrm{F}_{520} /\left(\mathrm{F}_{0}, \mathrm{pH}=7\right)\right.$) of TTBQ $($ circle, $1.5 \mu \mathrm{M})$ plus Hg^{2+} (square, $280 \mu \mathrm{M}$) in aerated aqueous solution. $\lambda_{\mathrm{ex}}=355 \mathrm{~nm}$.

Association Constant Derivation from Absorption titration. The association constant K_{a} of
TTBQ $+\mathrm{Hg}^{2+}$ complex formation calculated by the UV-Vis absorption method can be derived as follows

$$
\text { TTBQ } \quad+\mathrm{Hg}^{2+} \quad \rightleftharpoons \quad \text { TTBQ } / \mathrm{Hg}^{2+}
$$

initial
C_{0}
Cg
0
final
C_{M}
$\sim \mathrm{C}_{\mathrm{g}}$
Cp

On the above expression the association constant is assumed to be not very large so that the concentration of the added Hg^{2+} varies negligibly during the reaction (see text). The absorbance of TTBQ at e.g. 352 nm prior to the addition of Hg^{2+} can be expressed by
$A_{0}=C_{0} \varepsilon_{M} \therefore C_{0}=\frac{A_{0}}{\varepsilon_{M}}$
Upon adding the guest molecule C_{g}
$\mathrm{C}_{0}=\frac{A_{0}}{\varepsilon_{M}}=C_{M}+C_{p}$
$\therefore C_{p}=\frac{A_{0}}{\varepsilon_{M}}-C_{M}$
(1) On the other hand, $K_{a}=\frac{C_{p}}{C_{M} C_{g}}$
$\therefore C_{p}=K_{a} C_{g} C_{M}$
(1) $=$ (2) $\therefore \frac{A_{0}}{\varepsilon_{M}}-C_{M}=K_{a} C_{g} C_{M} \Rightarrow C_{M}=\frac{A_{0}}{\varepsilon_{M}\left(K_{a} C_{g}+1\right)}$

The absorbance of TTBQ and TTBQ $/ \mathrm{Hg}^{2+}$ complex at a specific wavelength can be expressed by

$$
\begin{aligned}
A= & \varepsilon_{M} C_{M}+\varepsilon_{P} C_{p}=\varepsilon_{M} C_{M}+\varepsilon_{p}\left(\frac{A_{0}}{\varepsilon_{M}}-C_{M}\right)=\left(\varepsilon_{M}-\varepsilon_{p}\right) C_{M}+\frac{\varepsilon_{p} A_{0}}{\varepsilon_{M}} \\
& =\frac{\left(\varepsilon_{M}-\varepsilon_{p}\right) A_{0}}{\varepsilon_{M}\left(K_{a} C_{g}+1\right)}+\frac{\varepsilon_{p} A_{0}}{\varepsilon_{M}}
\end{aligned}
$$

$\therefore \frac{A}{A_{0}}=\frac{\left(\varepsilon_{M}-\varepsilon_{p}\right)}{\varepsilon_{M}\left(K_{a} C_{g}+1\right)}+\frac{\varepsilon_{p}}{\varepsilon_{M}}=\frac{\left(\varepsilon_{M}-\varepsilon_{p}\right)+\varepsilon_{p}\left(K_{a} C_{g}+1\right)}{\varepsilon_{M}\left(K_{a} C_{g}+1\right)}$

Subtracting (1) from both sides of (3) we obtain

$$
\begin{aligned}
& \therefore \frac{A}{A_{0}}-1=\frac{\left(\varepsilon_{M}-\varepsilon_{p}\right)+\varepsilon_{p}\left(K_{a} C_{g}+1\right)-\varepsilon_{M}\left(K_{a} C_{g}+1\right)}{\varepsilon_{M}\left(K_{a} C_{g}+1\right)} \\
& \therefore \frac{A-A_{0}}{A_{0}}=\frac{\left(\varepsilon_{M}-\varepsilon_{p}\right)+\left(\varepsilon_{p}-\varepsilon_{M}\right)\left(K_{a} C_{g}+1\right)}{\varepsilon_{M}\left(K_{a} C_{g}+1\right)}=\frac{\left(\varepsilon_{p}-\varepsilon_{M}\right)\left(K_{a} C_{g}\right)}{\varepsilon_{M}\left(K_{a} C_{g}+1\right)}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \frac{A_{0}}{A_{0}-A}=\frac{\varepsilon_{M}\left(K_{a} C_{g}+1\right)}{\left(\varepsilon_{M}-\varepsilon_{p}\right)\left(K_{a} C_{g}\right)}=\left(\frac{\varepsilon_{M}}{\varepsilon_{M}-\varepsilon_{p}}\right)\left[\frac{1}{K_{a} C_{g}}+1\right] \tag{4}
\end{equation*}
$$

