Convergent Synthesis of Piperidines by the Union of Conjugated Alkynes with Imines: A Unique Regioselective Bond Construction for Heterocycle Synthesis

Ming Z. Chen and Glenn C. Micalizio*
Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458
E-mail: micalizio@scripps.edu

Supporting Information

Experimental Procedures and Spectral Data

General. All reactions were conducted in flame-dried glassware under a nitrogen or argon atmosphere with anhydrous solvents, unless otherwise noted. Diethyl ether, dichloromethane, tetrahydrofuran and toluene were obtained by passing HPLC grade solvents through activated alumina columns. Acetonitrile was distilled over calcium hydride. Titanium tetraisopropoxide was purified by distillation at 250 millitorr. All conjugated homopropagylic alcohols were synthesized by known procedures. ${ }^{1-4}$ Imines 40, 42, and all other known imines were prepared by stirring the aldehyde and amine in THF or DCM in the presence of anhydrous MgSO_{4}, followed by filtration and concentration. All imines were purified by distillation or recrystalization prior to use. All other commercially available reagents were used as received. Thin-layer chromatography was performed on $250 \mu \mathrm{~m}$ E. Merck silica gel plates (60F-254). Silica gel for flash column chromatography was purchased from Silicycle (P60, particle size 40$63 \mu \mathrm{~m}$). All compounds purified by chromatography were sufficiently pure for use in further experiments except otherwise indicated.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were recorded using a Bruker AM-400 or Bruker AM-500 instrument. ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported relative to residual CHCl_{3} (7.26 ppm). ${ }^{13} \mathrm{C}$ NMR chemical shifts were reported relative to the central line of CDCl_{3} (77.23 ppm). Infrared spectra were recorded using a Thermo Electron Nicolet 6700 FTIR spectrometer or Perkin Elmer Spectrum One 2000 FT-IR spectrometer. Highresolution mass spectrometry was performed on a 9.4 T Bruker Qe FT-ICR Mass Spectrometer at the W. M. Keck Foundation Biotechnology and Resource Laboratory at Yale University. Low-resolution mass spectrometry was performed on a Varian 500-MS IT Mass Spectrometer using electrospray ionization. Optical rotations were measured on an Autopol IV Automatic Polarimeter (from Rudolph Research Analytical) using a quartz cell with a 0.5 mL capacity and a 10 cm path length. X-ray crystallography was performed using a Rigaku Mercury2 CCD area detector with graphite monochromated Mo-K α radiation.

32

-40 to $0^{\circ} \mathrm{C}$

6

Synthesis of (E)-5-(3-chlorophenyl)-4-phenyl-5-(propylamino)pent-3-en-1-ol) (6). To a solution of imine $32(83 \mu \mathrm{~L}, 90.8 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(222 \mu \mathrm{~L}, 213 \mathrm{mg}$, $0.75 \mathrm{mmol})$ in diethyl ether $(2.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.18 \mathrm{M}$ in diethyl ether, 1.50 mmol) via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 1.5 h . Then a solution of lithium alkoxide 33 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol ($103 \mu \mathrm{~L}, 109.6 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.51 \mathrm{M}$ in hexane, 0.80 mmol) at $78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40^{\circ} \mathrm{C}$ via cannula. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 6 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate (4×20 mL). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(40 \rightarrow 50 \% \mathrm{EtOAc} /$ hexane $)$ to afford amino alcohol 6 as an orange oil (103 mg , 63\%).

Data for (E)-5-(3-chlorophenyl)-4-phenyl-5-(propylamino)pent-3-en-1-ol (6): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.07(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.83$ (t, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{dt}, J=6.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.40,144.82,138.91,134.41,129.69,129.47,128.40,128.14,127.47$, $127.39,126.32,125.14,69.44,62.83,50.23,32.76,23.63,12.24$; IR (thin film, NaCl) $v_{\max } 3328$ (br), 3055, 3020, 2958, 2930, 2873, 1595, 1573, 1493, 1473, 1457, 1051, 770, $702 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 330.1619$, found 330.1616.

Synthesis of (E)-4-(3-bromophenyl)-5-(3-chlorophenyl)-5-(propylamino)pent-3-en-1ol (7). To a solution of imine $32(83 \mu \mathrm{~L}, 90.8 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(222 \mu \mathrm{~L}$, $213 \mathrm{mg}, 0.75 \mathrm{mmol})$ in diethyl ether $(2.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise c $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.24 \mathrm{M}$ in diethyl ether, 1.50 mmol$)$ via a gas-tight syringe. The mixture was warmed to $-40^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2 h . Then a solution of lithium alkoxide 34 in tetrahydrofuran (1 mL), generated from deprotonation of the corresponding alcohol ($178 \mathrm{mg}, 0.79 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.47 \mathrm{M}$ in hexane, 0.87 mmol) at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 15 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(60 \rightarrow 70 \% \mathrm{EtOAc} / \mathrm{hexane})$ to afford amino alcohol 7 as an orange oil ($126 \mathrm{mg}, 62 \%$).

Data for (E)-4-(3-bromophenyl)-5-(3-chlorophenyl)-5-(propylamino)pent-3-en-1-ol (7): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-6.97(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{t} . J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.10(\mathrm{dt}, J=6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.41(\mathrm{~m}, 4 \mathrm{H}), 0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 145.90,145.37,139.63,135.18,130.48,130.23,129.17,128.90$, $128.27,128.16,127.09,126.09,70.11,63.46,50.92,33.50,24.30,12.99$; IR (thin film, $\mathrm{NaCl}) v_{\max } 3308$ (br), 3056, 3022, 2956, 2927, 2873, 1594, 1573, 1557, 1472, 1442, 1192, 1049, 770, $700 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrClNO}[\mathrm{M}+\mathrm{H}]^{+} 408.1$, found 408.2

32

Synthesis of (E)-4-(benzo[d][1,3]dioxol-5-yl)-5-(3-chlorophenyl)-5-(propylamino)

pent-3-en-1-ol (8). To a solution of imine $32(83 \mu \mathrm{~L}, 90.8 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-$ $\operatorname{Pr})_{4}(222 \mu \mathrm{~L}, 213 \mathrm{mg}, 0.75 \mathrm{mmol})$ in diethyl ether $(2.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.24 \mathrm{M}$ in diethyl ether, 1.50 mmol) via a gas-tight syringe. The mixture was warmed to $-40^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2 h . Then a solution of lithium alkoxide 35 in tetrahydrofuran (1 mL), generated from deprotonation of the corresponding alcohol ($145 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.47 \mathrm{M}$ in hexane, 0.80 mmol) at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 15 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(60 \rightarrow 70 \%$ EtOAc/hexane) to afford amino alcohol 8 as an orange oil (108 mg, 58\%).

Data for (E)-4-(benzo[d][1,3]dioxol-5-yl)-5-(3-chlorophenyl)-5-(propylamino) pent-3-en-1-ol (8): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16$ ($\mathrm{s}, 1 \mathrm{H}$), 7.10 (app. d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.01-6.99 (m, H), 6.61 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}$, $2 \mathrm{H}), 5.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 4 \mathrm{H})$, $0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.19,146.43,144.52$, 144.41, 134.00, 132.07, 129.29, 127.63, 127.07, 125.82, 124.95, 122.37, 109.51, 107.93, 100.85, 69.09, 62.42, 49.81, 32.32, 30.10 (residual acetone peak), 23.21, 11.83; IR (thin film, $\mathrm{NaCl}) v_{\text {max }} 3331$ (br), 3066, 2958, 2924, 1721, 1595, 1574, 1502, 1487, 1434, 1237, 1040, 937, 812, $734 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$374.1517, found 374.1516 .

32

$-40^{\circ} \mathrm{C}$ to rt

9

Synthesis of (E)-5-(3-chlorophenyl)-5-(propylamino)-4-(thiophen-3-yl)pent-3-en-1-ol (9). To a solution of imine $32(83 \mu \mathrm{~L}, 90.8 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(222 \mu \mathrm{~L}, 213$ $\mathrm{mg}, 0.75 \mathrm{mmol})$ in diethyl ether (2.5 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}$ (2.24 M in diethyl ether, 1.50 mmol) via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2 h . Then a solution of lithium alkoxide 36 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol ($140 \mathrm{mg}, 0.92 \mathrm{mmol}$) with $n-\operatorname{BuLi}(2.47 \mathrm{M}$ in hexane, 1.01 mmol$)$ at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine- Ti complex at $-40{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 15 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(40 \rightarrow 50 \%$ EtOAc/hexane) to afford amino alcohol 9 as an orange oil ($93 \mathrm{mg}, 55 \%$).

Data for (E)-5-(3-chlorophenyl)-5-(propylamino)-4-(thiophen-3-yl)pent-3-en-1-ol (9): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.73$ $(\mathrm{dd}, J=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=4.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}$, $1 \mathrm{H}), 3.56(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{dt}, J=6.7,6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.59(\mathrm{br}, 2 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.57,139.85,137.98,134.08,129.36,128.59,127.60,127.10,126.38,125.73$, $124.85,123.10,68.76,62.34,49.74,32.56,23.23,11.86$; IR (thin film, NaCl) $v_{\max } 3306$ (br), 2958, 2931, 2873, 1594, 1573, 1471, 1428, 1192, 1077, 1049, 860, $785 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClNOS}[\mathrm{M}+\mathrm{H}]^{+} 336.1$, found 336.5.

32

$40^{\circ} \mathrm{C}$ to rt

10

Synthesis of (E)-5-(3-chlorophenyl)-4-(furan-3-yl)-5-(propylamino)pent-3-en-1-ol (10). To a solution of imine $32(50 \mu \mathrm{~L}, 54.4 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(133 \mu \mathrm{~L}$, $128 \mathrm{mg}, 0.45 \mathrm{mmol})$ in diethyl ether $(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise c $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.28 \mathrm{M}$ in diethyl ether, 0.90 mmol$)$ via a gas-tight syringe. The mixture was warmed to $-40^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2 h . Then a solution of lithium alkoxide 37 in diethyl ether (3 mL), generated from deprotonation of the corresponding alcohol $(140 \mathrm{mg}, 0.92 \mathrm{mmol})$ with $n-\mathrm{BuLi}(2.47 \mathrm{M}$ in hexane, 1.01 mmol) at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 15 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(40 \rightarrow 50 \% \mathrm{EtOAc} /$ hexane $)$ to afford amino alcohol 10 as an orange oil ($53.5 \mathrm{mg}, 56 \%$).

Data for (E)-5-(3-chlorophenyl)-4-(furan-3-yl)-5-(propylamino)pent-3-en-1-ol (10): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~s}$, $1 \mathrm{H}), 5.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H})$, 2.43-2.38 (m, 1H), 2.34 (dt, $J=6.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.58,142.35,140.43,129.35,127.53,127.10$, $126.56,125.66,120.99,111.41,68.46,62.28,49.70,32.50,23.23,11.85$; IR (thin film, $\mathrm{NaCl}) v_{\max } 3334$ (br), 3063, 2960, 2932, 2874, 1947, 1876, 1660, 1595, 1574, 1471, 1428, 1161, 1077, 1026, 873, $788 \mathrm{~cm}^{-1}$; HRMS (EI, H) m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 320.1412, found 320.1406.

Synthesis of (E)-5-(3-chlorophenyl)-5-(propylamino)-4-(1-(triisopropylsilyl)-1H-pyrrol-3-yl)pent-3-en-1-ol (11). To a solution of imine $32(50 \mu \mathrm{~L}, 54.4 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(133 \mu \mathrm{~L}, 128 \mathrm{mg}, 0.45 \mathrm{mmol})$ in diethyl ether $(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.28 \mathrm{M}$ in diethyl ether, 0.90 mmol$)$ via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2 h . Then a solution of lithium alkoxide 38 in diethyl ether (1.5 mL), generated from deprotonation of the corresponding alcohol ($218 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.17$ M in hexane, 0.83 mmol) at $-78^{\circ} \mathrm{C}$ followed by warming to $0^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 15 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(40 \rightarrow 50 \% \mathrm{EtOAc} /$ hexane $)$ to afford amino alcohol 11 as an orange oil ($94 \mathrm{mg}, 66 \%$).

Data for (E)-5-(3-chlorophenyl)-5-(propylamino)-4-(1-(triisopropylsilyl)-1H-pyrrol-3-yl)pent-3-en-1-ol (11): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H})$, $6.58(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.28$ (septex, $J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.03,139.87,134.26,129.51,128.03,127.01,126.17,124.20,123.96,123.77$, $121.85,111.70,69.21,63.27,50.27,33.07,23.73,18.26,18.23,12.28,12.11$; IR (thin film, NaCl) $v_{\max } 3311$ (br), 2947, 2868, 1595, 1572, 1473, 1385, 1263, 1092, 1017, 884, 785, $692 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{ClN}_{2} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} 475.2906$, found 475.2895 .

Synthesis of (E)-5-(3-chlorophenyl)-5-(propylamino)-4-(1-(triisopropylsilyl)-1H-indol-3-yl)pent-3-en-1-ol (12). To a solution of imine $32(50 \mu \mathrm{~L}, 54.5 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(133 \mu \mathrm{~L}, 128 \mathrm{mg}, 0.45 \mathrm{mmol})$ in diethyl ether $(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(1.89 \mathrm{M}$ in diethyl ether, 0.90 mmol$)$ via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 1.5 h . Then a solution of lithium alkoxide 39 in diethyl ether (1.5 mL), generated from deprotonation of the corresponding alcohol ($256 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.57$ M in hexane, 0.83 mmol) at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 15 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(20 \rightarrow 30 \% \mathrm{EtOAc} / \mathrm{hexane})$ to afford amino alcohol 12 as an orange oil ($83.4 \mathrm{mg}, 53 \%$).

Data for (E)-5-(3-chlorophenyl)-5-(propylamino)-4-(1-(triisopropylsilyl)-1H-indol-3-yl)pent-3-en-1-ol (12): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.08-6.97(\mathrm{~m}, 5 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=$ $6.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 7 \mathrm{H}), 0.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}), 0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.30,140.70,137.95,133.95,129.18,126.76,125.89$, $121.41,119.71,119.40,114.68,113.93,68.71,62.63,49.89,32.96,23.28,18.08,12.73$, 11.82; IR (thin film, NaCl) $v_{\max } 3325$ (br), 3045, 2950, 2869, 1740, 1651, 1606, 1594, 1573, 1538, 1463, 1449, 1384, 1295, 1165, 1142, 1049, 1015, 883, $741 \mathrm{~cm}^{-1}$; LRMS (EI, H) m / z calc'd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{ClN}_{2} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} 525.3$, found 525.8.

Synthesis of (3E,5Z)-4-((2-chlorophenyl)(3-methylbut-2-enylamino)methyl)hepta-3,5-dien-1-ol (13). To a solution of imine $40(310 \mu \mathrm{~L}, 343 \mathrm{mg}, 1.65 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-$ $\operatorname{Pr})_{4}(444 \mu \mathrm{~L}, 426 \mathrm{mg}, 1.5 \mathrm{mmol})$ in diethyl ether $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise c $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.26 \mathrm{M}$ in diethyl ether, 3.0 mmol) via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 3 h . Then a solution of lithium alkoxide 41 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol ($57 \mu \mathrm{~L}, 55 \mathrm{mg}, 0.5 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.55 \mathrm{M}$ in hexane, 0.55 mmol) at $-78^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40^{\circ} \mathrm{C}$ via cannula. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 6 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(40 \rightarrow 50 \% \mathrm{EtOAc} /$ hexane $)$ to afford amino alcohol 13 as an orange oil ($101 \mathrm{mg}, 63 \%$).

Data for (3E,5Z)-4-((2-chlorophenyl)(3-methylbut-2-enylamino)methyl)hepta-3,5-dien-1-ol (13): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24-7.05 (m, $3 \mathrm{H}), 5.61-5.52(\mathrm{~m}, 3 \mathrm{H}), 5.18(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.09-2.99 (m, 2H), 2.17-2.13 (m, 2H), 1.63 (s, 3H), 1.46 (s, 3H), $1.30(\mathrm{~d}, ~ J=5.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.12,138.44,134.67,133.89,129.44,129.11,128.73$, $127.85,126.54,125.64,125.02,122.69,63.84,62.20,45.20,32.69,25.72,17.79,14.63$; IR (thin film, NaCl) $v_{\max } 3321$ (br), 3064, 3006, 2968, 2912, 2871, 1673, 1571, 1471, 1442, 1376, 1050, $751 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$ 320.1776 , found 320.1770 .

Synthesis of (3E,5E)-4-(benzo[d][1,3]dioxol-5-yl(phenylamino)methyl)hepta-3,5-dien-1-ol (14). To a solution of imine $42(78.8 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(155 \mu \mathrm{~L}$, $150 \mathrm{mg}, 0.53 \mathrm{mmol}$) in diethyl ether (2.5 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise c $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.20 \mathrm{M}$ in diethyl ether, 1.05 mmol$)$ via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 1.5 h . Then a solution of lithium alkoxide 27 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol ($80 \mu \mathrm{~L}, 77 \mathrm{mg}, 0.70 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.55 \mathrm{M}$ in hexane, 0.74 mmol) at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 6 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexane) to afford amino alcohol 14 as an orange oil ($71.6 \mathrm{mg}, 61 \%$).

Data for (3E,5E)-4-(benzo[d][1,3]dioxol-5-yl(phenylamino)methyl)hepta-3,5-dien-1ol (14): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.76$ (app. d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 5.80-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{br}$, $1 \mathrm{H}), 3.64-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~d} \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.28,147.65,147.24,138.46,136.31,129.51,127.86,126.52,125.58,121.39$, $117.89,113.55,108.72,108.51,101.45,62.79,60.85,31.45,19.50$; IR (thin film, NaCl) $v_{\max } 3555,3414$ (br), 3046, 2880, 2245, 1601, 1540, 1502, 1485, 1440, 1316, 1248, 1039, 963, $750 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 360.1570$, found 360.1573 .

43

15

Synthesis of (E)-4-cyclopentenyl-5-(4,4-dimethoxybutylamino)-5-phenylpent-3-en-1ol (15). To a solution of imine $43(104 \mu \mathrm{~L}, 111 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(222 \mu \mathrm{~L}$, $213 \mathrm{mg}, 0.75 \mathrm{mmol})$ in diethyl ether $(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}$ (1.85 M in diethyl ether, 1.50 mmol) via a gas-tight syringe. The mixture was warmed to $-40^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 1.5 h . Then a solution of lithium alkoxide 30 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol ($170 \mathrm{mg}, 1.25 \mathrm{mmol}$) with $n-\operatorname{BuLi}(2.44 \mathrm{M}$ in hexane, 1.30 mmol$)$ at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 15 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(90 \rightarrow 100 \%$ $\mathrm{EtOAc} /$ hexane) to afford 15 as an orange oil ($93.0 \mathrm{mg}, 52 \%$).

Data for (E)-4-cyclopentenyl-5-(4,4-dimethoxybutylamino)-5-phenylpent-3-en-1-ol (15): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.46(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-$ $5.26(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 6 \mathrm{H})$, 2.57-2.39 (m, 2H), 2.29 (dt, $J=6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.18$ (m, 2H), 1.72-1.64 (m, 2H), 1.60-1.43 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.82,142.75,140.95,129.71$, $128.03,127.45,126.77,122.95,104.46,67.54,62.74,52.70,47.66,36.54,32.56,30.36$, 25.29, 23.60; IR (thin film, NaCl) $v_{\max } 3401$ (br), 3060, 3026, 2948, 2845, 1601, 1492, 1454, 1384, 1191, 1129, 1051, $702 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3}[\mathrm{M}+$ $\mathrm{H}]^{+} 360.3$, found 360.7 .

Synthesis of (3E,5E)-4-((benzylamino)(phenyl)methyl)-6-phenylhexa-3,5-dien-1-ol

(16). To a solution of imine $44(90 \mu \mathrm{~L}, 97.5 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(222 \mu \mathrm{~L}$, $213 \mathrm{mg}, 0.75 \mathrm{mmol})$ in diethyl ether $(2.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise c $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.18 \mathrm{M}$ in diethyl ether, 1.50 mmol$)$ via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 1.5 h . Then a solution of lithium alkoxide 45 in diethyl ether (2 mL), generated from deprotonation of the corresponding alcohol ($129 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.51 \mathrm{M}$ in hexane, 0.80 mmol) at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40^{\circ} \mathrm{C}$ via cannula. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 6 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($25 \rightarrow 30 \% \mathrm{EtOAc} /$ hexane) to afford amino alcohol 16 as an orange oil (95.5 $\mathrm{mg}, 52 \%)$.
Data for (3E,5E)-4-((benzylamino)(phenyl)methyl)-6-phenylhexa-3,5-dien-1-ol (16): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.09(\mathrm{~m}, 13 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $2 \mathrm{H}), 3.66(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.05,140.81,140.47,137.95,130.30,128.95,128.82,128.75,128.57,128.03$, $127.93,127.50,127.40,126.80,124.45,64.29,62.85,52.44,31.96$; IR (thin film, NaCl) $v_{\max } 3312$ (br), 3082, 3059, 3025, 2918, 2874,1599, 1493, 1452, 1335, 1049, 1029, 959, $749,699 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 370.2165$, found 370.2153 .

Synthesis of (E)-4-(benzo[d][1,3]dioxol-5-yl)-5-(benzylamino)-5-phenylpent-3-en-1-ol (46). To a solution of imine $44(90 \mu \mathrm{~L}, 97.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(222 \mu \mathrm{~L}, 213$ $\mathrm{mg}, 0.75 \mathrm{mmol})$ in diethyl ether $(2.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}$ (2.18 M in diethyl ether, 1.5 mmol) via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 1.5 h . Then a solution of lithium alkoxide 35 in tetrahydrofuran (1 mL), generated from deprotonation of the corresponding alcohol ($112 \mu \mathrm{~L}, 143 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.51 \mathrm{M}$ in hexane, 0.80 mmol) at $-78^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 6 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(40 \rightarrow 60 \%$ EtOAc/hexane) to afford amino alcohol 46 as an orange oil ($80.6 \mathrm{mg}, 42 \%$).

Data for (E)-4-(benzo[d][1,3]dioxol-5-yl)-5-(benzylamino)-5-phenylpent-3-en-1-ol

 (46): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.22(\mathrm{~m}, 10 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ (s, 1H), 6.35 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.93 (s, 2H), 5.86 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (s, 1H), 3.80 (appd. q, $J=13.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.64(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.26(\mathrm{dt}, J=7.4,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.58$ (br, 2H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.53,146.75,145.26,142.27,140.83,132.90$, $128.78,128.58,128.56,128.13,127.45,127.33,125.13,122.85,110.06,108.27,101.22$, 68.96, 62.95, 52.09, 32.80; IR (thin film, NaCl) $v_{\max } 3321$ (br), 3062, 3027, 2886, 1602, 1487, 1453, 1436, 1331, 1237, 1040, 936, $732 \mathrm{~cm}^{-1}$; HRMS (EI, H) m / z calc'd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$388.1907, found 388.1907.

Synthesis of (E)-3-(6-benzyl-7-phenyl-6,7-dihydro-[1,3]dioxolo[4,5-g]isoquinolin-8(5H)-ylidene)propan-1-ol (17). To a solution of amino alcohol 46 ($60.8 \mathrm{mg}, 0.157$ mmol) in EtOH (3 mL) was added $1,3,5$-trioxane ($212 \mathrm{mg}, 2.35 \mathrm{mmol}$) and concentrated aqueous $\mathrm{HCl}(1.57 \mathrm{mmol})$. The reaction was heated at reflux for 20 h . After cooling down to room temperature, the solvent was removed in vacuo, then the residue was taken up in chloroform. The resulting solution was successively washed with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($15-20 \%$ EtOAc/hexane) to afford piperidine 17 as a pale yellow oil ($49.8 \mathrm{mg}, 79 \%$).
Data for (E)-3-(6-benzyl-7-phenyl-6,7-dihydro-[1,3]dioxolo[4,5-g]isoquinolin-8(5H)-ylidene)propan-1-ol (17): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.18$ (m, 10H), $7.10(\mathrm{~s}$, $1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 5.44(\mathrm{dd}, J=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}$, 4 H), 3.73 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.90-2.75 (m, 2H), 1.43 (br, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.27,146.17,142.14,139.80,133.88,130.18$, 129.22, 128.71, 128.44, 128.22, 127.42, 127.20, 126.56, 125.68, 108.54, 106.82, 101.24, 69.95, 63.35, 59.13, 50.93, 30.03; IR (thin film, NaCl) $v_{\max } 3569,3414$ (br), 3083, 3064, 3027, 2886, 2246, 1601, 1502, 1482, 1451, 1315, 1240, 1039, 937, $734 \mathrm{~cm}^{-1}$; HRMS (EI, H) m / z calc'd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 400.1907$, found 400.1909.

Synthesis of (E)-3-(5-(3-chlorophenyl)-6-propyl-6,7-dihydrothieno[2,3-c]pyridin-4(5H)-ylidene)propan-1-ol (18). To a solution of amino alcohol 9 ($39.5 \mathrm{mg}, 0.118$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.6 \mathrm{~mL})$ was added 1,3,5-trioxane ($212 \mathrm{mg}, 2.35 \mathrm{mmol}$) and (1S)-(+)-

10 -camphorsulfonic acid $(41.1 \mathrm{mg}, 0.117 \mathrm{mmol})$. The reaction was heated at reflux for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL})$ and extracted with dichloromethane (3 x 10 mL). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (20-30\% EtOAc/hexane) to afford piperidine 18 as a pale yellow oil ($29.0 \mathrm{mg}, 71 \%$).
Data for (E)-3-(5-(3-chlorophenyl)-6-propyl-6,7-dihydrothieno[2,3-c]pyridin-4(5H)-ylidene)propan-1-ol (18): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (s, 1H), 7.10-7.06 (m, 4H), 5.32 (t, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.69(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{dt}, J=6.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.49$ $(\mathrm{m}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.16, 136.45, 134.01, $132.41,129.33,129.26,128.25,127.07,126.21,126.10,124.39,122.63,68.73,62.55$, $55.86,46.56,32.60,30.10$ (residual acetone peak), $21.39,11.86$; IR (thin film, NaCl) $v_{\max }$ 3351 (br), 2958, 2930, 1726, 1594, 1571, 1470, 1422, 1378, 1319, 1187, 1047, 908, 779, $680 \mathrm{~cm}^{-1}$; LRMS (EI, H) m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{CINOS}[\mathrm{M}+\mathrm{H}]^{+} 348.1$, found 348.5.

Synthesis of (E)-3-((5R,7R)-5-(3-chlorophenyl)-7-methyl-6-propyl-6,7-dihydrothieno [2,3-c]pyridin-4(5H)-ylidene)propan-1-ol (19). To a solution of amino alcohol 9 (32.6 $\mathrm{mg}, 0.097 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.1 \mathrm{~mL})$ in a sealed tube was added acetaldehyde ($27 \mu \mathrm{~L}$, 0.049 mmol) and (1 S)-(+)-10-camphorsulfonic acid ($33.9 \mathrm{mg}, 0.146 \mathrm{mmol}$). The reaction was heated in a $100{ }^{\circ} \mathrm{C}$ oil bath for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(25 \% \mathrm{EtOAc} /$ hexane $)$ to afford piperidine 19 as a pale yellow oil (single diastereomer, $24.2 \mathrm{mg}, 69 \%$). The relative stereochemistry was determined by ${ }^{1} \mathrm{H}$ NMR.

Data for (E)-3-((5R,7R)-5-(3-chlorophenyl)-7-methyl-6-propyl-6,7-dihydrothieno [2,3-c]pyridin-4(5H)-ylidene)propan-1-ol (19): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 4 \mathrm{H}), 5.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H})$, $3.90(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{dt}, J=6.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.55$ $(\mathrm{m}, 1 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.03,143.13,133.98,132.34,129.25,129.15$, $128.41,127.01,126.44,126.35,124.22,122.38,67.96,62.54,50.23,47.75,32.5221 .86$, 19.49, 11.95; IR (thin film, NaCl) $v_{\max } 3350$ (br), 2964, 2931, 2872, 1593, 1571, 1471, 1422, 1376, 1306, 1186, 1047, 909, $683 \mathrm{~cm}^{-1}$; LRMS (EI, H) m / z calc'd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNOS}[\mathrm{M}+\mathrm{H}]^{+} 362.1$, found 362.6.

Synthesis of (E)-3-((5R,7R)-5-(3-chlorophenyl)-7-methyl-6-propyl-6,7-dihydrofuro [2,3-c]pyridin-4(5H)-ylidene)propan-1-ol (20). To a solution of amino alcohol 10 (54.6 $\mathrm{mg}, 0.170 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4.1 \mathrm{~mL})$ in a sealed tube was added acetaldehyde ($52 \mu \mathrm{~L}$, 0.927 mmol) and ($1 S$)-(+)-10-camphorsulfonic acid ($64.5 \mathrm{mg}, 0.278 \mathrm{mmol}$). The reaction was heated in a $100{ }^{\circ} \mathrm{C}$ oil bath for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{NaOH} \mathrm{(4} \mathrm{mL)} \mathrm{and} \mathrm{extracted} \mathrm{with}$ dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexane) to afford piperidine 20 as a pale yellow oil (single diastereomer, $35.0 \mathrm{mg}, 60 \%$). The relative stereochemistry was assigned by analogy with compound 19.

Data for (E)-3-((5R,7R)-5-(3-chlorophenyl)-7-methyl-6-propyl-6,7-dihydrofuro [2,3-c]pyridin-4(5H)-ylidene)propan-1-ol (20): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{dt}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.48-2.41 (m, 1H), 2.30-2.23 (m, 1H), 1.54-1.45 (m, 3H), $1.30(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.06,143.38,141.44,133.96,129.44$, $129.26,128.45,127.08,126.41,122.77,115.14,108.80,67.00,62.42,48.74,48.23,31.79$, 21.94, 15.45, 11.95; IR (thin film, NaCl) $v_{\max } 3350$ (br), 3064, 2962, 2932, 2873, 1593, 1572, 1471, 1316, 1156, 1047, 892, $685 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 346.2$, found 346.6.

9

Synthesis of (E)-3-((5R,7R)-7-(but-3-enyl)-5-(3-chlorophenyl)-6-propyl-6,7-

21 dihydrothieno[2,3-c]pyridin-4(5H)-ylidene)propan-1-ol (21). To a solution of amino alcohol 9 ($38.5 \mathrm{mg}, 0.115 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$ in a sealed tube was added 4pentenal ($90 \mu \mathrm{~L}, 0.917 \mathrm{mmol}$) and (1S)-(+)-10-camphorsulfonic acid ($40.1 \mathrm{mg}, 0.173$ $\mathrm{mmol})$. The reaction was heated at reflux for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($10-20 \% \mathrm{EtOAc} /$ hexane) to afford piperidine 21 as a pale yellow oil (single diastereomer, $25.6 \mathrm{mg}, 56 \%$). The relative stereochemistry was assigned by analogy with compound 19.
Data for (E)-3-((5R,7R)-7-(but-3-enyl)-5-(3-chlorophenyl)-6-propyl-6,7-dihydrothieno[2,3-c]pyridin-4(5H)-ylidene)propan-1-ol (21): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 4 \mathrm{H}), 5.76-5.66(\mathrm{~m}, 1 \mathrm{H})$, $5.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H})$, $3.76(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.26-$
$2.17(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=9.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.08,142.14,138.01,133.93,132.59,129.17$, $129.07,128.47,126.93,126.62,126.39,124.35,122.20,115.17,66.90,62.60,53.92$, $46.60,32.58,31.49,29.65,21.12,11.95$; IR (thin film, NaCl) $v_{\max } 3390$ (br), 3077, 2960, 2931, 2872, 1715, 1641, 1594, 1572, 1471, 1417, 1171, 1045, 913, $684 \mathrm{~cm}^{-1}$; LRMS (EI, H) m / z calc' d for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{CINOS}[\mathrm{M}+\mathrm{H}]^{+} 402.2$, found 402.5.

Synthesis of (3E,5Z)-4-((benzylamino)(phenyl)methyl)hepta-3,5-dien-1-ol (47). To a solution of imine $44(90 \mu \mathrm{~L}, 97.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(222 \mu \mathrm{~L}, 213 \mathrm{mg}, 0.75$ $\mathrm{mmol})$ in diethyl ether $(2.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.26 \mathrm{M}$ in diethyl ether, 1.5 mmol) via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2 h . Then a solution of lithium alkoxide 41 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol ($86 \mu \mathrm{~L}, 82.5 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $n-\mathrm{BuLi}(2.55 \mathrm{M}$ in hexane, 0.8 mmol) at -78 ${ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 6 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (30% EtOAc/hexane) to afford amino alcohol 47 as a pale yellow oil ($114 \mathrm{mg}, 74 \%$).
Data for (3E,5Z)-4-((benzylamino)(phenyl)methyl)hepta-3,5-dien-1-ol (47): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.12(\mathrm{~m}, 10 \mathrm{H}), 5.63-5.51(\mathrm{~m}, 3 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.57(\mathrm{~m}$, $4 \mathrm{H}), 2.17(\mathrm{dt}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{br}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.26,140.59,140.50,128.93,128.34,128.16,128.08,127.30,126.87$,
$126.84,125.72,123.74,67.97,62.39,51.54,32.69,14.78$; IR (thin film, NaCl$) v_{\max } 3320$ (br), 3084, 3061, 3025, 3007, 2911, 2877, 1602, 1494, 1472, 1453, 1051, 1029, 737, 700 cm^{-1}; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 308.2009$, found 308.2001.

Synthesis of (5R,8S,8aS)-6-benzyl-8-methyl-5-phenyl-3,5,6,7,8,8a-hexahydro-2H-

 pyrano[3,2-c]pyridine (22). To a solution of amino alcohol 47 ($42.4 \mathrm{mg}, 0.138 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added 1,3,5-trioxane ($372 \mathrm{mg}, 4.14 \mathrm{mmol}$) and (1S)-(+)-10camphorsulfonic acid ($32.0 \mathrm{mg}, 0.138 \mathrm{mmol}$). The reaction was heated at reflux for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous 1 N $\mathrm{NaOH}(4 \mathrm{~mL})$ and extracted with dichloromethane (3 x 10 mL). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (3-5\% EtOAc/hexane) to afford two pure diastereomers (22:22a $=12: 1,29.8 \mathrm{mg}, 68 \%)$ as pale yellow oils. The relative stereochemistry was determined by ${ }^{1} \mathrm{H}$ NMR. An X-ray crystal structure was also obtained for 22.
$J_{A, B}=2.9 \mathrm{~Hz}$

Data for (5R,8S,8aS)-6-benzyl-8-methyl-5-phenyl-3,5,6,7,8,8a-hexahydro-2H-pyrano[3,2-c]pyridine (22): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.50-7.48 (m, 2H), 7.39$7.22(\mathrm{~m}, 8 \mathrm{H}), 5.90(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.98$ $(\mathrm{m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{dt}, J=11.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.56 (dd, $J=13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.10,140.24,136.13,128.24$,
$127.62,126.65,122.82,73.92,68.16,63.55,59.58,52.90,35.81,25.17,13.99$; IR (thin film, NaCl$) v_{\max } 3084,3059,3025,3064,2908,2833,1600,1492,1451,1384,1351$, 1264, 1151, 1107, 1081, $699 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 320.2 , found 320.6 .

Data for (5R,8S,8aR)-6-benzyl-8-methyl-5-phenyl-3,5,6,7,8,8a-hexahydro-2H-pyrano[3,2-c]pyridine (22a): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.40$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-6.95(\mathrm{~m}, 8 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-$ $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dt}, J=10.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (dd, $J=11.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, ~ J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{dd}, J=$ $11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 140.63,140.50,139.35,129.59,128.76,128.55,128.45,128.30,128.17,128.12$, $127.39,126.70,121.21,80.19,71.45,62.77,60.07,58.21,36.77,25.66,15.89$; IR (thin film, NaCl) $v_{\max } 3061,3027,2954,2923,2851,2791,1494,1452,1370,1277,1103,1045$, $736,701 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 320.2$, found 320.6 .

40

-40 to $0^{\circ} \mathrm{C}$

48

Synthesis of (3E,5E)-4-((2-chlorophenyl)(3-methylbut-2-enylamino)methyl)hepta-3,5-dien-1-ol (48). To a solution of imine $40(310 \mu \mathrm{~L}, 343 \mathrm{mg}, 1.65 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-$ $\operatorname{Pr}_{4}(444 \mu \mathrm{~L}, 426 \mathrm{mg}, 1.5 \mathrm{mmol})$ in diethyl ether $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise c $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(2.26 \mathrm{M}$ in diethyl ether, 3.0 mmol) via a gas-tight syringe. The mixture was warmed to $-40^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 3 h . Then a solution of lithium alkoxide 41 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol $(57 \mu \mathrm{~L}, 55 \mathrm{mg}, 0.5 \mathrm{mmol})$ with $n-\mathrm{BuLi}(2.55 \mathrm{M}$ in hexane,
0.55 mmol) at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-40{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 6 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($30 \% \mathrm{EtOAc} /$ hexane) to afford amino alcohol 48 as a pale yellow oil ($112 \mathrm{mg}, 70 \%$).

Data for (3E,5E)-4-((2-chlorophenyl)(3-methylbut-2-enylamino)methyl)hepta-3,5-dien-1-ol (48): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{dd}, J=6.4,6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.39,139.41,135.31,134.37,129.96,129.26,128.51,127.24$, $126.95,126.90,125.00,123.05,62.78,60.39,46.31,31.57,26.11,19.37,19.37,18.15$; IR (thin film, NaCl) $v_{\max } 3345$ (br), 3035, 2912, 2874, 1673, 1571, 1443, 1376, 1048, 962, $755,699 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 320.1776$, found 320.1771 .

Synthesis of (5R,8R,8aS)-5-(2-chlorophenyl)-8-methyl-6-(3-methylbut-2-enyl)-3,5,6, 7,8,8a-hexahydro-2H-pyrano[3,2-c]pyridine (23). To a solution of amino alcohol 48 $(66.2 \mathrm{mg}, 0.207 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added 1,3,5-trioxane ($159 \mathrm{mg}, 1.76 \mathrm{mmol}$) and $(1 S)-(+)-10$-camphorsulfonic acid $(40.8 \mathrm{mg}, 0.176 \mathrm{mmol})$. The reaction was heated at reflux for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The
combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (5% $\mathrm{EtOAc} /$ hexane $)$ to afford two pure diastereomers ($23: 23 \mathrm{a}=1.6: 1,78.9 \mathrm{mg}, 79 \%$) as pale yellow oils. The relative stereochemistry was determined by ${ }^{1} \mathrm{H}$ NMR.

Data for (5R,8R,8aS)-5-(2-chlorophenyl)-8-methyl-6-(3-methylbut-2-enyl)-3,5,6,7,8, 8a-hexahydro-2H-pyrano[3,2-c]pyridine (23): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.24$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dt}, J=$ $9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=13.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.53(\mathrm{~m}, 1 \mathrm{H})$, 2.40-2.33 (m, 1H), 2.00-1.90 (m, 2H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.91,137.23,135.26,134.78,130.79,129.45,128.23$, $126.66,122.44,122.36,78.43,66.23,63.51,52.93,51.83,34.65,26.29,26.10,18.25$, 17.55; IR (thin film, NaCl) $v_{\max } 3062,2956,2913,2852,1463,1440,1376,1275,1211$, 1103, 1039, 855, $743 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 332.2$, found 332.6 .

Data for (5R,8R,8aR)-5-(2-chlorophenyl)-8-methyl-6-(3-methylbut-2-enyl)-3,5,6,7,8, 8a-hexahydro-2H-pyrano[3,2-c]pyridine (23a): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.19 (m, 2H), 7.13-7.10 (m, 1H), 5.06-5.04 (m, 1H), 4.63 $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dt}, J=11.2,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=11.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=13.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.54(\mathrm{~m}$,
$1 \mathrm{H}), 2.38(\mathrm{dd}, J=11.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.96,136.99$, $135.12,135.06,131.68,129.35,128.42,127.22,122.26,121.42,77.60,65.54,63.57$, $56.78,53.22,34.37,26.29,25.98,18.21,12.44$; IR (thin film, NaCl) $v_{\max } 3060,2964$, 2922, 2853, 2804, 1463, 1444, 1385, 1277, 1134, 1109, 1074, 1050, $756 \mathrm{~cm}^{-1}$; LRMS (EI, H) m / z calc'd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 332.2$, found 332.6.

32

49

Synthesis of (E)-5-(3-chlorophenyl)-4-cyclopentenyl-5-(propylamino)pent-3-en-1-ol

 (49). To a solution of imine $32(83 \mu \mathrm{~L}, 90.8 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(222 \mu \mathrm{~L}, 213$ $\mathrm{mg}, 0.75 \mathrm{mmol}$) in diethyl ether 2.5 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}$ (2.20 M in diethyl ether, 1.5 mmol) via a gas-tight syringe. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2 h . Then a solution of lithium alkoxide 30 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol ($102 \mu \mathrm{~L}, 102 \mathrm{mg}, 0.75 \mathrm{mmol}$) with $n-\operatorname{BuLi}(2.55 \mathrm{M}$ in hexane, 0.8 mmol) at $-78{ }^{\circ} \mathrm{C}$ followed by warming to $0{ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine- Ti complex at $-40^{\circ} \mathrm{C}$ via cannula. The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 6 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (30\% EtOAc/hexane) to afford amino alcohol 49 as a pale yellow oil (107 $\mathrm{mg}, 67 \%$).Data for (E)-5-(3-chlorophenyl)-4-cyclopentenyl-5-(propylamino)pent-3-en-1-ol (49): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 5.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.23(\mathrm{~m}, 5 \mathrm{H})$, 2.12-1.98 (m, 2H), 1.74-1.68 (m, 2H), 1.47-1.34 (m, 4H), $0.83(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.57,142.68,141.00,134.36,130.51,129.62,127.99$, $127.29,126.13,124.08,67.62,63.07,50.34,36.96,33.19,32.97,24.02,23.69,12.26$; IR (thin film, NaCl) $v_{\max } 3325$ (br), 3060, 2957, 1595, 1573, 1473, 1379, 1317, 1293, 1193, 1076, 1050, 999, 785, $725 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$ 320.1776, found 320.1768.

Synthesis of (5S,7aR,10 ${ }^{1}$ S)-5-(3-chlorophenyl)-6-propyl-3,5,6,7,7a,8,9,10-octahydro-

 $\mathbf{2 H}$-cyclopenta[c]pyrano[2,3-d]pyridine (24). To a solution of amino alcohol 49 (77.1 $\mathrm{mg}, 0.241 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added 1,3,5-trioxane ($217 \mathrm{mg}, 2.41 \mathrm{mmol}$) and $(1 S)-(+)-10$-camphorsulfonic acid $(55.9 \mathrm{mg}, 0.241 \mathrm{mmol})$. The reaction was heated at reflux for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL})$ and extracted with dichloromethane (3 x 10 mL). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (5\% EtOAc/hexane) to afford piperidine 24 as a pale yellow oil (single diastereomer, 45.8 mg , 57%). The relative stereochemistry was determined by ${ }^{1} \mathrm{H}$ NMR.

Data for (5S,7aR,10 ${ }^{1}$ S)-5-(3-chlorophenyl)-6-propyl-3,5,6,7,7a,8,9,10-octahydro-2H-cyclopenta[c]pyrano[2,3-d]pyridine (24): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~s}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.76-3.65(\mathrm{~m}, 2 \mathrm{H})$, 2.56-2.38 (m, 5H), 2.15-2.10 (m, 1H), $1.94(\mathrm{dt}, J=17.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 145.21,137.01,134.13,129.22,126.90,126.48,125.05$,
$124.67,83.78,68.94,59.01,55.47,51.23,44.30,33.83,27.89,25.99,22.34,21.24,11.82$; IR (thin film, NaCl) $v_{\max } 3328$ (br), 3082, 3060, 3026, 2923, 2875, 1949, 1600, 1494, 1452, 1049, 750, $700 \mathrm{~cm}^{-1}$; HRMS (EI, H) m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$ 332.1776, found 332.1762.

Synthesis of (5S,7R,7aR,10 ${ }^{1}$ S)-5-(3-chlorophenyl)-7-methyl-6-propyl-3,5,6,7,7a,8,9, 10-octahydro-2H-cyclopenta[c]pyrano[2,3-d]pyridine (25). To a solution of amino alcohol 49 ($35.3 \mathrm{mg}, 0.110 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$ in a sealed tube was added acetaldehyde ($31 \mu \mathrm{~L}, 0.550 \mathrm{mmol}$) and ($1 S$)-(+)-10-camphorsulfonic acid ($38.3 \mathrm{mg}, 0.165$ $\mathrm{mmol})$. The reaction was heated in a $100{ }^{\circ} \mathrm{C}$ oil bath for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($5 \% \mathrm{EtOAc} /$ hexane) to afford piperidine 25 as a pale yellow oil (single diastereomer, $25.0 \mathrm{mg}, 66 \%$). The relative stereochemistry was determined by ${ }^{1} \mathrm{H}$ NMR.

Data for (5S,7R,7aR,10 ${ }^{1}$ S)-5-(3-chlorophenyl)-7-methyl-6-propyl-3,5,6,7,7a,8,9, 10-octahydro-2H-cyclopenta[c]pyrano[2,3-d]pyridine (25): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{dd}, J=4.7,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{~s}, 1 \mathrm{H}), 3.74-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dq}, J=8.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.41-$ $2.33(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}$, $1 \mathrm{H}), 1.40-1.289 \mathrm{~m}, 4 \mathrm{H}), 1.1201 .06(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.41,136.54,134.13,129.23,127.03,126.46$, 125.14, 124.72, 83.32, 67.57, 58.73, 52.26, 51.20, 47.59, 34.16, 27.62, 25.89, 22.24, $21.95,16.11,11.89$; IR (thin film, NaCl) $v_{\max } 3061,2958,2871,2831,2240,1593,1569$, $1470,1378,1279,1085,906,736,706 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{ClNO}$ $[\mathrm{M}+\mathrm{H}]^{+} 346.2$, found 346.6.

Synthesis of ($3^{1} S, 8 R, 12 \mathrm{a} R, 12 \mathrm{~b} R$)-8-phenyl-2,3,5,6,8,10,11,12,12a,12b-decahydro-1H-cyclopenta[g]pyrano[3,2-f]indolizine (26). To a solution of amino alcohol 15 (30.0 mg , $0.090 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.1 \mathrm{~mL})$ was added (1S)-(+)-10-camphorsulfonic acid (62.6 mg , 0.270 mmol). The reaction was heated at reflux for 20 h . After cooling down to room temperature, the reaction was quenched with aqueous $1 \mathrm{~N} \mathrm{NaOH}(4 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($10 \% \mathrm{EtOAc} /$ hexane) to afford piperidine 26 as a pale yellow oil (single diastereomer, $13.4 \mathrm{mg}, 52 \%$). The relative stereochemistry was determined by ${ }^{1} \mathrm{H}$ NMR.

$$
J_{A, B}=10.7 \mathrm{~Hz}
$$

Data for $\quad\left(3^{1} S, 8 R, 12 a R, 12 b R\right)$-8-phenyl-2,3,5,6,8,10,11,12,12a,12b-decahydro-1H-cyclopenta[g]pyrano[3,2-f]indolizine (26): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.44-7.42 (m, $2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H})$, 3.78-3.67 (m, 2H), 3.01-2.90 (m, 2H), 2.80 (dd, $J=10.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.04-2.17 (m, 6H), 1.56-1.40 (m, 3H), 1.37-1.28 (m, 1H), 1.16-1.09 (m, 1H), 0.95-0.87 $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.07,128.04,126.19,125.06,83.64,65.21$, $58.82,57.70,49.57,48.06,32.80,29.60,26.36,26.24,21.10,21.06$; IR (thin film, NaCl)
$v_{\max } 3057,3024,2956,2918,2868,2830,1693,1600,1488,1446,1364,1278,1213$, 1103, 1015, 927, $716 \mathrm{~cm}^{-1}$; LRMS (EI, H) m / z calc'd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$296.2, found 296.5 .

Synthesis of (3E,5E)-4-((R)-((S)-2-methoxy-1-phenylethylamino)(phenyl)methyl)

hepta-3,5-dien-1-ol (29). To a solution of imine 28 ($246 \mu \mathrm{~L}, 263 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{Oi}-$ $\operatorname{Pr})_{4}(296 \mu \mathrm{~L}, 284 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{TMSCl}(254 \mu \mathrm{~L}, 217 \mathrm{mg}, 2.0 \mathrm{mmol})$ in diethyl ether $(3.2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(1.85 \mathrm{M}$ in diethyl ether, 2.0 mmol) via a gas-tight syringe. The mixture was warmed to $-30{ }^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2.5 h . Then a solution of lithium alkoxide 27 in diethyl ether $(1 \mathrm{~mL})$, generated from deprotonation of the corresponding alcohol ($55 \mu \mathrm{~L}, 55 \mathrm{mg}, 0.5$ mmol) with $n-\mathrm{BuLi}\left(2.44 \mathrm{M}\right.$ in hexane, 0.55 mmol) at $-78^{\circ} \mathrm{C}$ followed by warming to 0 ${ }^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine-Ti complex at $-30{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 24 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel $(10 \rightarrow 35 \%$ EtOAc/hexane) to afford two pure diastereomers ${ }^{5}(\mathbf{2 9 : 2 9 a}=85: 15,121 \mathrm{mg}, 73 \%)$ as orange oils. The relative stereochemistry was assigned by analogy based on previously reported stereoselective coupling of imine 28 with alkynes. ${ }^{6,7}$

Data for (3E,5E)-4-((R)-((S)-2-methoxy-1-phenylethylamino)(phenyl)methyl) hepta-3,5-dien-1-ol (29): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.19$ (m, 10H), 6.25 (d, $J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{qd}, J=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.96$ $(\mathrm{m}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.51(\mathrm{~m}, 2 \mathrm{H})$, 2.19 (br, 2H), $1.68(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.66,140.97$,
138.91, 128.39, 128.14, 127.87, 127.75, 127.44, 127.17, 126.60, 126.33, 125.17, 77.94, 62.72, 61.55, 59.69, 58.76, 31.27, 18.96; IR (thin film, NaCl) $v_{\max } 3343$ (br), 3084, 3061, 3027, 2926, 2879, 1668, 1601, 1492, 1454, 1377, 1108, 963, $700 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 352.2$, found 352.6; $[\alpha]_{\mathrm{D}}{ }^{20}-37.5$ (c 0.60, CHCl_{3}).
Data for (3E,5E)-4-((S)-((S)-2-methoxy-1-phenylethylamino)(phenyl)methyl) hepta-3,5-dien-1-ol (29a): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.12$ ($\mathrm{m}, 10 \mathrm{H}$), 6.05 (d, $J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.40(\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{dt}, J=6.9,6.9 \mathrm{~Hz}$, $2 \mathrm{Hh}), 1.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.64,141.39,140.92$, 128.32, 128.29, 127.97, 127.63, 127.47, 127.01, 126.76, 126.42, 124.16, 77.91, 62.39, 61.17, 59.61, 58.69, 31.25, 18.76; IR (thin film, NaCl) $v_{\max } 3350$ (br), 3026, 2925, 1601, 1492, 1454, 1377, 1103, 1048, 963, 760, $701 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 352.2$, found 352.6; $[\alpha]_{\mathrm{D}}{ }^{20}+64.0\left(c 0.35, \mathrm{CHCl}_{3}\right)$.

Synthesis of (R,E)-4-cyclopentenyl-5-((S)-2-methoxy-1-phenylethylamino)-5-phenylpent-3-en-1-ol (31). To a solution of imine $28(246 \mu \mathrm{~L}, 263 \mathrm{mg}, 1.10 \mathrm{mmol})$, $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}(296 \mu \mathrm{~L}, 284 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{TMSCl}(254 \mu \mathrm{~L}, 217 \mathrm{mg}, 2.0 \mathrm{mmol})$ in diethyl ether (3.2 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}(1.85 \mathrm{M}$ in diethyl ether, 2.0 mmol) via a gas-tight syringe. The mixture was warmed to $-30^{\circ} \mathrm{C}$ over 30 min and stirred at this temperature for another 2.5 h . Then a solution of lithium alkoxide 30 in diethyl ether (1 mL), generated from deprotonation of the corresponding alcohol (68 $\mu \mathrm{L}, 68 \mathrm{mg}, 0.5 \mathrm{mmol}$) with $n-\mathrm{BuLi}\left(2.44 \mathrm{M}\right.$ in hexane, 0.55 mmol) at $-78^{\circ} \mathrm{C}$ followed by warming to $0^{\circ} \mathrm{C}$ over 20 min , was added dropwise to the brown solution of imine- Ti complex at $-30{ }^{\circ} \mathrm{C}$ via cannula. The resulting mixture was slowly warmed to room temperature over 43 h . The reaction was quenched with saturated aqueous NaHCO_{3} (5 mL), and the resulting biphasic mixture was rapidly stirred until the precipitate became white in color. The mixture was further diluted with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with ethyl acetate (4 x 20 mL). The combined organic extracts were
washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel ($10 \rightarrow 40 \%$ EtOAc/hexane) to afford two pure diastereomers ${ }^{5}(31: 31 \mathbf{a}=75: 25,134 \mathrm{mg}, 71 \%)$ as orange oils. The relative stereochemistry was assigned by analogy based on previously reported stereoselective coupling of imine 28 with alkynes. ${ }^{6,7}$
Data for (R,E)-4-cyclopentenyl-5-((S)-2-methoxy-1-phenylethylamino)-5-phenylpent-3-en-1-ol (31): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.49(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-$ $3.47(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H})$, 2.00-1.92 (m, 1H), 1.77-1.69 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.13, 140.94, $140.74,140.71,129.88,127.90,127.42,127.17,126.49,124.60,78.15,63.77,62.91$, 59.74, 58.93, 36.66, 32.82, 32.62, 23.59; IR (thin film, NaCl) $v_{\text {max }} 3325$ (br), 3061, 3027, 2925, 2889, 2847, 1601, 1493, 1454, 1194, 1106, 1028, $700 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 378.2$, found 378.6; $[\alpha]_{\mathrm{D}}{ }^{20}-29.7$ (c 1.67, CHCl_{3}).
Data for (S,E)-4-cyclopentenyl-5-((S)-2-methoxy-1-phenylethylamino)-5-phenylpent-3-en-1-ol (31a): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.30(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=8.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.40(\mathrm{dd}, J=9.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=9.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.18(\mathrm{~m}$, $4 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.81, $142.29,141.49,141.17,129.43,128.29,128.09,127.88,127.89,127.35,126.74,122.66$, $77.63,63.47,62.65,59.28,58.70,36.32,32.80,32.58,23.56$; IR (thin film, NaCl) $v_{\max }$ 3342 (br), 3060, 3026, 2925, 2890, 2847, 1601, 1493, 1454, 1380, 1194, 1105, 1048, 760, $701 \mathrm{~cm}^{-1}$; LRMS (EI, H) m/z calc'd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{ClN}_{2} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+} 525.3$, found 525.8; $[\alpha]_{D}{ }^{20}+61.7\left(c 0.68, \mathrm{CHCl}_{3}\right)$.

[^0]4. Alvarez, A.; Guzman, A.; Ruiz, A.; Velarde, E.; Muchowski, J. M. J. Org. Chem. 1992, 57, 1653-1656.
5. Diastereomeric ratio obtained by ${ }^{1} \mathrm{H}$ NMR on the crude material.
6. Fukahara, K.; Okamoto, S.; Sato, F. Org. Lett. 2003, 5, 2145-2148.
7. McLaughlin, M.; Takahashi, M.; Micalizio, G. C. Angew, Chem. Int. Ed. 2007, 46, 3912-3914.

18

21

T	T	1	1	1	T	1	1	I	T	T	T	T	T	1	1
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{array}{r} 4.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5

23

23a

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) of compound 23a.

46

[^0]: 1. Alami, M,; Ferri, F.; Linstrumelle, G. Tet. Lett. 1993, 34, 6403-6406.
 2. Luo, Y.; Mei, Y.; Zhang, J.; Lu, W,; Tang, J. Tetrahedron 2006, 62, 9131-9134.
 3. Takahashi, M.; Masui, K.; Sekiguchi, H.; Kobayashi, N.; Mori, A.; Funahashi, M.; Tamaoki, N. J. Am. Chem. Soc. 2006, 128, 10930-10933.
