A flexible enantioselective total synthesis of Diospongins A, B and their stereoisomers using catalytic hetero-Diels-Alder/Rh-catalyzed 1,4-addition and asymmetric transfer hydrogenation reactions as key steps

Gullapalli Kumaraswamy*a ${ }^{\text {a }}$, Gajula Ramakrishna ${ }^{\text {a }}$, Police Naresh ${ }^{\text {b }}$, Bharatam Jagadeesh ${ }^{\text {b }}$ and Balasubramanian Sridhar ${ }^{\text {c }}$

Organic Division-III,
Indian Institute of Chemical Technology, Hyderabad, 500 007, India
Telephone: + 91-40-27193154; Fax: + 91-40-27193275
e-mail: gkswamy_iict@yahoo.co.in

Sporting information

Table of Contents

1. General information S2
2. Experimental procedures S2-S16
3. NOE data and Copies of NOESY spectra for compounds $\mathbf{1 4}, \mathbf{1}$ and $\mathbf{2}$ S17-S23
4. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all compounds S24-S64
5. HPLC data for compounds $\mathbf{8}$ and $\mathbf{9}$ S64-S68
6. ORTEP representation of 7 S69

GENERAL EXPERIMENTAL PROCEDURES: All reactions were conducted under inert atmosphere, if argon mentioned. Apparatus used for reactions are perfectly oven dried. THF was distilled from sodium benzophenone ketyl, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMSO , from $\mathrm{CaH}_{2} .4 \mathrm{~A}^{\circ}$ Molecular sieves were powdered, flame dried before use. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $200,300,400,500$ and ${ }^{13} \mathrm{C}$ NMR $50,75,100,125 \mathrm{MHz}$ in CDCl_{3} solutions unless otherwise mentioned, $\delta \mathrm{in} \mathrm{ppm}$,$J in \mathrm{Hz}$. IR (FT-IR) spectrometer measured as KBr pellet or as film. Mass spectral data were obtained using MS (EI) ESI, HRMS mass spectrometers. Optical rotations are measured on Horiba rectangular 20 polarimeter. HPLC was carried on a Shimadzu LC10AT vp dual pump system. Column chromatography was carried out on silica gel, grade 60-120, and 100-200 mesh. The TBAF used in reactions was supplied by Spectrochem. Pvt.Ltd., (India) and Aldrich, USA.

(S)-2-(Furan-2-yl)-2, 3-dihydropyran-4-one (7):

A mixture of $(S)-(+)$-BINOL $(0.276 \mathrm{~g}, 0.96 \mathrm{mmol}), 1 \mathrm{M} \mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}} \mathrm{Pr}^{2}\right)_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.48 \mathrm{~mL}, 0.48 \mathrm{mmol}), \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.028 \mathrm{~mL}, 0.5$ M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), and flame dried powdered $4 \mathrm{~A}^{\circ}$ molecular sieves (1.86 g) in ether (20 mL) was heated at reflux for 1 h . The redbrown mixture was cooled to room temperature, and furfuraldehyde $(0.460 \mathrm{~g}(0.39 \mathrm{~mL}, 4.83 \mathrm{mmol})$ was added. The mixture was stirred for 5 min and cooled to $-78^{\circ} \mathrm{C}$, Danishefsky's diene ($1.0 \mathrm{~g}, 5.80 \mathrm{mmol}$) was added, and the reaction mixture was stirred for 10 min and then placed in a $-20^{\circ} \mathrm{C}$ bath. After 40 h , saturated $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$ was added, and the reaction mixture was stirred for 1 h and then filtered through a plug of celite. The organic layer was separated, and the aqueous layer was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under
reduced pressure. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. To this solution was added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ $(0.25 \mathrm{~mL})$ and stirred for 1 h , saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ was added, the reaction mixture was stirred for 10 min , and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (10% acetone in hexane), to afford 1.25 g of product 7 as a crystalline solid. M. $\mathrm{P}=73-75^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=+355\left(c=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)[\mathrm{a}$ single recrystallization from 1:2 $\mathrm{Et}_{2} \mathrm{O}$:hexanes gave white needle like crystals in 60% yield $(1.05 \mathrm{~g}),[\alpha]^{23}{ }_{\mathrm{D}}=+359(c=1.2$, $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$; IR $v\left(\mathrm{~cm}^{-1}\right): 2923,2852,1724,1595,1268,1114,1039,747 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.10 (dd, $J=13.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=3.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.3,162.4,149.9,143.5$, 110.5, 109.6, 107.3, 73.5, 39.4; MS (ESI) $m / z 165(\mathrm{M}+\mathrm{H})^{+}$.
(2S, 6S)-2-(Furan-2-yl)-6-phenyl-tetrahydropyran-4-one (8):

A mixture of $7(1.05 \mathrm{~g}, 6.40 \mathrm{mmol})$, phenyl boronic acid $(1.56 \mathrm{~g}, 12.8 \mathrm{mmol}), \mathrm{Rh}(\mathrm{I})\left(\operatorname{cod}_{2}\right)_{2} \mathrm{BF}_{4}(0.052 \mathrm{~g}, 0.16 \mathrm{mmol}), 1.0 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}, \mathrm{KOH}(0.018 \mathrm{~g}, 0.32 \mathrm{mmol})$ and 20 mL of dioxane was heated at reflux for 4 h . The reaction mixture was cooled to room temperature and diluted with ethyl acetate (40 mL) and filtered through a pad of silica gel. The filtrate was concentrated in vacuo and the residue was subjected to silica gel flash column chromatography ($5 \% \mathrm{EtOAc}$ in hexane) to afford 1.51 g (98%) of product 8 as a crystalline solid. M. $\mathrm{P}=84-86^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=-10\left(c=0.5, \mathrm{CHCl}_{3}\right) ; \operatorname{IR} v\left(\mathrm{~cm}^{-1}\right): 2923,2853,1721,1458,1255$, $1064,1016,752,700 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.36(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.44$ $(\mathrm{dd}, J=3.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=6.8,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=3.02,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=$
$7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 151.1,143.2,140.2,128.6$ 128.1, 126.1, 110.2, $73.269 .0,48.5,43.4 ; \mathrm{MS}$ (ESI) m / z $243(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI) $m / z 243.1026$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}: 243.1016$).

(2S, 4R, 6S)-2-(Furan-2-yl)-6-phenyl-tetrahydro-2H-pyran-4-ol (9):

To a solution of $\mathbf{8}(1.51 \mathrm{~g}, 6.24 \mathrm{mmol})$ in anhydrous $\mathrm{EtOAc}(12 \mathrm{~mL})$ under argon was added $\mathrm{Et}_{3} \mathrm{~N}$: $\mathrm{HCOOH}(5: 2)$ mixture (0.90 $\mathrm{mL})$ followed by the addition of Ru-catalyst $\mathrm{A}(0.019 \mathrm{~g}, 0.031 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ which was pre-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1$ mL). The resulting reaction mixture was heated to $50^{\circ} \mathrm{C}$ for 3 h . After cooling the reaction mixture to room temperature diluted with ethyl acetate $(20 \mathrm{~mL})$ and filtered through a pad of silica gel. The filtrate was concentrated in vacuo and the residue was subjected to silica gel flash column chromatography (25% EtOAc in Hexane) to afford $1.46 \mathrm{~g}(96 \%)$ of compound 9 as a crystalline solid. M. $\mathrm{P}=65-68{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=-17\left(c=0.5, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR} v\left(\mathrm{~cm}^{-1}\right): 3404,2925,2856,1451,1366,1060,1011,738$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=3.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=4.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dt}, J=3.7,12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.3,142.2,140.1,128.6,127.2,126.3,110.2,106.9,72.3,65.8,64.1,37.4$, 36.8; MS (ESI) $m / z 267(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI) $m / z 267.1000$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}: 267.0997$).
(2S, 4R, 6S)-2-(Furan-2-yl)-4-(4-methoxybenzyloxy)-6-phenyl-tetrahydro-2H-pyran (10):

To a solution of $9(1.46 \mathrm{~g}, 5.98 \mathrm{mmol})$ in DMF (30 mL) was added 60% dispersion sodium hydride ($0.718 \mathrm{~g}, 29.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After the solution was stirred for 30 min at the same temperature, 4-Methoxybenzyl chloride ($3.74 \mathrm{~g}, 23.9 \mathrm{mmol}$) was added. The resulting reaction mixture was stirred for 12 h at room temperature under argon. The reaction mixture was quenched with water and extracted with EtOAc (3 X 30 mL). The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by flash chromatography ($10 \% \mathrm{EtOAc}$ in hexane) to afford 2.13 g (98\%) of product 10 as a colourless oil. $[\alpha]^{23}{ }_{\mathrm{D}}=-36.5\left(c=0.7, \mathrm{CHCl}_{3}\right)$; IR $v\left(\mathrm{~cm}^{-1}\right): 3448,2929,2860,1612,1513,1248,1089$, 1035, 816, 737; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.36$ (t, J $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=3.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $159.2,154.2,142.1,140.2,130.5,129.2,128.6,127.1,126.4,113.8,110.1,106.6,72.8,70.4,69.6,65.9,55.2,34.9,33.8$; MS (ESI) $m / z 387(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI) $m / z 387.1588$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}: 387.1572$).
(2S, 4R, 6S)-Methyl 4-(4-methoxybenzyloxy)-6-phenyl-tetrahydro-2H-pyran-2-carboxylate:

Ozone was passed for 10 min through a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0}(2.13 \mathrm{~g}, 5.85 \mathrm{mmol})$ in $150 \mathrm{~mL} \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$, $\mathrm{Me}_{2} \mathrm{~S}(0.725 \mathrm{~g}, 11.7 \mathrm{mmol})$ was added to the reaction mixture and further stirring was continued for 30 min at $-78{ }^{\circ} \mathrm{C}$ and 1 h at room temperature. The solvent was removed under reduced pressure. The crude residue was dissolved in diethyl ether (10 mL) and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To this, etheral solution of diazomethane (10 equiv) (Caution: Liquid diazomethane, is an explosive compound and explosions may occur in the gaseous state if the substance is dry and undiluted) was added and resulting reaction mixture stirred for 1 h (the reaction progress was monitored by TLC). Then, the reaction mixture was allowed to stand overnight to escape the left over diazomethane in a well ventilated fuming cupboard. The residual solvent was removed under reduced pressure and the crude residue was purified by column chromatography ($15 \% \mathrm{EtOAc}$ in hexane) to yield methyl ester $1.79 \mathrm{~g}(86 \%)$ as a colourless oil. $[\alpha]^{23}{ }_{\mathrm{D}}=-32.1\left(c=0.7, \mathrm{CHCl}_{3}\right)$; IR $v\left(\mathrm{~cm}^{-1}\right): 2923,2853,1746,1512,1246,1173,1034$, 819,$755 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8,2 \mathrm{H}), 5.38(\mathrm{dd}, J=2.2$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=0.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9,158.9,141.8,128.8,128.3$, 127.4, 126.2, 113.7, 113.6, 70.4, 70.0, 69.8, 69.6, 55.2, 51.9, 36.8, 30.4; MS (ESI) m/z $379(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI) m / z 379.1542 (calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}: 379.1521$).
(2S,4R,6S)-4-(4-Methoxybenzyloxy)-6-phenyl-tetrahydro-2H-pyran-2-carbaldehyde (11):

To a solution of methyl ester ($1.79 \mathrm{~g}, 5.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added DIBAL-H $(1.07 \mathrm{~g}, 7.54 \mathrm{mmol}, 1 \mathrm{M}$ solution in toluene) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at the same temperature and then quenched with saturated sodium potassium tartarate solution. The aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed
with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($10 \% \mathrm{EtOAc}$ in hexane) to yield $1.47 \mathrm{~g}(90 \%)$ of product 11 as a colourless oil. $[\alpha]_{\mathrm{D}}^{23}=-86.5(c=$ $1.0, \mathrm{CHCl}_{3}$) ; IR v $\left(\mathrm{cm}^{-1}\right): 3444,2929,1729,1610,1512,1248,1089,1034,822,757,700 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.01$ $(\mathrm{s}, 1 \mathrm{H}), 7.41-7.24(\mathrm{~m}, 7 \mathrm{H}), 6.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=3.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=2.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $\delta 203.3,159.1,141.7,130.1,129.2,128.4,127.7,126.0,113.8,76.8,70.4,69.6,69.4,55.2,36.9,29.5$; HRMS (ESI) $m / z 349.1421$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}: 349.1415$).

(2-((2S, 4S, 6S)-4-(4-Methoxybenzyloxy)-6-phenyl-tetrahydro-2H-pyran-2-yl)-1-phenylethanone) (13):

To a $-78^{\circ} \mathrm{C}$ stirred solution of $\mathbf{1 2}(1.14 \mathrm{~g}, 4.96 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ was slowly added $n-\mathrm{BuLi}(0.316 \mathrm{~g}, 4.96 \mathrm{mmol}, 3.0 \mathrm{~mL}$, 1.6 M solution in hexane). After stirring the solution for 15 min , a solution of $\mathbf{1 1}(1.47 \mathrm{~g}, 4.50 \mathrm{mmol})$ in THF (25 mL) was added, then stirred for 1 h . The reaction mixture was warmed to room temperature, and resulting solution was carefully concentrated to $1 / 3$ of original volume under reduced pressure. To the resulting reaction mixture, a acetone solution (0.8 M) of $\mathrm{Cl}_{3} \mathrm{COOH}(25 \mathrm{~mL})$ was added and resulting reaction mixture stirred at room temperature for 6 h . The reaction mixture was neutralized by addition of saturated aq NaHCO_{3} until gas evolution subsides and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. The crude residue was purified by flash column chromatography over silica gel ($10 \% \mathrm{EtOAc}$ in hexane) to afforded product $13(1.40 \mathrm{~g}, 75 \%)$ as colourless oil. $[\alpha]^{23}{ }_{\mathrm{D}}=-45.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR $v\left(\mathrm{~cm}^{-1}\right): 3061,2926,2854,1683,1598,1513$,
$1448,1250,1068,755,698 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~m}$, $1 \mathrm{H}), 3.43$ (dd, $J=6.6,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=5.8,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (ddd, $J=3.6,8.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (ddd, $J=3.6$, $8.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.4,140.6,137.2,133.1,130.6,129.2,128.5$, 128.4, 128.2, 127.1, 126.3, 126.1, 113.8, 71.9, 70.7, 69.8, 67.3, 55.3, 44.4, 36.4, 34.4; MS (ESI) m/z $439(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI) $m / z 439.1888$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}: 439.1885$).

Diospongin B (1):

To a stirred solution of $\mathbf{1 3}(1.40 \mathrm{~g}, 3.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(9: 1)(70 \mathrm{~mL})$ was added DDQ $(0.919 \mathrm{~g}, 4.05 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with saturated NaHCO_{3} solution and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ followed by brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. The crude residue was purified by flash column chromatography (30% EtOAc in hexane) to afford the product $0.91 \mathrm{~g}(92 \%)$ as an amorphous solid. $[\alpha]^{23}{ }_{\mathrm{D}}=-22.5(c=0.2$, CHCl_{3}); IR v (cm^{-1}): $3624,2925,2857,2312,1740,1682,1515,1452,1174,753$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}$, $1 \mathrm{H}), 3.45(\mathrm{dd}, J=7.0,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=5.9,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, J=3.8,5.1,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (ddd, $J=4.4$, $8.9,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, J=5.0,9.7,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dt}, J=9.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.3$, $140.2,137.2,133.2,128.6,128.5,128.3,127.1,126.3,72.3,66.964 .2,44.6,40.1,36.7$; MS (ES) $m / z 319(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI) $m / z 319.1301$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}: 319.1310$).

[2-((2S, 4S, 6S)-4-(tert-Butyldiphenylsilyloxy)-6-phenyl-tetrahydro-2H-pyran-2-yl)-1-phenylethanone] (14):

To a stirred solution of $\mathbf{1}(0.5 \mathrm{~g}, 1.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.341 \mathrm{~g}, 3.37 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring the solution for 15 min , tert-Butyldiphenylsilyl chloride $(0.927 \mathrm{~g}, 3.37 \mathrm{mmol})$ and DMAP $(0.020 \mathrm{~g}, 0.16 \mathrm{mmol})$ was sequentially at the same temperature. The resulting reaction mixture was stirred at room temperature for 6 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was purified by flash column chromatography ($10 \% \mathrm{EtOAc}$ in hexane) to afford the product $140.853 \mathrm{~g}(95 \%)$ as colourless oil. $[\alpha]^{23}{ }_{\mathrm{D}}=-31.0\left(c=0.25, \mathrm{CHCl}_{3}\right) ; \mathrm{IR} v\left(\mathrm{~cm}^{-1}\right): 3068,2927,2855,1681$, $1466,1215,1110,760,701 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~m}, 3 \mathrm{H})$, $7.47-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{~d}, J=4.8, \mathrm{~Hz}, 3 \mathrm{H}), 6.71(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.37$ (dd, $J=7.0,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=5.9,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.3,139.8,137.0,135.9,135.7,134.0,133.7,133.0,129.7,129.6,128.5,128.2,128.1,127.7$, 127.6, 126.6, 126.1, 72.2, 66.8, 65.4, 44.7, 40.2, 36.5, 26.9. 19.0; MS (ESI) $m / z 557(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 535.2692$ (calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}: 535.2668$).

Diospongin A (2):

To a stirred solution of $\mathbf{1 4}(0.853 \mathrm{~g}, 1.59 \mathrm{mmol})$ in THF (15 mL) was added TBAF (Specrochem Pvt.Ltd., India) (15.7 mL 15.9 $\mathrm{mmol}, 1 \mathrm{M}$ solution in THF) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature over night. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. The crude residue was purified by column chromatography over silica gel (26% EtOAc in hexane) to afford product $2\left(0.238 \mathrm{~g}, 86 \%\right.$) as an amorphous solid. $[\alpha]^{23}{ }_{\mathrm{D}}=-19.2$ $\left(c=1.2, \mathrm{CHCl}_{3}\right)$; IR $v\left(\mathrm{~cm}^{-1}\right): 3624,2925,2857,2312,1740,1682,1515,1452,1174,753 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{dd}, J=1.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~m}$, $1 \mathrm{H}), 4.34(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=5.3,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=7.5,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.3,142.8,137.5,133.0,128.5,128.3,128.2,127.2,125.8,73.8,69.1,64.7,45.2,40.4,38.8$; MS (ESI) $m / z 319(\mathrm{~m}+\mathrm{Na})^{+}$; HRMS (ESI) $m / z 319.1319$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}: 319.1310$).

(R)-2-(Furan-2-yl)-2, 3-dihydropyran-4-one (ent-7):

Same procedure was used for preparation of compound ent-7 as used for $\mathbf{7}$ by using $(R)-(+)$-BINOL catalyst. $[\alpha]^{23}{ }_{\mathrm{D}}=-352(c=$ $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) [a single recrystallization from 1:2 Et2O:hexanes gave white needle like crystals, M . $\mathrm{P}=70-72{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=-358(c$ $\left.=1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$]; IR $v\left(\mathrm{~cm}^{-1}\right): 2923,2852,1724,1595,1268,1114,1039,747 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48(\mathrm{~d}, J=1.46$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=2.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=5.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ $(\mathrm{d}, J=4.39 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=12.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=3.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 191.4$, 162.4, 149.4, 143.5, 110.5, 109.6, 107.3, 73.5, 39.4; MS (ES) $m / z 165(\mathrm{M}+\mathrm{H})^{+}$.

($\mathbf{2 R}, \mathbf{6 R}$)-2-(Furan-2-yl)-6-phenyl-tetrahydropyran-4-one (ent-8):

Same procedure was used for preparation of compound ent-8 as used for $\mathbf{8}$.
M. $\mathrm{P}=86-89{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=+10.9\left(c=0.5, \mathrm{CHCl}_{3}\right) ; \mathrm{IR} v\left(\mathrm{~cm}^{-1}\right): 2923,2853,1721,1458,1255,1064,1016,752,700 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.37(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J$ $=3.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=5.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=6.3,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=2.8,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\text {NMR (}} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.5,151.9,143.2,140.2,128.6$ 128.1, 126.1, 110.2, $73.268 .9,48.4,43.4$ MS (ESI) $\mathrm{m} / \mathrm{z} 243$ $(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI) $m / z 243.1009$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}: 243.1016$).
(2R, 4S, 6R)-2-(Furan-2-yl)-6-phenyl-tetrahydro-2H-pyran-4-ol (ent-9):

Same procedure was used for preparation of compound ent-9 as used for $\mathbf{9}$.
M. $\mathrm{P}=64-66{ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}=+18.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR $v\left(\mathrm{~cm}^{-1}\right): 3404,2925,2856,1451,1366,1060,1011,738,700 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.37(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=3.6,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=4.4,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dt}, J=4.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.3,142.2,140.2,128.7,127.3,126.4,110.4,107.0,72.2,65.8,64.2,37.4,36.9 ; \mathrm{MS}$ (ESI) $m / z 267(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI) $m / z 267.1011$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}: 267.0997$).
(2R,4S,6R)-2-(Furan-2-yl)-4-(4-methoxybenzyloxy)-6-phenyl-tetrahydro-2H-pyran (ent-10):

Same procedure was used for preparation of compound ent-10 as used for $\mathbf{1 0}$.
$[\alpha]^{23}{ }_{\mathrm{D}}=+37.0\left(c=0.9, \mathrm{CHCl}_{3}\right)$; IR $v\left(\mathrm{~cm}^{-1}\right): 3447,2927,2865,1611,1514,1248,1035,816 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.44-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{t}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=2.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H})$, $2.58(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,154.5,142.1,142.0,130.5,129.1$, 128.6,127.2, 126.4, 113.8, 110.2, 108.2, 72.6, 71.4, 69.5, 65.9, 55.3, 34.9, 33.8; MS (ESI) $m / z 387(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI) m / z
387.1582 (calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}: 387.1572$).
(2R,4S,6R)-Methyl-4-(4-methoxybenzyloxy)-6-phenyl-tetrahydro-2H-pyran-2-carboxylate:

$\left.[\alpha]^{23}{ }_{\mathrm{D}}=+32.4\left(c=0.3, \mathrm{CHCl}_{3}\right)\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.38(\mathrm{dd}, J=2.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=0.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.88(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.1$, $159.0,141.8,128.8,128.4,127.5,126.2,113.8,113.7,70.5,70.0,69.8,69.7,55.2,51.9,36.8,30.4$; MS (ESI) $\mathrm{m} / \mathrm{z} 379$ $(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI) $m / z 379.1535$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}: 379.1521$).
(2R,4S,6R)-4-(4-Methoxybenzyloxy)-6-phenyl-tetrahydro-2H-pyran-2-carbaldehyde (ent-11):

Same procedure was used for preparation of compound ent-11 as used for $\mathbf{1 1 .}$ $[\alpha]_{\mathrm{D}}^{23}=+74.3\left(c=1.5, \mathrm{CHCl}_{3}\right) ;$ IR $v\left(\mathrm{~cm}^{-1}\right): 3443,2928,1728,1611,1512,1245,1034,822,756 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{dd}, J=2.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=2.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H})$, $1.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.4,159.2,141.7,130.2,129.2,128.4,127.6,126.0,113.9,77.5,70.5,69.7$,
69.5, 55.3, 37.0, 29.6; HRMS (ESI) $m / z 349.1420$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}: 349.1415$).

2-((2R,4R,6R)-4-(4-Methoxybenzyloxy)-6-phenyl-tetrahydro-2H-pyran-2-yl)-1-phenylethanone (ent-13):

Same procedure was used for preparation of compound ent-13 as used for 13. $[\alpha]^{23}{ }_{\mathrm{D}}=+47.2\left(c=0.8, \mathrm{CHCl}_{3}\right) ; \mathrm{IR} v\left(\mathrm{~cm}^{-1}\right): 3061,2926,2854,1683,1598,1513,1448,1250,1068,755,698 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.14(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=6.6,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (dd, $J=5.8,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{ddd}, J=3.68 .0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, J=6.3,8.0,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 198.4,140.6,137.2,133.0,130.5,129.2,128.5,128.4,128.2,127.0,126.3,126.1,113.8$, $71.9,70.7,69.8,67.3,55.2,44.4,36.4,34.4$; MS (ESI) $m / z 439(\mathrm{M}+\mathrm{Na})^{+}$HRMS (ESI) $m / z 439.1907$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$: 439.1885).

2-((2R,4R,6R)-4-hydroxy-6-phenyl-tetrahydro-2H-pyran-2-yl)-1-phenylethanone (ent-1):

Same procedure was used for preparation of compound ent-1 as used for 1.
$[\alpha]^{23}{ }_{\mathrm{D}}=+23.3\left(c=0.2, \mathrm{CHCl}_{3}\right) ;$ IR $v\left(\mathrm{~cm}^{-1}\right): 3624,2925,2857,2312,1740,1682,1515,1452,1174,753 ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=6.6,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=5.9,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=3.7,7.3,13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{ddd}, J=3.7,5.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dt}, J=9.5,12.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.4$, $140.2,137.1,133.1,128.5,128.4,128.2,127.0,126.3,72.3,66.9,64.0,44.6,40.0,36.6$; MS (ESI) $m / z 319(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI) $m / z 319.1297$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}$: 319.1310).

2-((2R, 4R, 6R)-4-(tert-Butyldiphenylsilyloxy)-6-phenyl-tetrahydro-2H-pyran-2-yl)-1-phenylethanone (ent-14):

Same procedure was used for preparation of compound ent-14 as used for $\mathbf{1 4 .}$
$[\alpha]^{23}{ }_{\mathrm{D}}=+36.0\left(c=0.25, \mathrm{CHCl}_{3}\right)$; IR $v\left(\mathrm{~cm}^{-1}\right): 3068,2927,2855,1681,1466,1215,1110,760,701 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=6.7 \mathrm{~Hz} 4 \mathrm{H}), 7.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.36$ $(\mathrm{m}, 7 \mathrm{H}), 7.05(\mathrm{t}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{dd}, J=7.4,15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{dd}, J=5.9,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.3,142.9,135.8$, 135.7, 134.1, 132.9, 130.3, 129.8, 129.7, 128.5, 128.4, 128.3, 128.1, 127.6, 127.0, 126.4, 125.7, 73.9, 69.6, 66.1, 45.3, 40.6, 38.4, 27.0, 19.3; MS (ESI) $m / z 557(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI) $m / z 535.2685$ (calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{O}_{3}$ Si: 535.2668).

2-((2R,4R,6S)-4-Hydroxy-6-phenyl-tetrahydro-2H-pyran-2-yl)-1-phenylethanone (ent-2):

Same procedure was used for preparation of compound ent-2 as used for $\mathbf{2}$.
$[\alpha]_{\mathrm{D}}^{23}=+18.9\left(c=1.8, \mathrm{CHCl}_{3}\right) ;$ IR $v\left(\mathrm{~cm}^{-1}\right): 3062,2922,2854,1681,1598,1452,1058,751,694 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 7.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.90(\mathrm{dd}, J=1.9,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=3.0,1 \mathrm{H}), 3.39(\mathrm{dd}, J=5.7,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=6.8,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.60(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.3,142.5,137.0,133.1,128.5,128.2,127.2,125.8,73.7,68.9,64.6,45.0,39.8,38.3$; MS (ESI) $m / z 319(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI) $m / z 319.1325$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}: 319.1310$).

NOE data for compound 1 :

Chemical Shift assignment:
$1.50\left(\mathrm{dt}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=9.3 \mathrm{~Hz}, 12.3 \mathrm{~Hz}, \mathrm{Hd}^{1}\right)$
$1.92\left(\mathrm{ddd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=5.0 \mathrm{~Hz}, 9.7 \mathrm{~Hz}, 13.5 \mathrm{~Hz}, \mathrm{Hb}^{1}\right)$
2.05 (m, 1H, Hd)
$2.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hb})$
$3.17(\mathrm{dd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=5.9 \mathrm{~Hz}, 15.7 \mathrm{~Hz}$, benzyl protons)
$3.45(\mathrm{dd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 15.7 \mathrm{~Hz}$, benzyl protons)
4.02 (m, 1H, Hc)
4.23 (m, 1H, He)
$5.19(\mathrm{t}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=4.4 \mathrm{~Hz}, \mathrm{Ha})$
7.24-7.34 (m, Phenyl (1) protons), 7.46-7.98 (m, Phenyl (2) protons)

Information on the coupling constants was obtained from selective homonuclear decoupling, where $\left.{ }^{3} J_{(\mathrm{He}-\mathrm{Hd})}{ }^{1}=9.3 \mathrm{~Hz},{ }^{3} J_{(\mathrm{Hd}}{ }^{1}-\mathrm{Hc}\right)=$ $\left.9.3 \mathrm{~Hz},{ }^{3} J_{(\mathrm{Hc}-\mathrm{Hb}}{ }^{1}\right)=9.7 \mathrm{~Hz}$ and $\left.{ }^{3} J_{(\mathrm{Ha}-\mathrm{Hb}}{ }^{1}\right)=5 \mathrm{~Hz},{ }^{3} J_{(\mathrm{Ha}-\mathrm{Hb})}=2.5 \mathrm{~Hz}$, clearly fixes the stereochemistry of the corresponding protons (as shown in the figure), which is further supported by the NOEs between Phenyl (1) protons to $\mathrm{He}, \mathrm{Hb}, \mathrm{Hc}$, indicating the syn or cis conformation of these protons. Whereas absence of NOE between Ha-Hc, Ha-He clearly indicates that He and Hc are cis to each other whereas both these protons are trans to Ha.

NOE data for compound 14:

Chemical Shift assignment:
$1.65\left(\mathrm{ddd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 9.4 \mathrm{~Hz}, 12.3 \mathrm{~Hz}, \mathrm{Hd}^{1}\right)$
$1.87\left(\mathrm{ddd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=5.1 \mathrm{~Hz}, 9.7 \mathrm{~Hz}, 13.5 \mathrm{~Hz}, \mathrm{Hb}^{1}\right)$
1.98 (m, 1H, Hd)
2.11 (m, 1H, Hb)
$3.01(\mathrm{dd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=5.9 \mathrm{~Hz}, 15.7 \mathrm{~Hz}$, benzyl protons)
3.37 (dd, 1H, $J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 15.7 \mathrm{~Hz}$, benzyl protons)
3.91 (m, 1H, Hc)
3.99 (m, 1H, He)
$4.94(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}(\mathrm{H}, \mathrm{H})=3.7 \mathrm{~Hz}, \mathrm{Ha})$
6.67 ($\mathrm{m}, 2 \mathrm{H}$, Phenyl (1) protons)
7.05 (m, 3H, Phenyl (1) protons)
7.35-7.71 (m, 10H, TBDPS phenyl protons
7.43 (m, 3H, Phenyl (2) protons)
7.94 (m, 2H, Phenyl (2) protons)

Information on the coupling constants was obtained from selective homonuclear decoupling, where ${ }^{3} J_{(\mathrm{He}-\mathrm{Hd})}{ }^{1}=8.2 \mathrm{~Hz},{ }^{3} J_{(\mathrm{Hd}-\mathrm{Hc})}^{1}=$ $\left.9.4 \mathrm{~Hz},{ }^{3} J_{(\mathrm{Hc}-\mathrm{Hb}}{ }^{1}\right)=9.7 \mathrm{~Hz}$ and ${ }^{3} J_{(\mathrm{Ha}-\mathrm{Hb})}{ }^{1}=4.8 \mathrm{~Hz},{ }^{3} J_{(\mathrm{Ha}-\mathrm{Hb})}=2.7 \mathrm{~Hz}$, clearly fixes the stereochemistry of the corresponding protons (as shown in the figure), which is further supported by the NOEs between Phenyl (1) protons to $\mathrm{He}, \mathrm{Hb}, \mathrm{Hc}$, indicating the syn or cis conformation of these protons. Whereas absence of NOE between $\mathrm{Ha}-\mathrm{Hc}, \mathrm{Ha}-\mathrm{He}$ clearly indicates that He and Hc are cis to each other whereas both these protons are trans to Ha.

NOE data for compound 2:

Chemical Shift Assignment:
$1.69\left(\mathrm{ddd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=2.7 \mathrm{~Hz}, 11.5 \mathrm{~Hz}, 13.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}{ }^{1}\right)$
$1.78\left(\mathrm{ddd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=2.9 \mathrm{~Hz}, 14.3 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}{ }^{1}\right)$
$1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{d}}\right)$
$3.04(\mathrm{dd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=6.82 \mathrm{~Hz}, 16.0 \mathrm{~Hz}$, benzyl protons)
$3.39(\mathrm{dd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=5.76 \mathrm{~Hz}, 16.0 \mathrm{~Hz}$, benzyl protons)
$4.34\left(\mathrm{t}, J(\mathrm{H}, \mathrm{H})=3.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right)$
$4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right)$
$4.90\left(\mathrm{dd}, 1 \mathrm{H}, J(\mathrm{H}, \mathrm{H})=1.9 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right)$
7.24-7.30 (m, Phenyl (1) protons)
7.46-7.98 (m, Phenyl (2) protons)

Information on the coupling constants was obtained from selective homonuclear decoupling, where $\left.{ }^{3} J_{(\mathrm{Ha}-\mathrm{Hb})}{ }^{1}=12.0 \mathrm{~Hz},{ }^{3} J_{(\mathrm{He}-\mathrm{Hd}}{ }^{1}\right)$ $=11.5 \mathrm{~Hz}$ and $\left.{ }^{3} J_{(\mathrm{Hc}-\mathrm{Hb}}{ }^{1}, \mathrm{Hb}, \mathrm{Hd}, \mathrm{Hd}\right){ }^{1} \approx 3.0 \mathrm{~Hz}$ clearly fixes the stereochemistry of the corresponding protons (as shown in the figure), which is further supported by the NOE between Ha-He indicating the syn or cis conformation of these protons. Whereas no NOE was observed between $\mathrm{Hc}-\mathrm{He}$, Hc -Ha thus Hc is trans to He and Ha .

NOESY spectrum of compound $1-[500 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{CDCl} 3]$

NOESY spectrum of compound $14-[500 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{CDCl} 3]$

NOESY spectrum of compound 2 - [500MHz, 300K, CDCl3]

-

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}(\mathbf{1 0 0} \mathbf{M H z})$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}(\mathbf{4 0 0} \mathbf{~ M H z})$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}(\mathbf{1 0 0} \mathbf{M H z})$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}(\mathbf{4 0 0} \mathbf{M H z})$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$)

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}(\mathbf{1 0 0} \mathbf{~ M H z})$

RAMAKRISHNA-GKS-RGN-OXY-C13-12C

${ }^{13}$ CNMR, $\mathrm{CDCl}_{3} 100 \mathrm{MHz}$)

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
45

46

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C N M R}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13}$ CNMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S 54

${ }^{13}$ CNMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ CNMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Tue, 27th Jan, 2009 19:38:54
Sample iD cbno?
Sample
Amoun : 20
Raw Data : 0
Primary
Project
alrec
alrec work1

ALREC
Page

Peak No.	Retern. time	Axem $[\mathrm{mv}, \mathrm{~s}]$	$\begin{aligned} & \text { Height } \\ & \text { [mv] } \end{aligned}$	$\begin{aligned} & \text { wos } \\ & \text { [min. }] \end{aligned}$	Area [\%]	$\begin{aligned} & \text { Height } \\ & {[8]} \end{aligned}$
1	5.933	279.4919	10.8524	0.3867	4.6480	8.9685
2	6.600	146.3637	6.2490	0.2667	2.4340	5.1642
3	8.600	78.6469	0.8302	1.7733	1.3079	0.6861
4	13.187	42.4147	0.3725	0.6267	0.7054	0.3078
5	15.093	16.8358	0.6903	0.3733	0.2800	0.5705
6	32.600	19.7809	0.3738	0.7867	0.3290	0.3089
7	36.080	18.0047	0.3985	0.7867	0.2994	0.3293
8	37.493	2705.5948	51.2829	0.8000	44.9940	42.3803
9	41.973	2706.0961	49.9567	0.8400	45.0023	43.2844
-	Total	6013.2294	121.0064			

HPLC data for compound 8 (Diastereomeric mixture)

Amount $:$ ：2U	
ISTD Amount：	0
Raw Data $:$ chi－ii	
Primary	：chi－ii
Project	：work1

Lhilution ： 1
Inj．Volurne： 20
From ：Tue，27th Jan， 2009 19：47：36
Calibration ：（none）
Sityle

Peak No．	Reten． time	Axea $[\mathrm{mV}, \mathrm{~s}]$	Height $[\overline{I N V}]$	$\begin{aligned} & \text { W05 } \\ & \text { [min.] } \end{aligned}$	Axea ［景］	Height [若]
1	6.427	7692．2729	99.5066	0.1333	3.1065	11.5928
2	8.573	233．3822	6.6844	0.7067	0.4279	0.7797
3	9.400	105．4219	6.3406	0.5200	0.3400	0.7387
4	10.613	187.2289	3.7174	1．0000	0.3433	0.1731
5	11.440	207.9350	4.2820	1.0000	0.3813	0.4989
6	12.240	1月7．25．7	4.1065	0.9067	0.3433	0.4784
7	1.3 .693	319.1805	4.6742	1．3733	0．5852	0.5446
8	15.21 .3	1983.5427	62.5979	0.4667	3.6369	7.2928
9	23.333	75．9695	0． 565%	（0．626）	0.0476	0.0659
20	28.200	12．7592	0.2835	0.6933	0.0234	0.0330
11	33.307	265.9382	5.2583	0.7600	0.4876	0.6126
12	37.427	48673．8314	652.3043	1.1200	89.2446	75.9950
13	57.640	563.0887	8.0309	1.0933	1.0324	0.9355
－	Total	54639．8127	858.3521			

HPLC data for compound 8 （chiral）

Project . Workt

जanmaarul- vicurwa
Style report

Peak No.	$\begin{aligned} & \text { Reten. } \\ & \text { time } \end{aligned}$	$\begin{aligned} & \text { Axea } \\ & {[\mathrm{xaV} .5]} \end{aligned}$	Height $\text { [} \mathrm{mv}]$	W05 $[\min ,]$	A工这 [8]	Height [8]
1	17.273	537.7855	18.9409	0. 4267	0.6435	1.0276
2	20.62%	47448.2149	1000.9677	0.7487	56.8190	54.3067
3	24.093	35045.7512	912.9918	0.6000	17.9677	44.7042
1	26.089	476.3682	10.2750	0.7333	0.5704	0.5575
-	Total	93507.7099	1843.1755			

HPLC data for compound 9 (Diastereomeric mixture)

Wed, 28th Jan, 2009 13:05:08

Sample iD	AL-rec
Sample	AL-rec
Ampunt	20
Raw Data	al-chira
Primary	al-chira
Project	work1

Peak No.	Reten. time	Area $[\mathrm{m} V, 3]$	Height [mV]	$\begin{aligned} & \text { wo5 } \\ & {[\text { min. }]} \end{aligned}$	Area [\%]	Height [8]
1	20.453	39261.1272	962.3213	0.6267	100.0000	100.0000
	Total	38281.1272	962.3213			

HPLC data for compound 9 (Chiral)

ORTEP representation of 7 with 50% probability.

