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Supplementary Figure 1: Ensemble transmission electron microscopy [TEM] 

Statistical analysis of micrographs like those above displaying Au-tipped CdSe nanorods 

(left) and control CdSe nanorods (right) indicate good sample monodispersity. The 

nanorods have dimensions 4.8 (± 0.8) by 32 (± 5) nm with 3.4 (± 0.8) nm diameter Au 

spheres after tip growth. 
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Supplementary Figure 2: X-ray photoelectron spectroscopy The Cd 3d signal (left) 

and Se 3d signal (right) for an ensemble of CdSe nanorods (red) and Au-tipped CdSe 

nanorods (green) show no significant difference in binding energy. A peak shift or 

broadening of ~2 eV would indicate a change in the oxidation state or chemical 

environment of the Cd or Se atoms present in the Au-tipped CdSe sample.  

 

 

 
Supplementary Figure 3: Background current of an empty Au junction (a) There is 

no current response from an Au junction without a nanorod present, across the 

temperature range of our study. (b) Scanning electron micrograph [SEM] of a device with 

no nanorods. 

 

Derivation of Equation (1) 

 
The procedure follows from the general strategy outlined by Sze, with the barrier 

structure diagramed below. Electrons tunnel from left to right under bias. 

 



 
 
ND = doping density 

εs = semiconductor permittivity 

q = elementary charge 

W = depletion width 

m = effective mass 

 

 

Poisson’s equation defines the potential as a function of distance from the electrode, x, in 

terms of the voltage across the contact Vo (=Vsd+Ф0) 
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The overall current due to tunneling will be equal to: 

 

Isd ∝Vsd ⋅ e−2Γ         (S4) 

 

where Γ is the tunneling phase factor: 
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with the definition for the electron wave vector: 
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The integral in equation (S5) can be solved by substitution, note that: 
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giving 
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Substitution of equation (S9) for Γ into equation (S4) reproduces the expression for the 

tunneling current, equation (1), in the main body of the text. 


