Supporting Information

for

From Twofold Completive to Integrative Self-sorting: a Five-Component Supramolecular Trapezoid

Kingsuk Mahata, Michael Schmittel^{*}

Center of Micro and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany, E-mail: <u>schmittel@chemie.uni-siegen.de</u> Fax: (+49) 271-740-3270

Table of Contents

1	¹ H and ¹³ C spectra	S2
2	ESI-MS spectra	S 10
3	DPV	S16
4	Deconvolution of the DPV	S 17

NMR Spectra

Figure S1. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 2-(2,6-dimethoxyphenyl)-3-trimethylsilanylethynyl-[1,10]phenanthroline (**9**).

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 2-(2,6-dimethoxyphenyl)-3-trimethylsilanylethynyl-[1,10]phenanthroline (**9**).

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 2,9-bis-(2,6-dimethoxyphenyl)-3-trimethylsilanylethynyl-[1,10]phenanthroline (**10**).

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 2,9-bis-(2,6-dimethoxyphenyl)-3-trimethylsilanylethynyl-[1,10]phenanthroline (**10**).

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of 2,9-bis-(2,6-dimethoxyphenyl)-3-ethynyl-[1,10]-phenanthroline (**11**).

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃, 298 K) of 2,9-bis-(2,6-dimethoxyphenyl)-3-ethynyl-[1,10]-phenanthroline (**11**).

Figure S8. ¹³C NMR spectrum of **6** (100 MHz, CD₂Cl₂, 298 K).

Figure S9. ¹H NMR spectrum of **7** (400 MHz, CDCl₃, 298 K).

Figure S10. ¹³C NMR spectrum of **7** (100 MHz, CD₂Cl₂, 298 K).

Figure S11. ¹H NMR (400 MHz, 298 K, CD₃CN/CDCl₃ v/v 3:1) spectra of (a) $[Zn(2)(3)](OTf)_2$, (b) $[Zn(1)(3)](OTf)_2$ and (c) an equimolar mixture of 1,2,3 in presence of $Zn(OTf)_2$.

Figure S12. ¹H NMR (400 MHz, 298 K, CD₃CN) spectra of (a) $[Cu(1)(4)](PF_6)$, (b) $[Cu(2)(4)](PF_6)$ and (c) an equimolar mixture of 1,2,4 in presence $[Cu(MeCN)_4](PF_6)$.

Figure S13. ¹H NMR (400 MHz, 298 K, CD_3CN) spectra of (a) $[Cu(2)(4)](PF_6)$, (b) $[Cu(2)(3)](PF_6)$ and (c) an equimolar mixture of 2,3,4 in presence of $[Cu(MeCN)_4](PF_6)$.

Figure S14. ¹H NMR (400 MHz, 298 K, CD₃CN) spectra of (a) $[Cu(1)(4)](PF_6)$, (b) $[Zn(2)(3)](OTf)_2$ and (c) an equimolar mixture of 1,2,3,4 in presence of $Zn(OTf)_2$ and $[Cu(MeCN)_4](PF_6)$.

Figure S15. ¹H NMR spectrum of the rack assembly $[Zn_2(6)(3)_2](OTf)_4$ (400 MHz, CD₃CN, 298 K).

Figure S16. ¹H NMR spectrum of the trapezoid **T** (400 MHz, CD₃CN, 298 K).

ESI-MS spectra

Figure S17. ESI-MS spectrum of an equimolar mixture of 1,2,3 and $Zn(OTf)_2$ in acetonitrile/chloroform (v/v 3:1). The spectrum recorded after stirring all components at 60 °C for 2 h.

Figure S18. ESI-MS spectrum of an equimolar mixture of 1,2,4 and $[Cu(MeCN)_4](PF_6)$ in acetonitrile. The spectrum recorded after refluxing all components in acetonitrile for 2 h.

Figure S19. ESI-MS spectrum of an equimolar mixture of 2,3,4 and $[Cu(MeCN)_4](PF_6)$ in acetonitrile. The spectrum recorded after refluxing all components in acetonitrile for 2 h.

Figure S20. ESI-MS spectrum of an equimolar mixture of 1,2,3,4 in presence of $Zn(OTf)_2$ and $[Cu(MeCN)_4](PF_6)$ in acetonitrile. The spectrum recorded after refluxing all components in acetonitrile for 2 h.

Figure S21. ESI-MS spectrum of rack assembly $[Zn_2(6)(3)_2](OTf)_4$ (in acetonitrile) and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the four charged species.

Figure S22. ESI-MS spectrum of $\mathbf{T} = [Cu_2Zn_2(5)(6)(7)_2](OTf)_4(PF_6)_2$ (in acetonitrile) and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the different charged species obtained after the loss of counter anion(s).

Figure S23. ESI-MS spectrum of $\mathbf{R}_{\mathbf{S}} = [Cu_2Zn_2(\mathbf{5})_2(\mathbf{7})_2](OTf)_4(PF_6)_2$ (in acetonitrile) and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the different charged species obtained after the loss of counter anion(s).

Figure S24. ESI-MS spectrum of $\mathbf{R}_{L} = [Cu_2Zn_2(6)_2(7)_2](OTf)_4(PF_6)_2$ (in acetonitrile) and experimental isotopic distributions (black lines) along with calculated isotopic distributions (red lines) for the different charged species obtained after the loss of counter anion(s).

Differential Pulse Voltammgrams

Figure S25. Differential pulse voltammetry (DPV) investigation of $[Cu(2)(3)](PF_6)$ (black), $[Cu(2)(4)](PF_6)$ (red) and an equimolar mixture of mixture **2,3,4** in presence of $[Cu(MeCN)_4](PF_6)$ (green). The experiments were carried out in dry acetonitrile with 0.1 M nBu_4NPF_6 as electrolyte against a Ag wire as a quasi-reference electrode and 2,4,6-triphenylpyrylium tetrafluoroborate as internal standard (scan rate of 20 mVs⁻¹ and a pulse height of 2 mV).

Figure S26. Differential pulse voltammetry (DPV) investigation of $[Cu(1)(4)](PF_6)$ (black), $[Cu(2)(4)](PF_6)$ (red), mixture of $[Cu(1)(4)](PF_6)$ and $[Cu(2)(4)](PF_6)$ (green), and an equimolar mixture of 1,2,3,4 in presence of $[Cu(MeCN)_4](PF_6)$ and $Zn(OTf)_2$ (blue). The experiments were carried out in dry acetonitrile with 0.1 M *n*Bu₄NPF₆ as electrolyte against a Ag wire as a quasi-reference electrode and 2,4,6-triphenylpyrylium tetrafluoroborate as internal standard (scan rate of 20 mVs⁻¹ and a pulse height of 2 mV).

Figure S27. Differential pulse voltammetry (DPV) investigation of trapezoid $\mathbf{T} = [Cu_2Zn_2(5)(6)(7)_2](OTf)_4(PF_6)_2$. The experiment was carried out in dry acetonitrile with 0.1 M nBu_4NPF_6 as electrolyte against a Ag wire as a quasi-reference electrode and 1,1'-dimethyl ferrocene as internal standard (scan rate of 20 mVs⁻¹ and a pulse height of 2 mV).

Deconvolution of the DPV

Figure S28. Deconvoluted differential pulse voltammgram of trapezoid $\mathbf{T} = [Cu_2Zn_2(5)(6)(7)_2](OTf)_4(PF_6)_2$.

Fitted I	Paramet	ers							
r ² Coef	Det	DF Ad	lj r ²	Fit St	d Err	F-va	lue		
0.99850237 0.99		0.9984	3997	1.479	6e-09	1838	82.5228		
Peak	Туре		a0		a1		a2		
1	Gauss	Amp	6.3375e-	-08	0.60750	808	0.04923810		
2	Gauss	Amp	5.6618e-	-08	0.67026	210	0.05760980		
В	Linear	Bg	1.5649e-	-08	1.2574e	-07			
Measur	ed Valu	es							
Peak	Type		Amplitu	ıde	Center		FWHM	Asym50	FW Base
Asym10)		•						
1	Gauss	Amp	6.3375e-	08	0.60750	808	0.11594686	1.00000000	0.23209178
2	1.00000000		5 ((10, 00		0 (702(210		0 12566071	1 0000000	0.07155215
2 Gauss Amp		Amp	5.6618e-08		0.67026210		0.135660/1	1.00000000	0.27155315
	1.0000	0000							
Peak	Туре		Anlytc Area		% Area	ı	Int Area	% Area	Centroid
Momen	t2					• • •			
I	Gauss . 0 0024	Amp 0578	7.8218e-	.09	48.8930	294	7.8164e-09	48.9000358	0.60762586
2	Gauss	Amp	8.176e-0	19	51.1069	706	8.1681e-09	51.0999642	0.67010043
	0.0032	8364							
	Total		1.5998e-	-08	100.000	000	1.5985e-08	100.000000	
-	~ ~ ~								
Parame	eter Stat	istics							
Peak I	Gauss A	mp	C(1 E		4 . 1 .		05		
Parm		- 00	Std Erro	r oo	t-value	100	95	1 2070 - 07	
Amp Ctr	0.3373	0000	5.3072e-	08 270	1.88213	188 146	-3.0306-09	1.29796-07	
Wid	0.0073	3810	0.00940.	5/0 3/2	16 7281	440 787	0.38890071	0.02003340	
w lu	0.0492	3010	0.00294.	542	10.7201	/0/	0.04343209	0.03304330	
Peak 2	Gauss A	mp							
Parm	Value		Std Erro	r	t-value		95		
Amp	5.6618	e-08	2.4678e-	-08	2.29429	848	7.9454e-09	1.0529e-07	
Ctr	0.6702	6210	0.025498	394	26.2858	813	0.61996973	0.72055446	
Wid	0.0576	0980	0.007755	553	7.42822	471	0.04231333	0.07290627	
Baseline	e Linear	Bø							
Parm	Value	-8	Std Erro	r	t-value		95		
a0	1.5649	e-08	1.2155e-	-09	12.8748	277	1.3252e-08	1.8046e-08	
a1	1.2574	e-07	1.9353e-	-09	64.9721	191	1.2192e-07	1.2956e-07	
Analysi	is of Var	riance	2						
r ² Coef	Det	DF Ad	lj r ²	Fit St	d Err				
0.99850)237	0.9984	3997	1.479	6e-09	~		-	
Source Sum of Squares			ares	DF	DF Mean Square			F	
Regr 2.8169942e-13		-13	3 7 4.024		24277	5e-14	18382.523		
Total 2 821210			e-10 195		2.18918078		/e-18		
1 Otal	2.02	121940	-13	200					
Details	of Fit								
Set Con	vergence	e	State	It	erations	Ν	Minimization	Extent	
1E-6			Converged 106		L	east Squares	1/1		
Curvature Matrix			Constraints					Violated	

25.0000-5.00000-50.0000- None - None

Sparse-Roots

Violated 0