Cycloisomerization of Aromatic Homo- and bis-Homopropargylic Alcohols via Catalytic Ru-Vinylidenes: Formation of Benzofuranes and Isochromenes

Alejandro Varela-Fernández, Carlos González-Rodríguez, Jesús A. Varela, Luis Castedo and Carlos Saá*

Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Supporting Information

Index

I. General	S2
II. Preparation of starting materials and catalysts	S2
III. Optimization of the Ru-catalyzed cycloisomerization conditions	S 3
IV. General procedure for the Ru-catalyzed reaction	S3
V. Isotopic labeling experiments	S3
VI. Spectral data	S5
VII. Spectra	S11

I. General

Solvents THF, Et₃N, ⁱPr₂NH and MeOH were used after distillation. All other reagents were used as received without further purification, unless otherwise noted. All reactions were carried out under argon atmosphere in flame-dried glassware with magnetic stirring, unless otherwise indicated.

II. Preparation of starting materials and catalysts

- Aromatic alkynols 1a, 1d, 9b, 9d were prepared following published procedures or with appropriate modifications.
- Aromatic alkynols **1b** and **1c** were prepared in three steps in 71% and 61% overall yields, respectively: a) Sonogashira coupling of methyl-2-bromo-5-chlorobenzoate and methyl-2-bromo-5-methoxybenzoate with trimethylsilylacetylene (1.5 equiv) using Pd(OAc)₂ (0.02 equiv), Ph₃P (0.05 equiv) and CuI (0.03 equiv) in Et₃N at 90°C; b) reduction with LiAlH₄ (1.4 equiv) in THF; c) desilylation with TBAF (1.25 equiv) in THF.
- Aromatic alkynol **1e** was prepared in three steps in 86% overall yield: a) Sonogashira coupling of 1-(2-iodophenyl)ethanone with trimethylsilylacetylene (1.5 equiv) using Pd(PPh₃)₂Cl₂ (0.02 equiv) and CuI (0.03 equiv) in THF/Et₃N at rt; b) reduction with NaBH₄ (1 equiv) in MeOH; c) desilylation with TBAF (1.25 equiv) in THF.
- Aromatic alkynols **1f** and **1g** were prepared in three steps in 48% and 86% overall yields, respectively: a) Sonogashira coupling of 2-iodobenzaldehyde and 1-(2-iodophenyl)ethanone with trimethylsilylacetylene (1.5 equiv) using Pd(PPh₃)₂Cl₂ (0.02 equiv) and CuI (0.03 equiv) in THF/Et₃N at rt; b) desilylation with TBAF (1.25 equiv) in THF; c) addition of allylmagnesium chloride (1.5 equiv) and methylmagnesium iodide (2 equiv) in THF, respectively.
- 2-Ethynylbenzoic acid **3** was prepared in three steps in 20% overall yield: a) esterification of 2-iodobenzoic acid in MeOH with H₂SO₄; b) Sonogashira coupling of the ester obtained with trimethylsilylacetylene (1.5 equiv) using Pd(PPh₃)₂Cl₂ (0.02 equiv) and CuI (0.03 equiv) in THF/Et₃N at rt; c) ester saponification and desilylation with NaOH in MeOH.
- Alkynol 5 was prepared in three steps in 32% overall yield: a) silylation of pent-4-yn-1-ol by treatment with n-BuLi (2.1 equiv) and TMSCl (2.2 equiv) in THF;
 b) Swern oxidation of the resulting alcohol; c) addition of hexylmagnesium chloride (1 equiv) in THF.
- 2,2-Di(prop-2-ynyl)propane-1,3-diol **7** was prepared in 70% overall yield by reduction of dimethyl 2,2-di(prop-2-ynyl)malonate² with LiAlH₄ (2.8 equiv) in THF.

¹ Kabalka, G. W.; Wang, L.; Pagni, R. M. Tetrahedron **2001**, 57, 8017.

² Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. **2005**, 127, 4763.

- Phenol **9a** was prepared in three steps in 34% overall yield: a) Sonogashira coupling of 3-hydroxy-2-iodo-4-methoxybenzaldehyde with trimethylsilylacetylene (1.5 equiv) using Pd(PPh₃)₂Cl₂ (0.10 equiv) and CuI (0.10 equiv) in THF/ⁱPr₂NH at 40°C; b) reduction with NaBH₄ (1.5 equiv) in MeOH; c) desilylation with TBAF (1.25 equiv) in THF.
- Phenol 9c was prepared in three steps in 50% overall yield: a) iodination of 4-hydroxybenzonitrile with KI (2 equiv), I₂ (1 equiv), NH₄OH (1 equiv) in H₂O;³ b) Sonogashira of the resulting aryl iodide with trimethylsilylacetylene (1.5 equiv) using Pd(PPh₃)₂Cl₂ (0.02 equiv) and CuI (0.03 equiv) in THF/Et₃N at rt; c) desilylation with TBAF (1.25 equiv) in THF.
- CpRuCl(PPh₃)₂, ⁴ CpRuCl(dppm)⁵ and [Cp*Ru(CH₃CN)₃]PF₆⁶ were prepared following literature procedures. Cp*RuCl(PPh₃)₂, (η⁵-indenyl)RuCl(PPh₃)₂ and TpRuCl(PPh₃)₂ were used as received from commercial suppliers.

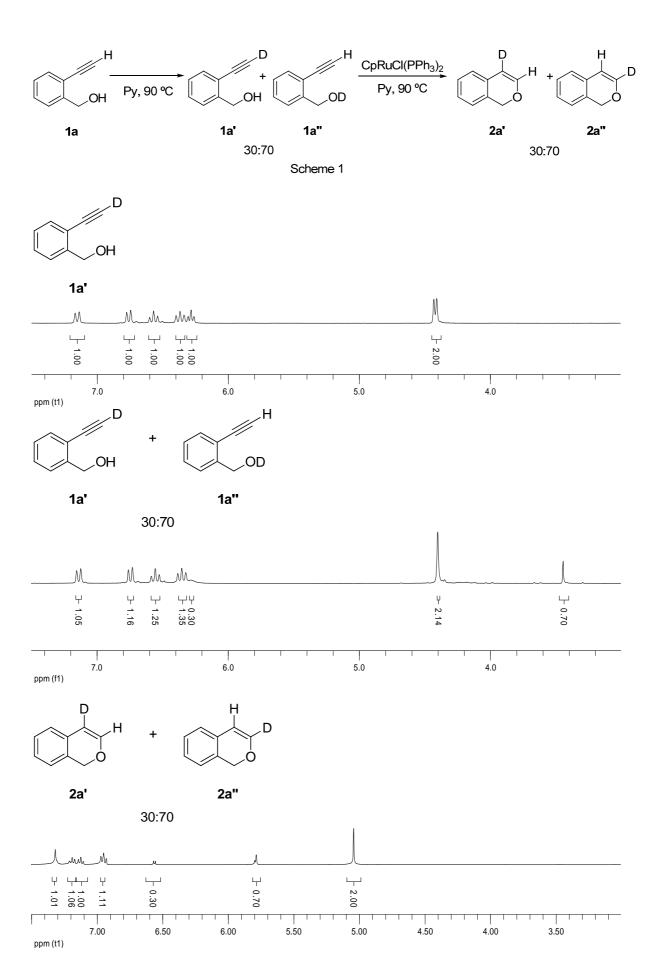
III. Optimization of the Ru-catalyzed cycloisomerization conditions

- Catalyst: Ru-catalyzed reaction of bis-homopropargylic alcohol 1a using 10% of Cp*RuCl(PPh₃)₂, TpRuCl(PPh₃)₂, CpRuCl(dppm) or [Cp*Ru(CH₃CN)₃]PF₆ failed to give the cycloisomerized product, with recovery of 1a unaltered. When η⁵-(indenyl)RuCl(PPh₃)₂ was used as catalyst, isochromene 2a was obtained in a low 15% yield.
- *Amines*: Ru-catalyzed cycloisomerization of **1a** in *i*PrNH₂ gave a low 25% yield of **2a**. Secondary amines like *i*Pr₂NH and pirrolidine, tertiary amines like Et₃N and 2,2'-bipyridine failed to afford **2a**, with recovery of **1a** unaltered.

IV. General conditions for the Ru-catalyzed reaction

Aromatic alkynols were added to a suspension of the Ru catalyst (10% mmol) in the solvent (0.15 M) and the mixture heated in an oil-bath at 90-130°C until disappearance of the starting alkynol (GC and TLC monitoring). After reaching rt, the mixture was concentrated and the resulting residue was chromatographed on silica gel using Et₂O/hexane as eluents to afford the final cycloisomerized products.

V. Isotopic labeling experiments


Deuterated alkyne **1a'** (obtained by reaction of **1a** with NaH in THF followed by sequential quenching with D₂O and MeOH) was heated in pyridine for 30 min at 90 °C until a stationary mixture of **1a'** and deuterated alcohol **1a''** was obtained in 3:7 ratio (Scheme 1). Then, CpRuCl(PPh₃)₂ was added to the reaction mixture to give a 3:7 mixture of isochromenes **2a'** and **2a''** (Scheme 1).

⁴ Bruce, M. I.; Windsor, N. J. Aust. J. Chem. **1977**, *30*, 1601.

³ Sun, M.; Cowart, M. J. Med. Chem. 2005, 48, 6482.

⁵ Ashby, G. S.; M. I. Tomkins, I. B.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1003.

⁶ a) Trost, B. M.; Older, C. M. *Organometallics* **2002**, *21*, 2544. b) Schrenk, J. L.; McNair, A. M.; McCormick, F. B. Mann, K. R. *Inorg. Chem.* **1986**, *25*, 3501.

VI. Spectral data

1H-isochromene (2a)

Brown oil. ¹H NMR (300 MHz, CDCl₃), δ (ppm): 7.28-7.09 (m, 2H), 6.96 (t, J = 7.6 Hz, 2H), 6.57 (d, J = 5.7 Hz, 1H), 5.80 (d, J = 5.7 Hz, 1H), 5.05 (s, 2H). ¹³C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 146.2 (CH), 130.4 (C), 128.1 (CH), 128.0 (C), 126.6 (CH), 123.9 (CH), 122.8 (CH), 105.4 (CH), 68.1 (CH₂). MS, m/z (% relative intensity): 133 (M⁺+1, 100), 132 (16), 105 (39). HRMS (CI) calculated for C₉H₉O [M⁺+1]: 133.0653; found: 133.0653.

7-chloro-1H-isochromene (2b)

Yellow solid (mp: 48-50°C). ¹H NMR (300 MHz, CDCl₃), δ (ppm): 7.17 (dd, J = 7.9, 1.9 Hz, 1H), 6.98 (s, 1H), 6.88 (d, J = 7.9 Hz, 1H), 6.57 (d, J = 5.7 Hz, 1H), 5.77 (d, J = 5.7 Hz, 1H), 5.01 (s, 2H). ¹³C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 146.4 (CH), 131.7 (C), 129.5 (C), 128.9 (C), 128.1 (CH), 124.2 (CH), 124.0 (CH), 104.7 (CH), 67.5 (CH₂). MS, m/z (% relative intensity): 167 (M⁺+1, 100), 166 (39), 139 (38), 141 (12), 131 (32). HRMS (CI) calculated for C₉H₈ClO [M⁺+1]: 167.0264; found: 167.0264.

7-methoxy-1H-isochromene (2c)

White solid (mp: 52-54°C). ¹H NMR (300 MHz, CDCl₃), δ (ppm): 6.91 (d, J = 8.3 Hz, 1H), 6.76 (dd, J = 8.3, 2.4 Hz, 1H), 6.58 (s, 1H), 6.51 (d, J = 5.7 Hz, 1H), 5.78 (d, J = 5.7 Hz, 1H), 5.03 (s, 2H), 3.79 (s, 3H). ¹³C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 158.6 (C), 144.1 (CH), 129.7 (C), 124.0 (CH), 123,2 (C), 112.9 (CH), 110.2 (CH), 105.0 (CH), 68.0 (CH₂), 55.3 (CH₃). MS, m/z (% relative intensity): 163 (M⁺+1, 27), 149 (22), 137 (31), 123 (46), 109 (61), 95 (74), 83 (100). HRMS (ESI) calculated for C₁₀H₁₁O₂ [M⁺+1]: 163.0756; found: 163.0754.

1-methyl-1H-isochromene (2e)

Yellowish oil. ¹H NMR (250 MHz, CDCl₃), δ ppm 7.25-7.09 (m, 2H), 7.04-6.89 (m, 2H), 6.51 (d, J = 5.7 Hz, 1H), 5.76 (d, J = 5.7 Hz, 1H), 5.21 (q, J = 6.5 Hz, 1H), 1.59 (d, J = 6.5 Hz, 3H). ¹³C NMR, DEPT (75 MHz, CDCl₃) δ (ppm): 144.8 (CH), 132.4 (C), 129.7 (C), 127.8 (CH), 126.6 (CH), 123.3 (CH), 123.0 (CH), 104.7 (CH), 73.5 (CH), 19.7 (CH₃). MS, m/z (% relative intensity): 147 (M⁺+1, 100), 146 (24), 131 (13), 129 (15), 119 (35). HRMS (EI) calculated for $C_{10}H_{10}O$ [M⁺]: 146.0732; found: 146.0732.

1-allyl-1H-isochromene (2f)

Yellowish oil. 1 H NMR (250 MHz, CDCl₃), δ (ppm): 7.23-7.10 (m, 2H), 6.96 (d, J = 7.0 Hz, 2H), 6.49 (d, J = 5.7 Hz, 1H), 5.99-5.80 (m, 1H), 5.75 (d, J = 5.7 Hz, 1H), 5.21-5.06 (m, 3H), 2.87-2.71 (m, 1H), 2.56-2.44 (m, 1H). 13 C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 144.1 (CH), 134.1 (CH), 130.8 (C), 129.6 (C), 127.9 (CH), 126.4 (CH), 124.2 (CH), 123.3 (CH), 117.6 (CH₂), 104.6 (CH), 76.9 (CH), 38.5 (CH₂). MS, m/z (% relative intensity): 173 (M⁺+1, 18), 159 (13), 155 (11), 145 (26), 131 (100), 129 (5), 117 (5). HRMS (EI) calculated for $C_{12}H_{12}O$ [M⁺]: 172.0888; found: 172.0888.

1,1-dimethyl-1H-isochromene (2g)

Yellowish oil. 1 H NMR (250 MHz, CDCl₃), δ (ppm): 7.19-7.12 (m, 2H), 7.08-7.03 (m, 1H), 6.93 (dd, J = 6.1, 2.7 Hz, 1H), 6.45 (d, J = 5.7 Hz, 1H), 5.72 (d, J = 5.7 Hz, 1H), 1.61 (s, 6H). 13 C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 143.4 (CH), 137.0 (C), 136.0 (C), 127.4 (CH), 126.8 (CH), 123.4 (CH), 122.6 (CH), 104.0 (CH), 77.9 (C), 27.3 (2xCH₃). MS, m/z (% relative intensity): 161 (M⁺+1, 100), 160 (42), 145 (29), 143 (86), 133 (21). HRMS (EI) calculated for $C_{11}H_{12}O$ [M⁺]: 160.0888; found: 160.0888.

3-methyleneisobenzofuran-1(3H)-one (4)

Brown oil. H NMR (300 MHz, CDCl₃), δ (ppm): 7.92 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 3.7 Hz, 2H), 7.63-7.54 (m, 1H), 5.24 (s, 2H). HC NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 169.6 (C), 166.8 (C), 151.8 (C), 139.1 (C), 134.4 (CH), 130.4 (CH), 125.4 (CH), 120.6 (CH), 91.2 (CH₂). MS, m/z (% relative intensity): 147 (M⁺+1, 100), 131 (1), 103 (2). IR (KBr), cm⁻¹: 2924, 1774, 1657. HRMS (CI) calculated for $C_9H_7O_2$ [M⁺+1]: 147.0446; found: 147.0446.

2-hexyl-3,4-dihydro-2H-pyran (6)

Dark brown oil. H NMR (250 MHz, CDCl₃), δ (ppm): 6.33 (d, J = 6.2 Hz, 1H), 4.66-4.56 (m, 1H), 3.78-3.65 (m, 1H), 2.05-1.20 (m, 14H), 0.84 (t, J = 6.7 Hz, 3H). 13 C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 143.8 (CH), 100.4 (CH), 75.2 (CH), 35.3 (CH₂), 31.9 (CH₂), 29.3 (CH₂), 27.8 (CH₂), 25.3 (CH₂), 22.6 (CH₂), 19.9 (CH₂), 14.1 (CH₃). MS, m/z (% relative intensity): 169 (M⁺+1, 100), 151 (45), 141 (31), 137 (25), 123 (35), 109 (43), 97 (50), 83 (78), 71 (91). HRMS (CI) calculated for C₁₁H₂₁O [M⁺+1]: 169.1592; found: 169.1592

(\pm) -2,8-dioxaspiro[5.5]undeca-3,9-diene (8)

Brown oil. ¹H NMR (300 MHz, CDCl₃), δ (ppm): 6.36 (td, J = 6.1, 2.0 Hz, 2H), 4.67 (td, J = 6.1, 3.7 Hz, 2H), 3.82 (d, J = 10.7 Hz, 2H), 3.62 (d, J = 10.7 Hz, 2H), 1.82 (bs, 4H). ¹³C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 143.3 (CH), 98.6 (CH), 69.2 (CH₂), 30.0 (C), 29.2 (CH₂). MS, m/z (% relative intensity): 153 (M⁺+1, 91), 175 (68), 123 (19), 107 (79), 97 (100). HRMS (CI) calculated for C₉H₁₃O₂ [M⁺+1]: 153.0916; found: 153.0916.

(7-methoxybenzofuran-4-yl)methanol (10a)

Yellowish solid (mp: 61-63°C). ¹H NMR (250 MHz, CDCl₃), δ (ppm): 7.60 (d, J = 2.1 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 2.1 Hz, 1H), 6.70 (d, J = 8.0 Hz, 1H), 4.78 (s, 2H), 3.96 (s, 3H), 1.94 (s, 1H). ¹³C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 145.2 (C), 145.1 (CH), 144.3 (C), 127.7 (C), 125.8 (C), 122.3 (CH), 105.8 (CH), 105.5 (CH), 63.3 (CH₂), 56.0 (CH₃). MS, m/z (% relative intensity): 179 (M⁺+1, 45), 177 (37), 163 (93), 161 (100), 149 (35). HRMS (EI) calculated for $C_{10}H_{10}O_3$ [M⁺]: 178.0630; found: 178.0630.

(7-methoxybenzofuran-4-yl)methyl acetate

¹H NMR (250 MHz, CDCl₃), δ (ppm): 7.67 (d, J = 2.1 Hz, 1H), 7.18 (d, J = 8.1 Hz, 1H), 6.87 (d, J = 2.1 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.29 (s, 2H), 4.02 (s, 3H), 2.09 (s, 3H).

10b

5-phenylbenzofuran (10b)

White solid (mp: 58-60°C). ¹H NMR (400 MHz, $CDCl_3$), δ (ppm): 7.81-7.79 (bs, 1H), 7.66 (d, J = 2.2 Hz, 1H), 7.64 (t, J = 1.6 Hz, 1H), 7.62 (d, J = 0.9 Hz, 1H), 7.59-7.52 (m, J = 8.55, 2H), 7.48-7.43 (m, 2H), 7.36 (dd, J = 4.84, 3.60 Hz, 1H), 6.83 (dd, J = 2.17, 0.88 Hz, 1H). ¹³C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 154.5 (C), 145.5 (CH), 141.6 (C), 136.5 (C), 128.7 (2xCH), 128.0 (C), 127.4 (2xCH), 126.8 (CH), 123.9 (CH), 119.7 (CH), 111.5 (CH), 106.8 (CH). MS, m/z (% relative intensity): 195 (M⁺+1, 100), 194 (9). HRMS (CI) calculated for $C_{14}H_{11}O$ [M⁺+1]: 195.0810; found: 195.0810.

1-benzofuran-5-carbonitrile (10c)

White solid (mp: 81-82°C). ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.95 (s, 1H), 7.74 (d, J = 2.2 Hz, 1H), 7.65-7.47 (bs, 2H), 6.84 (d, J = 2.2 Hz, 1H). ¹³C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 156.4 (C), 147.1 (CH), 128.0 (C), 127.9 (CH), 126.3 (CH), 119.4 (C), 112.6 (CH), 106.7 (C), 106.6 (CH). MS, m/z (% relative intensity): 144 (M⁺+1, 100), 137 (30), 123 (46), 109 (62), 95 (74), 83 (98). HRMS (CI) calculated for C₉H₆NO [M⁺+1]: 144.0449; found: 144.0449.

Methyl benzofuran-5-carboxylate (10d)

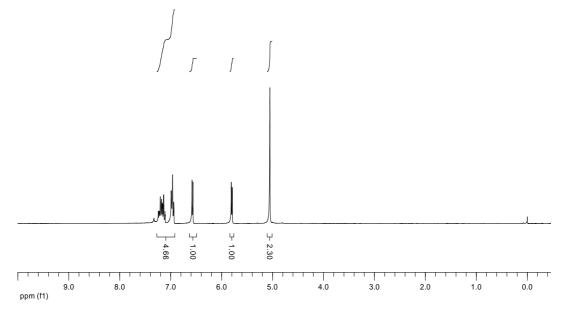
Yellow solid (mp: 69-70°C). 1 H NMR (250 MHz, CDCl₃), δ (ppm): 8.35 (d, J = 1.3 Hz, 1H), 8.03 (dd, J = 8.7, 1.6 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.52 (d, J = 8.7 Hz, 1H), 6.84 (d, J = 1.3 Hz, 1H), 3.94 (s, 3H). 13 C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 167.2 (CO), 157.4 (C), 146.2 (CH), 127.5 (C), 126.0 (CH), 125.1 (C), 123.7 (CH), 111.2 (CH), 107.1 (CH), 52.1 (CH₃). MS, m/z, (% relative intensity): 177 (M⁺+1, 100), 145 (7), 133 (5), 105 (5). HRMS (ESI) calculated for $C_{10}H_{9}O_{3}$ [M⁺+1]: 177.0552; found: 177.0552.

12

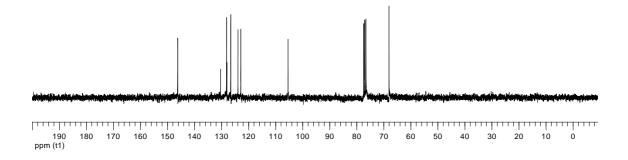
1,1'-but-1-en-3-yne-1,4-diylbis(2-methoxybenzene) $(12)^7$

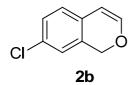
Dark brown oil. 1 H NMR (400 MHz, CDCl₃) δ (ppm): 7.44 (td, J = 7.6, 1.5 Hz), 7.36 (d, J = 16.4 Hz), 7.29-7.22 (m), 7.16 (dd, J = 13.4, 6.2 Hz), 7.06 (t, J = 7.31), 6.97-6.84 (m), 6.53 (d, J = 16.4 Hz), 5.98 (d, J = 12.1 Hz), 3.90 (s), 3.86 (s). 13 C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 159.7 (C), 157.0 (C), 136.3 (CH), 133.5 (CH), 133.4 (CH), 129.5 (CH), 129.4 (CH), 128.2 (CH), 126.8 (CH), 125.5 (C), 120.7 (CH), 120.5 (CH), 120.2 (CH), 112.8 (C), 111.0 (CH), 110.6 (CH), 109.0 (CH), 93.8 (C), 87.5 (C), 85.1 (CH), 55.8 (CH₃), 55.4 (CH₃). MS, m/z (% relative intensity): 265 (M⁺+1, 100), 250 (7), 135 (5), 121 (10°), 109 (6).

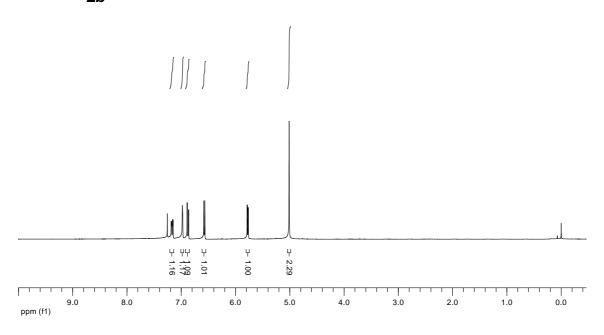
⁷ Bassetti, M.; Pasquini, C.; Raneri, A.; Rosato, D. J. Org. Chem. **2007**, 72, 4558

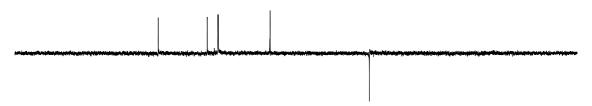

2,2-diphenyl-2,3-dihydrofuran

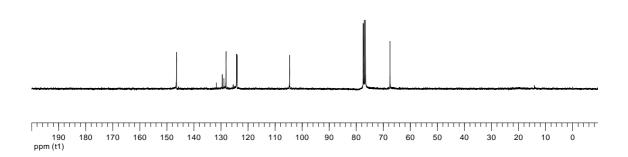
White oil. ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.60-7.08 (m, 10H), 6.51 (d, J=2.8 Hz, 1H), 5.00-4.89 (m, 1H), 3.33 (t, J=2.4, 2H). ¹³C NMR, DEPT (75 MHz, CDCl₃), δ (ppm): 146.2 (CH), 144.2 (2xC), 128.2 (4xCH), 127.1 (2xCH), 125.8 (4xCH), 99.0 (CH), 90.8 (C), 43.8 (CH₂). MS, m/z (% relative intensity): 223 (M⁺+1, 94), 205 (83), 193 (15), 145 (100), 105 (40). HRMS (ESI) calculated for C₁₆H₁₅O [M⁺+1]: 223.1113; found: 223.1117.

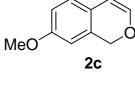


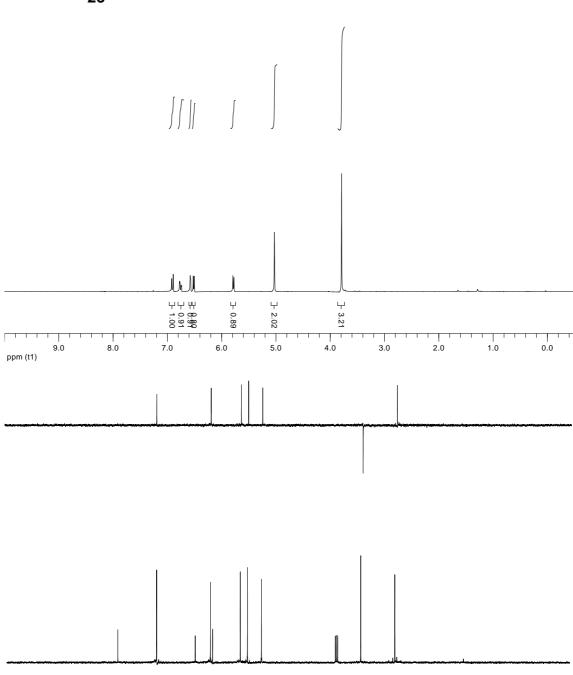


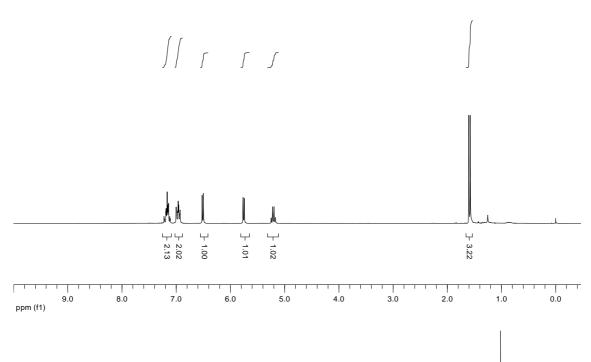

2a

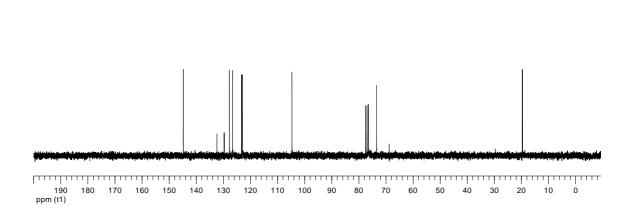


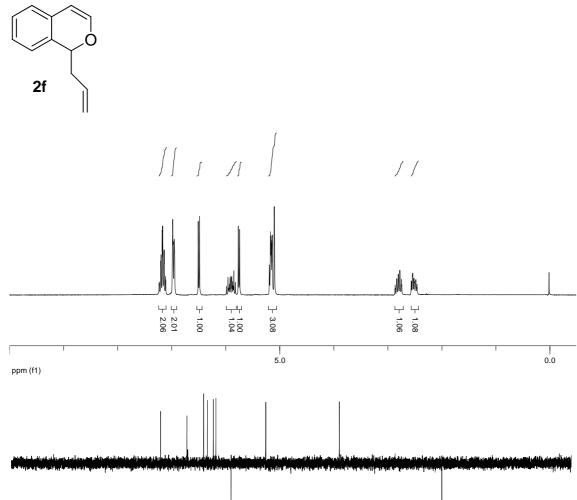


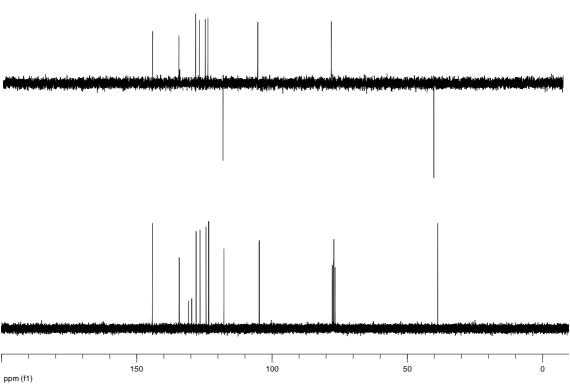


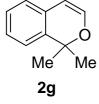


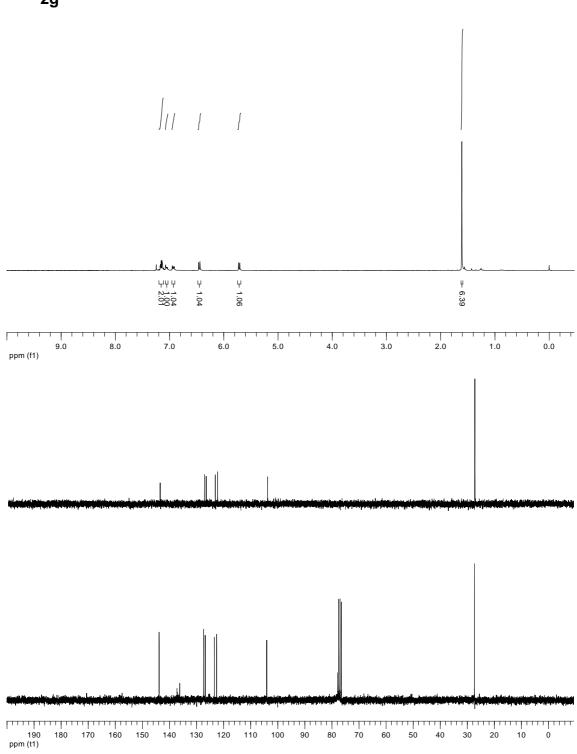


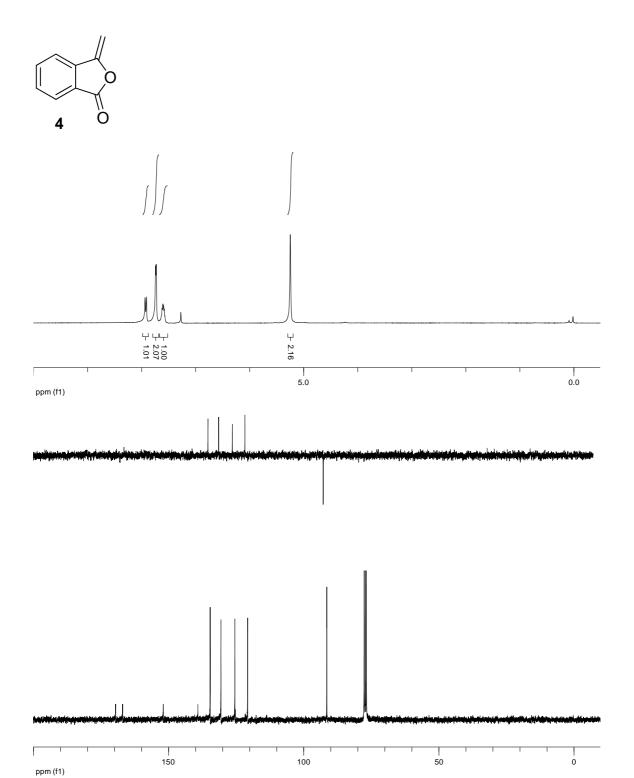


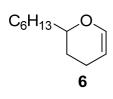


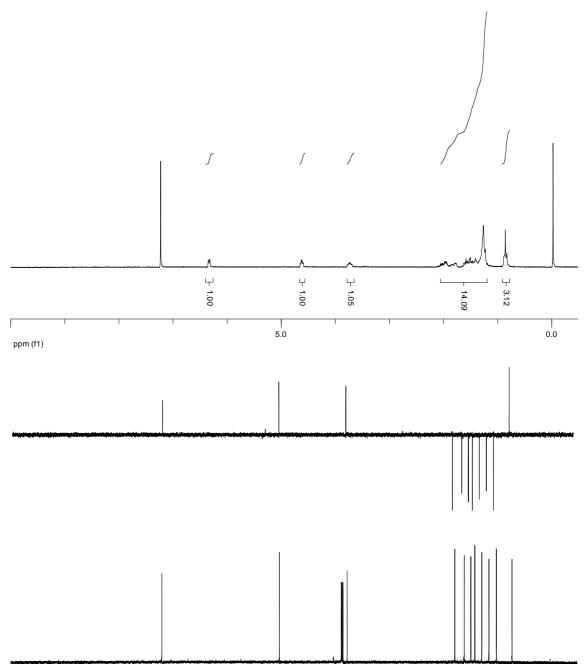

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm (t1)

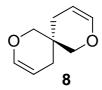




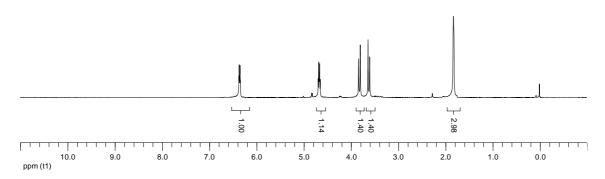




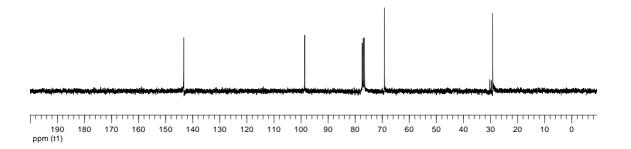




100


150

ppm (f1)


50

