Supporting Information

Alotaketal A and B, Sesterterpenoids from the Marine Sponge *Hamigera* sp. that Activate the cAMP Cell Signaling Pathway

Roberto Forestieri, Catherine E. Merchant, Nicole de Voogd, Teatulohi Matainaho, Timothy J. Kieffer* and Raymond J. Andersen*

Departments of Chemistry and Earth & Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1; Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3; Naturalis, National Museum of Natural History, Leiden, The Netherlands; University of Papua New Guinea, Port Moresby, Papua New Guinea

Table of Contents:

- SI-2 Experimental
- SI-3 Table 1. NMR data for alotaketal A (2) recorded at 600 MHz in C_6D_6
- SI-4 Table 2. NMR data for alotaketal B (3) recorded at 600 MHz in C₆D₆
- SI-5 ¹H NMR spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz
- SI-6 13 C NMR spectrum of alotaketal A (2) recorded in C₆D₆ at 600 MHz
- SI-7 HSQC spectrum of alotaketal A (2) recorded in C₆D₆ at 600 MHz
- SI-8 COSY spectrum of alotaketal A (2) recorded in C₆D₆ at 600 MHz
- SI-9 HMBC spectrum of alotaketal A (2) recorded in C₆D₆ at 600 MHz
- SI-10 ROESY spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz
- SI-11 DEPT 135° spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz
- SI-12 CD spectrum of alotaketal A (2) in MeOH
- SI-13 Figure SI-1: Alotaketal A (2) 3D-structure and H-1/H-13 NOE correlation
- SI-14 ¹H NMR spectrum of alotaketal B (**3**) recorded in C_6D_6 at 600 MHz
- SI-15 13 C NMR spectrum of alotaketal B (**3**) recorded in C₆D₆ at 600 MHz
- SI-16 HSQC spectrum of alotaketal B (3) recorded in C₆D₆ at 600 MHz
- SI-17 COSY spectrum of alotaketal B (3) recorded in C₆D₆ at 600 MHz
- SI-18 HMBC spectrum of alotaketal B (3) recorded in C₆D₆ at 600 MHz
- SI-19 ROESY spectrum of alotaketal B (3) recorded in C₆D₆ at 600 MHz
- SI-20 DEPT 135° spectrum of alotaketal B (3) recorded in C₆D₆ at 600 MHz
- SI-21 CD spectra of alotaketal B recorded in MeOH.
- SI-22 Materials and Methods for cAMP signaling assay
- SI-23 Figure SI-2: Dose response curve for the crude extract of *Hamigera*
- SI-24 Figure SI-2: Dose response curve for forskolin (1)

Experimental Section

General Experimental Procedures.

Optical rotations were measured using a Jasco P-1010 spectrophotometer. The ¹H and ¹³C NMR spectra were recorded on a Bruker AV-600 spectrometer with a 5 mm CPTCI cryoprobe. ¹H chemical shifts are referenced to the residual benzene- d_6 signal (δ 7.16 ppm) and ¹³C chemical shifts are referenced to the benzene- d_6 solvent peak (δ 128.39 ppm). Low resolution ESI +/- were recorded on Bruker Esquire LC ion trap mass spectrometer equipped with an electrospray ion source. The solvent for ESI-MS experiments was methanol. The sample solution concentration was 10µM. It was infused into the ion source by a syringe pump at flow rate of 10 µL/min. High resolution ESI+ were recorded on a Micromass LCT time-of-flight (TOF) mass spectrometer equipped with an electrospray ion source. The samples were dissolved in MeOH. The working solutions were 20µM. Flow rate: 20µL min-1; sample cone: 90V; source temperature: 120 °C; desolvation temperature: 120 °C. For accurate mass measurement, arg-ser-arg was used as reference compound. The mass of arg-ser-arg was used as lock mass. Merck Type 5554 silica gel plates and Whatman MKC18F plates were used for analytical thin layer chromatography. Sephadex TM LH-20 column packed and elueted with 100% MeOH was used for size separation chromatography attached to a Waters 996 photodiode array detector. All solvents used for HPLC were Fisher HPLC grade.

Extraction of sponge: The frozen sponge (24g) was extracted repeatedly with MeOH (3 x 150mL) at room temperature. The combined methanolic extracts were concentrated *in vacuo* to afford 285 mg of brown solid. 38.2 mg of this extract were chromatographed on a Sephadex LH-20 column in 100% MeOH as eluent to give 3 fractions A-C (A: 15.0mg ; B: 16.0mg ; C: 7.2mg). Pure samples of alotaketal A (2) (5.3mg) and alotaketal B (3) (2.1mg) were obtained from fraction B (16.0mg) via C_{18} reversed-phase HPLC using a CSC-Inertsil 150A/ODS2, 5 µm 25 x 0.94 cm column, with 8:2 Acetonitrile/H₂O as eluent over 50 min (flow rate 2 mL/min).

Alotaketal A (2): Isolated as a white amorphous solid; $[\alpha]^{25}{}_{D} = -38.9$ (c 0.01, MeOH); ¹H NMR, see Table 1; ¹³C NMR, see Table 1; positive ion HRESIMS [M+Na]⁺m/z 421.2355 (calcd for C25H34O4Na).

Alotaketal B (3): Isolated as a white amorphous solid; $[\alpha]^{25}{}_{D} = -10.0$ (c 0.01, MeOH); ¹H NMR, see Table 2; ¹³C NMR, see Table 2; positive ion HRESIMS [M+Na]⁺m/z 523.3036 (calcd for C₃₀H44O₆Na).

Position #	$^{1}\mathrm{H}(\delta)^{a}$	$^{13}C(\delta)^{a}$	HMBC ^{ab}
1	4.26(111) dd $1 - 4.0(611z)$	62.6	2 5 0
1	4.30 (1H, dd, J = 4.9, 0 Hz)	130.6	5, 5, 9
2	0.52 (111, uq, J = 0, 1.2 Hz)	139.0 120.0 ^c	1, 5, 4, 0
3		107.7	
4	2.47(1 H d J = 4.9, 15.6 Hz)	197.7	146
5a 5b	2.47 (111, dd, $J = 4.9$, 15.0 Hz) 2.30 (1H dd, $J = 13.2, 15.6$ Hz)	38.0	1,4,0
6	2.59 (111, dd, J = 15.2, 15.0 Hz) 2.06 (1H dt $J = 4.9, 13.2 Hz)$	34.0	5 7
7	2.00(111, ut, J = 4.9, 15.2 Hz)	142.5	5,7
/ 0	5 56 (1H c)	125.1	6 7 9 10 22
8	5.50 (111, \$)	07.2	0, 7, 9, 10, 22
2 10a	2.34(1 H d I - 13.2 Hz)	97.2 44 1	8 0 11 12 23
106	2.34 (111, d, J = 13.2 Hz) 2.20 (111, d, J = 13.2 Hz)	44.1	8, 9, 11, 12, 23 8, 0, 11, 12, 23
11	2.29 (III, $u, J = 15.2$ IIZ)	141.5	6, 9, 11, 12, 25
11	2.31(1 H m)	141.5	10 11 13 14 23
126	2.31 (111,11) 2.20 (111 + $I = 12.6 \text{ Hz})$	40.7	10, 11, 12, 14, 23 10, 11, 12, 14, 22
120	2.20(1H, I, J - 12.0 HZ)	40.7	0, 12, 14, 15
13	4.85 (111, dud, J = 5, 8.4, 12.0)	126.9	9, 12, 14, 15
14	3.48(1H, u, J = 8.4 Hz)	120.8 120.2 ^c	13, 10, 24
15	$1.08(2H + I - 7.2 H_{7})$	139.2	14 15 17 18 24
17	1.55(2H, q, I = 7.2 Hz)	26.2	14, 13, 17, 18, 24
17	1.33(2H, q, J = 7.2 Hz)	20.5	15, 10, 18, 19
10	1.94(211, t, J - 7.2112)	145.0	10, 17, 19, 20, 25
20	$4.80(111 h_{\rm c})/4.81(111 h_{\rm c})$	145.9	19 10 25
20	4.80(111, 05)/4.81(111, 05)	110.9	16, 19, 25
21	1.71(3H, S)	10.4	2, 5, 4
22	3.53 (2H, m)	63.8	0, 7, 8
22-OH	0.53 (1H, t, J = 5.4 Hz)	111.4	1, 22
23	4.8/ (1H, bs)/ 4.89 (1H, bs)	111.4	10, 11, 12
24	1.68 (3H, s)	17.1	14, 15, 16
25	1.62 (3H, s)	22.8	18, 19, 20

Table 1. NMR data for alotaketal A (2). recorded in C₆D₆ at 600 MHz

^a Spectra recorded in C₆D₆ at 600 MHz

 $^{\rm b}$ Proton resonances correlated to the carbon resonances listed in the δ ^{13}C NMR column

^c May be interchanged

Position #	$^{1}\mathrm{H}(\delta)^{a}$	$^{13}C(\delta)^{a}$	HMBC ^{ab}	
		(2.1		
1	4.33 (1H, bs,)	63.4	2	
2	6.32 (1H, d, J = 6 Hz)	139.6	4, 6, 21	
3		138.9		
4		197.7	1 4 6 7	
5	2.57 (2H, bd, J = 7.8 Hz)	38.4	1, 4, 0, 7	
0	2.00 (IH, m)	34.0	2, 5, 7	
/ 8	5.42(111.a)	142.3	6.0.22	
8	5.45 (IH, 8)	123.5	0, 9, 22	
100	$2.07(14 + L - 15 + H_z)$	40.5	0 11 12	
10a 10b	5.07 (1H, d, J = 15 Hz) 1 22 (1H, d, $J = 15 Hz$)	40.5	9, 11, 12	
100	1.25 (IH, u, J - IJ HZ)	40.3	8, 9, 23	
11	1.05(1H m)	//.4	11 23	
12a 12b	1.95(1H, H) 1.24(1H, m)	43.9	11, 23	
120	1.24 (1H, H) 5 15 (1H t $I = 10.8 Hz$)	63.0	15	
13	5.15(111, t, J = 10.8112) 5.45(111, d, $J = 8.4$ Hz)	126.5	12 16 24	
15	5.45 (111, d, 5 = 0.4 112)	139.1°	12, 10, 24	
16	2.01(2H + I - 7.2 Hz)	39.7	14 15 17 18	
17	1.58 (2H, q, J = 7.2 Hz)	26.4	15 16 18 19	
18	1.96 (2H, 4, 5 = 7.2 Hz) 1.96 (2H, t $I = 7.2 Hz$)	38.0	16, 17, 19, 20, 25	
19	1.90 (211, 1, 9 = 7.2 112)	145.8	10, 17, 19, 20, 25	
20	4.81(1H bs)/4.82(1H bs)	110.9	18 25	
20	1.83 (3H s)	16.6	2.4	
22	3.51 (2H m)	63.7	7 8	
22-OH	0.51 (1H, t, J = 5.4 Hz)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
23	1.48 (3H, s)	27.6	10, 11, 12	
24	1.77 (3H, s)	17.2	14, 15, 16	
25	1.63 (3H s)	22.79	18 19 20	
26	1100 (011, 0)	172.4	10, 17, 20	
27	2.12 (2H, m)	45.0	26, 29,30	
28	2.12 (1H, m)	25.6	26, 27, 29, 30	
29	0.89 (3H, d, J = 5.4 Hz)	23.1	27, 28, 30	
30	0.89 (3H, d, J = 5.4 Hz)	23.1	27, 28, 29	

Table 2. NMR data for alotaketal B (3). recorded in C₆D₆ at 600 MHz

^a Spectra recorded in C₆D₆ at 600 MHz

 b Proton resonances correlated to the carbon resonances listed in the δ ^{13}C NMR column

^c May be interchanged

 ^1H NMR spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz

 ^{13}C NMR spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz

HSQC spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz

COSY spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz

HMBC spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz

ROESY spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz

DEPT 135° spectrum of alotaketal A (2) recorded in C_6D_6 at 600 MHz

CD spectrum of alotaketal A (2) recorded in MeOH.

 1 H NMR spectrum of alotaketal B (3) recorded in C₆D₆ at 600 MHz

 ^{13}C NMR spectrum of alotaketal B (3) recorded in C_6D_6 at 600 MHz

HSQC spectrum of alotaketal B (3) recorded in C_6D_6 at 600 MHz

COSY spectrum of alotaketal B (3) recorded in C_6D_6 at 600 MHz

HMBC spectrum of alotaketal B (3) recorded in C_6D_6 at 600 MHz

ROESY spectrum of alotaketal B (3) recorded in C_6D_6 at 600 MHz

DEPT 135° spectrum of alotaketal B (3) recorded in C_6D_6 at 600 MHz

CD spectra of alotaketal B (3) recorded in MeOH.

Materials and Methods for cAMP signaling assay:

HEK-pHTS-CRE Cell Line Derivation

HEK293 cells were transfected with the pHTS-CRE plasmid (Biomyx, San Diego, CA) using Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. Stable clones were generated by growing the cells in HG-DMEM (10% FBS, 1 x pen-strep) with 200 μ g/ml hygromycin (Invitrogen) as a selection agent. Clones were then assessed for responsiveness to forskolin induction in a luciferase assay. One clone was selected based on its high sensitivity to forskolin and favorable growth characteristics (HEK-pHTS-CRE).

Luciferase Assay

HEK-pHTS-CRE cells were plated in 96 well flat bottom white polystyrene plates (BD Falcon, Mississauga, ON) at a density of 5 x 10^4 cells/well and incubated overnight at 37°C in a 5% CO2 atmosphere. The next day, the medium was aspirated, cells were washed with PBS (Invitrogen), and 100 μ l of sample (extract in media) was added. Following a 5-h incubation at 37°C in a 5% CO2 atmosphere, the samples were removed and wells washed with PBS (Invitrogen). A luciferase assay was then performed using the Bright-Glo luciferase assay kit (Promega, Madison, MI) according to the manufacturer's instructions. Luminescence was measured using a Tecan Infinite M1000 luminometer (Tecan, Männedorf, Switzerland).

FigureS-I2. Dose response curve for the crude extract of *Hamigera* sp.

Figure SI-3. Dose response curve for forskolin (1).