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Figure S1. Control experiments performed with charged 410 nm particles (zeta 
potential of -33 ± 2 mV at 100 mM KCl, pH 10) placed on both sides of the membrane. 
The particles moved towards a positively biased electrode. Switching voltage polarity 
allowed mapping the pore 3D topography and its orientation in the conductivity cell.  
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Pulses in blue boxes correspond to negatively charged 410 nm particles, translocating the pore from 
left-to-right (forward); pulses in green represent pulses of neutral 400 nm particles transported in the 
direction of electroosmosis from right-to-left (backward). Due to their opposite direction of transport, 
events of the two types of particles are therefore expected to be mirror images of each other, which 
is consistently observed here. Note, pulses of different particles have similar amplitudes consistent 
with their similar sizes. 

______________________________________________________________ 

 

 

Pulses in blue boxes correspond to negatively charged 410 nm particles, translocating the pore from 
right-to-left (backward); pulses in green represent pulses of 400 nm neutral particles transported in 
the direction of electroosmosis from left-to-right. 

Figure S2. Experiments performed with a mixture of particles present on both sides of 
the membranes. This is the same set-up as shown in Figure 1 of the main manuscript. 
Example current traces indicating how pulses were assigned to either neutral 400 nm or 
charged 410 nm particles (zeta potential of -33 ± 2 mV at 100 mM KCl, pH 10) . 
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Figure S7. Relative current blockage caused by 410 nm charged particles (zeta 
potential of -33 ± 2 mV at 100 mM KCl, pH 10), passing through the narrow zones of the 
pore shown in Figure 3 (main manuscript) in both directions.   
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(a) Mircropore shown in Figures 1,2  

 

 
 

 

 
(b) Micropore shown in Figure 3 

 

 

 
(c) Micropore shown in Figure S4 

 

 

Figure S8. Number of charged 410 nm (left, blue symbols) and neutral 400 nm particles 
(right, green symbols) passing per minute through three micropores: (a) the same pore 
in Figures 1, 2; (b) the pore in Figure 3, and (c) the pore in Figure S4. Pore 3 was used 
only to detect charged 410 nm particles. The charged particles had an average zeta 
potential of -33 ± 2 mV at 100 mM KCl, pH 10.  
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