One-Pot Facile Synthesis of Substituted Isoindolinones via an Ugi Four-Component Condensation/Diels-Alder Cycloaddition/ Deselenization-Aromatization Sequence

Xian Huang *,†,‡ , Jianfeng Xu †

[†]Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028, P. R. China

[‡]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

huangx@mail.hz.zj.cn

Supporting Information List of contents

Experiment procedures	S2
Characterization data:	
10a-10o	S4
¹ H NMR and ¹³ C NMR spectra	S10

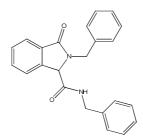
1. Experiment procedures

General Methods.

Melting points were uncorrected. CH_2Cl_2 was distilled from CaH_2 immediately prior to use. Petroleum ether refers to the fraction with boiling point in the range 60–90 °C. All ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured in CDCl₃ with TMS as internal standard. Chemical shifts are expressed in ppm and J values are given in Hz.

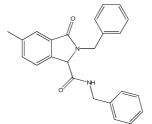
General Procedure.

Synthesis of 2-(Phenylselanyl)acrylic acids 7a.

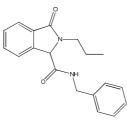

Phenylselenyl bromide (5.0 mmol) was dissolved in CH_2Cl_2 (20 mL), methyl acrylate (10 mmol) was added and the reaction mixture was stirred at 25 °C for 0.5 h. Then triethylamine (10 mmol) was added and the reaction mixture was stirred at 25 °C for another 1 h. The precipitate was filtered and the filtrate was concentrated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate 9:1 v/v) to give methyl 2-(phenylselanyl)acrylate in 87% yield (4.35 mmol).

KOH-water solution (0.5M, 13 mL) was added to Methyl 2-(phenylselanyl)acrylate (4.35 mmol), this mixture was stirred overnight at 25 °C. Ether (20 mL) was added to the mixture and the layers were separated, the aqueous layer was extracted with ether (2 \times 15 mL), then 3N HCl was added to the aqueous layer to acidfy it to PH=2~3. Ether (20 mL) was added to the aqueous layer and the layers were separated, the aqueous layer was extracted with ether (2 \times 15 mL), then 3N HCl was added to the aqueous layer to acidfy it to PH=2~3. Ether (20 mL) was added to the aqueous layer and the layers were separated, the aqueous layer was extracted with ether (2 \times 15 mL), The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to afford 2-(phenylselanyl)acrylic acid in 92% yield (4.0 mmol).

General Procedure for Synthesis of Isoindolinones 10.

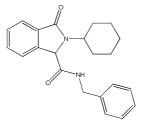

A 2-furaldehyde **5** (1.0 mmol), a primary amine **6** (1.2 mmol), a 2-(phenylselanyl)acrylic acid **7** (1.0 mmol) and an isocyanide **8** (1.0 mmol) were combined in methanol (4 mL), the reaction mixture was stirred at 25 °C for 16 h(For **10e, 10f, 10g, 10h, 10n** and **10o**, the reaction mixture was stirred at 25 °C for 12 h then reflux for 8 h. For **10b, 10i, 10j** and **10m**, the reaction mixture was stirred at 25 °C for 12 h then reflux for 24 h.). Then methanol was evaporated and anhydrous CH₂Cl₂ (5mL) and BF₃-OEt₂ (2.0 mmol) was added, stirring was continued at 25 °C for an additional 2 h before the reaction was quenched by adding sat. aq NaHCO₃ (20 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ ($2 \times 15 \text{ mL}$). The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate 2:1 v/v) to give the product **10**.

2. Characterization data:

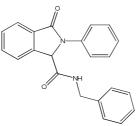

N,2-dibenzyl-3-oxoisoindoline-1-carboxamide (10a)

pale solid, mp 169-171 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (1H, d, J = 7.2 Hz), 7.48-7.51 (1H, m), 7.40 (1H, br, 1H of NH), 7.15-7.34 (12H, m), 5.24 (1H, d, J = 14.8 Hz, 1H of CH₂), 4.88 (1H, s, 1H of CH), 4.44 (1H, dd, J_I = 14.8 Hz, J_2 = 6.0 Hz, 1H of CH₂), 4.38 (1H, dd, J_I = 14.8 Hz, J_2 = 6.0 Hz, 1H of CH₂), 4.17 (1H, d, J = 14.8 Hz, 1H of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 167.5, 141.2, 138.0, 135.9, 132.2, 130.4, 128.9, 128.6, 128.4, 128.0, 127.7, 127.4, 123.7, 112.7, 64.1, 45.6, 43.4; MS (EI) *m*/*z* 356 (M⁺); IR _{*Vmax*} (cm⁻¹) 1695, 1664, 1541, 1397, 1241, 740, 699; HRMS (EI): *m*/*z* calcd for C₂₃H₂₀N₂O₂ (M⁺): 356.1525; Found: 356.1522.

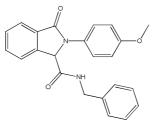
N,2-dibenzyl-5-methyl-3-oxoisoindoline-1-carboxamide (10b)


pale solid, mp 101-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (1H, br, 1H of NH), 7.45 (1H, d, J = 7.6 Hz), 7.19-7.28 (11H, m), 6.89 (1H, s), 5.27 (1H, d, J = 15.2 Hz, 1H of CH₂), 4.84 (1H, s, 1H of CH), 4.46 (1H, dd, $J_I = 14.4$ Hz, $J_2 = 6.0$ Hz, 1H of CH₂), 4.40 (1H, dd, $J_I = 15.2$ Hz, $J_2 = 6.4$ Hz, 1H of CH₂), 4.16 (1H, d, J = 14.8 Hz, 1H of CH₂), 2.18 (3H, s, 3H of CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 167.8, 138.9, 138.5, 138.2, 136.0, 133.2, 130.5, 128.9, 128.5, 128.4, 127.9, 127.8, 127.4, 123.8, 122.3, 63.9, 45.5, 43.4, 21.1; MS (EI) m/z 370 (M⁺); IR _{Vmax} (cm⁻¹) 1693, 1661, 1543, 1396, 1237, 738, 699; HRMS (EI): m/z calcd for C₂₄H₂₂N₂O₂ (M⁺): 370.1681; Found: 370.1685.

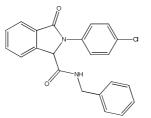
N-benzyl-3-oxo-2-propylisoindoline-1-carboxamide (10c)


pale solid, mp 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (1H, br, 1H of NH), 7.63 (1H, d, J = 8.0 Hz), 7.47-7.50 (1H, m), 7.14-7.22 (6H, m), 7.07 (1H, d, J = 7.6

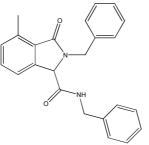
Hz), 5.09 (1H, s, 1H of CH), 4.48 (1H, dd, $J_1 = 14.4$ Hz, $J_2 = 6.0$ Hz, 1H of CH₂), 4.41 (1H, dd, $J_1 = 14.4$ Hz, $J_2 = 6.0$ Hz, 1H of CH₂), 3.80-3.88 (1H, m, 1H of C₃H₇), 3.05-3.12 (1H, m, 1H of C₃H₇), 1.52-1.65 (2H, m, 2H of C₃H₇), 0.83 (3H, t, J = 7.2Hz, 3H of C₃H₇); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 168.0, 141.0, 138.1, 131.8, 130.8, 128.7, 128.4, 127.6, 127.2, 123.3, 122.5, 64.6, 43.2, 21.1, 11.2; MS (EI) *m/z* 308 (M⁺); IR _{Vmax} (cm⁻¹) 1694, 1663, 1548, 1397, 1231, 751, 699; HRMS (EI): *m/z* calcd for C₁₉H₂₀N₂O₂ (M⁺): 308.1525; Found: 308.1531.


N-benzyl-2-cyclohexyl-3-oxoisoindoline-1-carboxamide (10d)

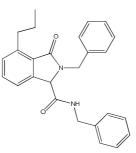
pale solid, mp 174-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (1H, d, J = 7.6 Hz), 7.50-7.54 (1H, m), 7.10-7.32 (8H, m), 5.11 (1H, s, 1H of CH), 4.44 (1H, dd, J_1 = 14.8 Hz, J_2 = 6.8 Hz, 1H of CH₂), 4.32 (1H, dd, J_1 = 14.4 Hz, J_2 = 6.0 Hz, 1H of CH₂), 3.94-4.00 (1H, m, 1H of C₆H₁₁), 1.08-1.93 (10H, m, 10H of C₆H₁₁); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 169.2, 141.8, 137.7, 132.0, 131.2, 128.8, 128.4, 127.8, 127.4, 123.5, 122.4, 63.6, 53.6, 43.3, 30.8, 30.7, 25.7, 25.6, 25.1; MS (EI) *m/z* 348 (M⁺); IR *_{Vmax}* (cm⁻¹) 1695, 1664, 1544, 1398, 1230, 732, 699; HRMS (EI): *m/z* calcd for C₂₂H₂₄N₂O₂ (M⁺): 348.1838; Found: 348.1846.


N-benzyl-3-oxo-2-phenylisoindoline-1-carboxamide (10e)

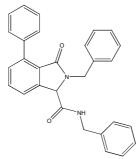
pale solid, mp 204-206 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.76 (3H, m), 7.58-7.62 (1H, m), 7.07-7.44 (8H, m), 6.86 (1H, br, 1H of NH), 6.79 (2H, d, *J* = 6.8 Hz), 5.68 (1H, s, 1H of CH), 4.46 (1H, dd, *J*₁ = 15.2 Hz, *J*₂ = 6.8 Hz, 1H of CH₂), 4.16 (1H, dd, *J*₁ = 15.2 Hz, *J*₂ = 4.8 Hz, 1H of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.6, 140.0, 137.8, 137.4, 132.8, 130.9, 129.3, 129.2, 128.3, 127.2, 127.1, 125.1, 124.1, 122.6, 120.1, 65.5, 43.1; MS (EI) *m*/*z* 342 (M⁺); IR _{*Vmax*} (cm⁻¹) 1704, 1666, 1498, 1368, 733, 695; HRMS (EI): *m*/*z* calcd for C₂₂H₁₈N₂O₂ (M⁺): 342.1368; Found: 342.1372.


N-benzyl-2-(4-methoxyphenyl)-3-oxoisoindoline-1-carboxamide (10f)

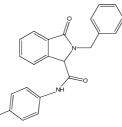
pale solid, mp 195-197 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (1H, d, J = 7.6 Hz), 7.54-7.56 (3H, m), 7.21-7.29 (3H, m), 7.08-7.14 (3H, m), 6.79-6.85 (4H, m), 5.60 (1H, s, 1H of CH), 4.45 (1H, dd, J_I = 15.2 Hz, J_2 = 6.8 Hz, 1H of CH₂), 4.18 (1H, dd, J_I = 15.2 Hz, J_2 = 5.6 Hz, 1H of CH₂), 3.81 (3H, s, 3H of CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 167.7, 157.0, 140.0, 137.6, 132.5, 130.9, 130.8, 129.1, 128.3, 127.2, 127.1, 123.9, 122.5, 122.1, 114.4, 65.9, 55.4, 43.1; MS (EI) *m/z* 372 (M⁺); IR *Vmax* (cm⁻¹) 1700, 1665, 1513, 1378, 1250, 734; HRMS (EI): *m/z* calcd for C₂₃H₂₀N₂O₃ (M⁺):372.1474; Found: 372.1469.


N-benzyl-2-(4-chlorophenyl)-3-oxoisoindoline-1-carboxamide (10g)

pale solid, mp 198-200 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (1H, d, J = 7.6 Hz), 7.58-7.62 (3H, m), 7.32-7.35 (1H, m), 7.11-7.26 (7H, m), 6.85 (2H, d, J = 7.2 Hz), 5.60 (1H, s, 1H of CH), 4.48 (1H, dd, J_I = 15.2 Hz, J_2 = 7.2 Hz, 1H of CH₂), 4.18 (1H, dd, J_I = 15.2 Hz, J_2 = 5.2 Hz, 1H of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.3, 139.9, 137.4, 136.4, 133.1, 130.5, 130.4, 129.3, 129.2, 128.4, 127.4, 127.3, 124.2, 122.6, 121.0, 65.6, 43.2; MS (EI) m/z 376 (M⁺); IR $_{Vmax}$ (cm⁻¹) 1704, 1666, 1495, 1362, 1093, 735; HRMS (EI): m/z calcd for C₂₂H₁₇ClN₂O₂ (M⁺):376.0979; Found: 376.0977.

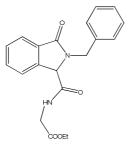

N,2-dibenzyl-4-methyl-3-oxoisoindoline-1-carboxamide (10h)

pale solid, mp 181-183 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.42 (2H, m), 7.16-7.29 (12H, m), 5.25 (1H, d, J = 14.8 Hz, 1H of CH₂), 4.83 (1H, s, 1H of CH), 4.45 (1H, dd, $J_I = 14.4$ Hz, $J_2 = 6.0$ Hz, 1H of CH₂), 4.30 (1H, dd, $J_I = 14.4$ Hz, $J_2 = 6.0$ Hz, 1H of CH₂), 4.14 (1H, d, J = 14.4 Hz, 1H of CH₂), 2.32 (3H, s, 3H of CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 167.8, 141.7, 137.9, 137.8, 136.1, 131.9, 130.9, 128.9, 128.5, 128.5, 127.9, 127.7, 127.5, 127.4, 120.1, 63.5, 45.4, 43.4, 16.7; MS (EI) m/z 370 (M⁺); IR $_{Vmax}$ (cm⁻¹) 1694, 1662, 1547, 1399, 752, 699; HRMS (EI): m/z calcd for C₂₄H₂₂N₂O₂ (M⁺):370.1681; Found: 370.1679.

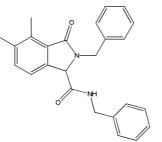

N,2-dibenzyl-3-oxo-4-propylisoindoline-1-carboxamide (10i)

pale solid, mp 142-144 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (2H, d, J = 4.0 Hz), 7.20-7.30 (9H, m), 7.11 (2H, d, J = 7.6 Hz), 6.54 (1H, br, 1H of NH), 5.23 (1H, d, J = 14.8 Hz, 1H of CH₂), 4.83 (1H, s, 1H of CH), 4.42 (1H, dd, J_I = 14.4 Hz, J_2 = 6.4 Hz, 1H of CH₂), 4.26 (1H, dd, J_I = 14.4 Hz, J_2 = 5.2 Hz, 1H of CH₂), 4.17 (1H, d, J = 14.4 Hz, 1H of CH₂), 3.01-3.08 (1H, m, 1H of C₃H₇), 2.90-2.97 (1H, m, 1H of C₃H₇), 1.56-1.70 (2H, m, 2H of C₃H₇), 0.93 (3H, t, J = 7.2 Hz, 3H of C₃H₇); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 167.8, 143.0, 141.7, 137.6, 136.1, 131.9, 130.1, 128.9, 128.7, 128.5, 128.0, 127.6, 127.5, 127.1, 120.3, 63.4, 45.6, 43.4, 32.6, 24.2, 13.9; MS (EI) m/z 398 (M⁺); IR _{Vmax} (cm⁻¹) 1698, 1663, 1549, 1402, 752, 698; HRMS (EI): m/z calcd for C₂₆H₂₆N₂O₂ (M⁺):398.1994; Found: 398.1998.

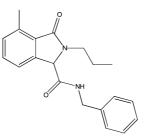
N,2-dibenzyl-3-oxo-4-phenylisoindoline-1-carboxamide (10j)


slurry. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (1H, d, J = 7.2 Hz), 7.57 (1H, t, J = 6.8 Hz), 7.07-7.36 (17H, m), 5.17 (1H, d, J = 14.8 Hz, 1H of CH₂), 4.82 (1H, s, 1H of CH), 4.41 (1H, dd, J_I = 14.8 Hz, J_2 = 6.8 Hz, 1H of CH₂), 4.00 (1H, d, J = 14.4 Hz, 1H of CH₂), 3.91 (1H, dd, J_I = 14.4 Hz, J_2 = 4.8 Hz, 1H of CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 167.4, 142.3, 141.1, 138.0, 137.2, 135.8, 131.9, 131.3, 129.4, 128.8, 128.6, 128.5, 127.9, 127.8, 127.7, 127.5, 127.3, 126.3, 121.8, 63.0, 45.5, 43.4; MS (EI) m/z 432 (M⁺); IR $_{Vmax}$ (cm⁻¹) 1696, 1666, 1541, 1397, 754, 698; HRMS (EI): m/z calcd for C₂₉H₂₄N₂O₂ (M⁺):432.1838; Found: 432.1837.

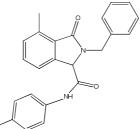
2-benzyl-3-oxo-*N-p*-tolylisoindoline-1-carboxamide (10k)


pale solid, mp 203-205 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.45 (1H, br, 1H of NH), 7.62-7.66 (3H, m), 7.45-7.49 (1H, m), 7.23-7.33 (7H, m), 7.09 (2H, d, J = 8.4 Hz),

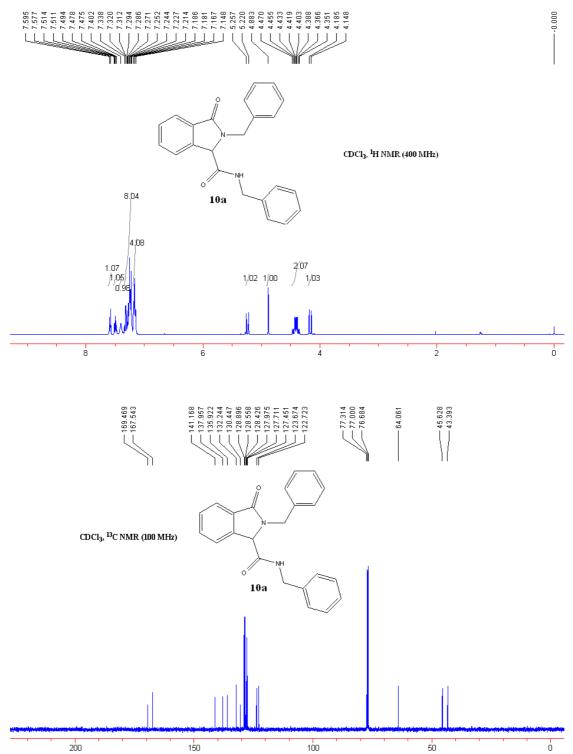
5.42 (1H, d, J = 14.4 Hz, 1H of CH₂), 5.01 (1H, s, 1H of CH), 4.40 (1H, d, J = 14.8 Hz, 1H of CH₂), 2.30 (3H, s, 3H of CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 165.8, 141.0, 135.8, 135.3, 134.1, 132.3, 130.5, 129.3, 129.0, 128.9, 128.5, 128.0, 123.4, 122.8, 120.1, 65.0, 45.9, 20.8; MS (EI) m/z 356 (M⁺); IR _{Vmax} (cm⁻¹) 1700, 1663, 1608, 1538, 1406, 731; HRMS (EI): m/z calcd for C₂₃H₂₀N₂O₂ (M⁺):356.1525; Found: 356.1518.


ethyl 2-(2-benzyl-3-oxoisoindoline-1-carboxamido)acetate (10l)

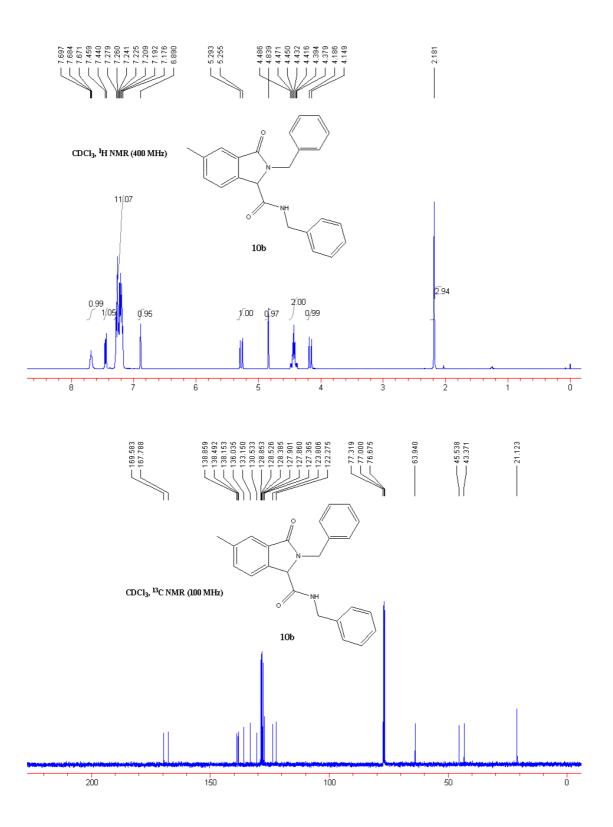
pale solid, mp 131-133 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (1H, br, 1H of NH), 7.58-7.61 (2H, m), 7.50-7.54 (1H, m), 7.39-7.41 (1H, m), 7.24-7.28 (5H, m), 5.37 (1H, d, *J* = 14.8 Hz, 1H of CH₂), 4.89 (1H, s, 1H of CH), 4.39 (1H, d, *J* = 14.8 Hz, 1H of CH₂), 4.20 (1H, dd, *J*₁ = 13.6 Hz, *J*₂ = 6.4 Hz, 1H of CH₂), 4.15-4.23 (2H, m, 2H of C₂H₅), 3.87 (1H, dd, *J*₁ = 17.6 Hz, *J*₂ = 5.2 Hz, 1H of CH₂), 1.25 (3H, t, *J* = 7.2 Hz, 3H of C₂H₅); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 169.3, 168.2, 140.9, 136.0, 132.2, 130.6, 129.0, 128.8, 128.5, 127.9, 123.7, 122.8, 63.6, 61.3, 45.2, 41.1, 14.1; MS (EI) *m*/*z* 352 (M⁺); IR _{Vmax} (cm⁻¹) 1700, 1663, 1608, 1538, 1406, 731; HRMS (EI): *m*/*z* calcd for C₂₀H₂₀N₂O₄ (M⁺):352.1423; Found: 352.1426.

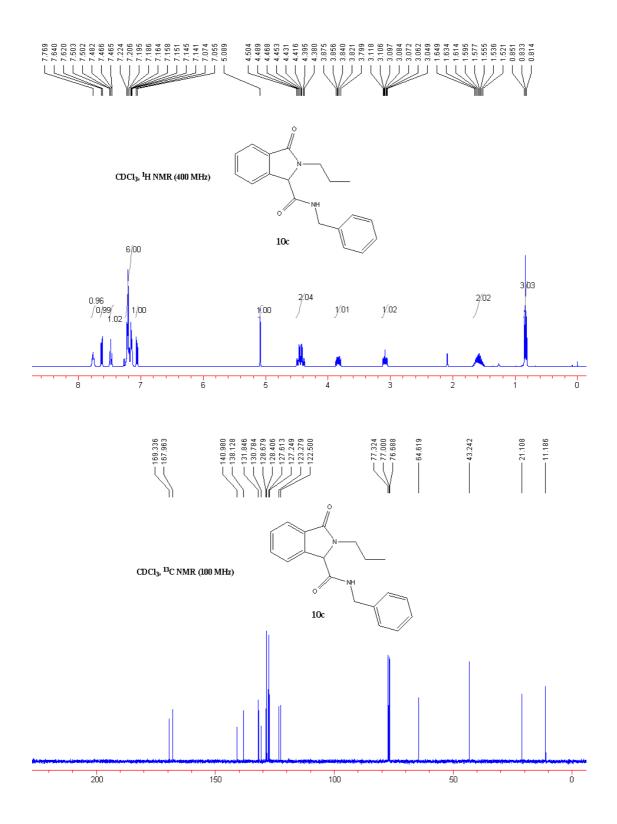

N,2-dibenzyl-4,5-dimethyl-3-oxoisoindoline-1-carboxamide (10m)

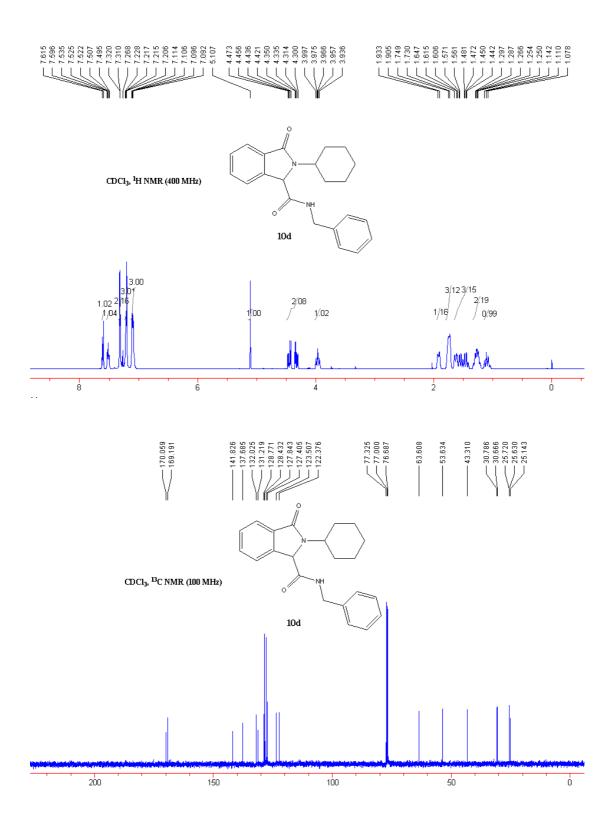
pale solid, mp 153-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.31 (10H, m), 7.13 (2H, d, J = 7.2 Hz), 6.73 (1H, br, 1H of NH), 5.24 (1H, d, J = 14.4 Hz, 1H of CH₂), 4.79 (1H, s, 1H of CH), 4.42 (1H, dd, $J_I = 14.4$ Hz, $J_2 = 6.4$ Hz, 1H of CH₂), 4.26 (1H, dd, $J_I = 14.8$ Hz, $J_2 = 5.6$ Hz, 1H of CH₂), 4.15 (1H, d, J = 14.4 Hz, 1H of CH₂), 2.41 (3H, s, 3H of CH₃), 2.28 (3H, s, 3H of CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 168.1, 139.3, 138.4, 137.7, 136.8, 136.2, 133.4, 128.9, 128.6, 128.5, 127.9, 127.7, 127.5, 127.3, 119.7, 62.9, 45.6, 43.4, 19.2, 12.6; MS (EI) *m/z* 384 (M⁺); IR _{*Vmax*} (cm⁻¹) 1691, 1661, 1543, 1391, 1238, 698; HRMS (EI): *m/z* calcd for C₂₅H₂₄N₂O₂ (M⁺):384.1838; Found: 384.1833.

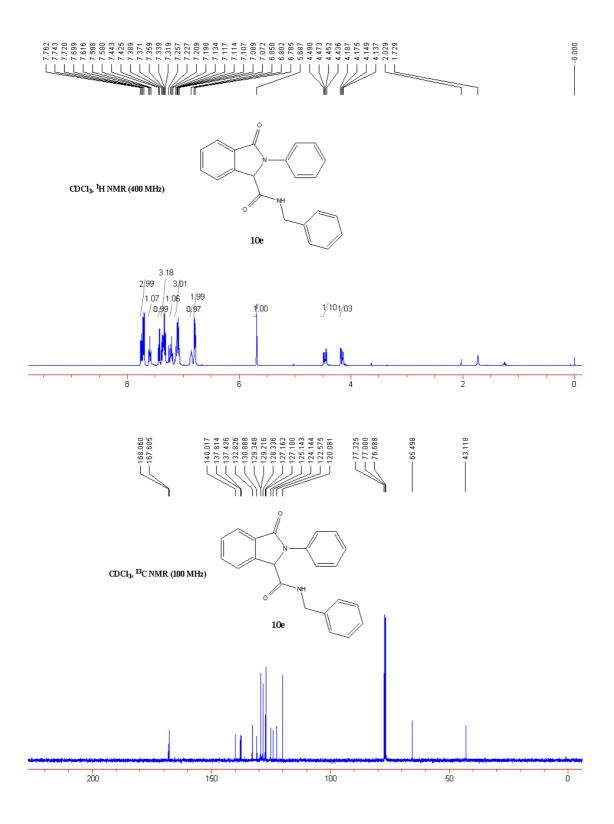

N-benzyl-4-methyl-3-oxo-2-propylisoindoline-1-carboxamide (10n)

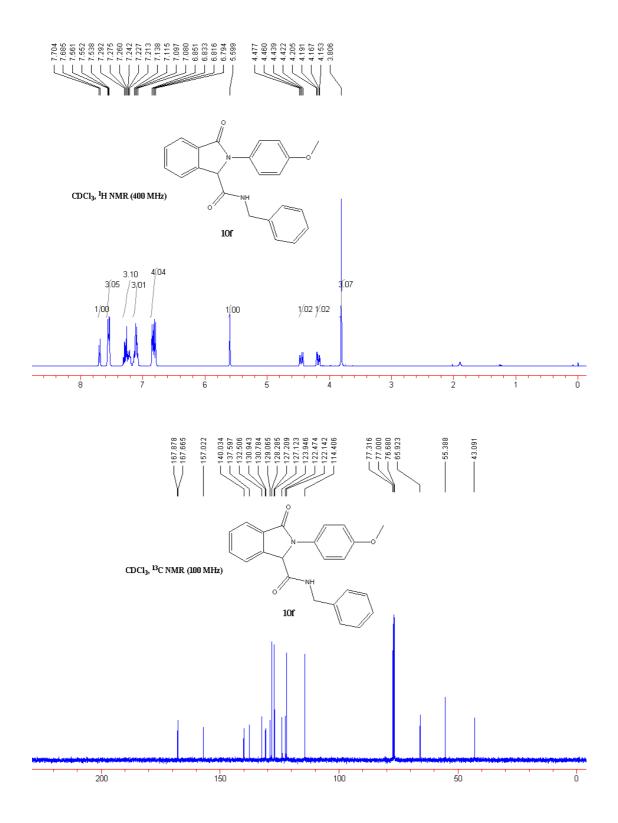
pale solid, mp 111-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (1H, d, J = 7.6 Hz), 7.39-7.43 (1H, m), 7.21-7.26 (3H, m), 7.13-7.16 (3H, m), 7.02 (1H, br, 1H of NH), 5.04 (1H, s, 1H of CH), 4.50 (1H, dd, J_I = 14.8 Hz, J_2 = 6.8 Hz, 1H of CH₂), 4.29 (1H, dd, J_I = 14.4 Hz, J_2 = 5.2 Hz, 1H of CH₂), 3.84-3.91 (1H, m, 1H of C₃H₇), 3.03-3.10 (1H, m, 1H of C₃H₇), 2.31 (3H, s, 3H of CH₃), 1.56-1.65 (2H, m, 2H of C₃H₇), 0.87 (3H, t, J = 7.2 Hz, 3H of C₃H₇); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 168.2, 141.5, 137.8, 131.7, 131.0, 128.5, 127.9, 127.6, 127.4, 120.1, 64.1, 43.4, 43.2, 21.1, 16.7, 11.3; MS (EI) m/z 322 (M⁺); IR $_{Vmax}$ (cm⁻¹) 1698, 1664, 1521, 1377, 751, 700; HRMS (EI): m/z calcd for C₂₀H₂₂N₂O₂ (M⁺):322.1681; Found: 322.1687.




2-benzyl-4-methyl-3-oxo*N***-***p***-tolylisoindoline-1-carboxamide (10o)** pale solid, mp 226-228 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (1H, br, 1H of NH), 7.56 (2H, d, *J* = 8.8 Hz), 7.48 (1H, d, *J* = 7.6 Hz), 7.36-7.40 (1H, m), 7.28-7.32 (5H, m), 7.08-7.10 (3H, m), 5.47 (1H, d, *J* = 14.4 Hz, 1H of CH₂), 4.96 (1H, s, 1H of CH), 4.40 (1H, d, *J* = 14.8 Hz, 1H of CH₂), 2.30 (3H, s, 3H of CH₃), 2.11 (3H, s, 3H of CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 166.0, 141.5, 138.0, 136.0, 135.2, 134.1, 132.0, 131.0, 129.3, 129.0, 128.6, 128.0, 127.5, 120.3, 120.1, 64.5, 45.8, 20.8, 16.5; MS (EI) *m/z* 370 (M⁺); IR _{Vmax} (cm⁻¹) 1703, 1604, 1515, 1481, 1405, 736; HRMS (EI): *m/z* calcd for C₂₄H₂₂N₂O₂ (M⁺):370.1681; Found: 370.1677.


3. ¹H NMR and ¹³C NMR spectra




S10

