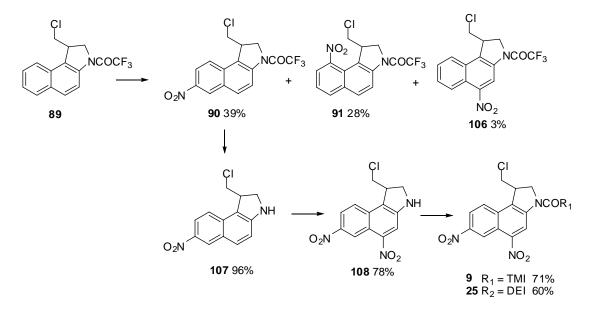
Supporting Information

Hypoxia Activated Prodrugs: Substituent Effects on the Properties of Nitro *seco*-1,2,9,9a-Tetrahydrocyclopropa[*c*]benz[*e*]indol-4-one (nitroCBI) Prodrugs of DNA Minor Groove Alkylating Agents

Moana Tercel,^{*} Graham J. Atwell,[†] Shangjin Yang,[†] Ralph J. Stevenson,[†] K. Jane Botting,[†] Maruta Boyd,[†] Eileen Smith,[†] Robert F. Anderson,[‡] William A. Denny,[†] William R. Wilson,[†] Frederik B. Pruijn[†]


Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, and Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Contents

Synthesis of all 7-, 8-, and 9-substituted nitroCBIs of Tables 1 and 2 and aminoCBIs
of Table 3 (compounds 9-18 , 25-38 , 41-52)
Combustion analyses for new compounds
2D NMR Spectra of 105 , 162 , 161 , 97 , 59 (EWG = 6-COMe), 92 , 119 , 144
X-ray crystallographic data for 133 and 105
Figure S1. Relationship between one-electron reduction potential $[E(1)]$ and
cytotoxicity (IC ₅₀) for the nitroCBIs of Table 2
Figure S2. Relationship between hypoxic cytotoxicity ratio (HCR) in HT29 and one-
electron reduction potential [<i>E</i> (1)] for the compounds of Table 2
Figure S3. Correlation between cytotoxicity in HT29 and Skov3
Figure S4. Comparison of hypoxic cytotoxicity and hypoxic selectivity of 28, PR-
104A (3), and tirapazamine (1) across a cell line panel
Figure S5. MS and UV-visible spectroscopy characterisation of B and its major S9
metabolites under oxic and hypoxic incubation conditions
References

Synthesis of all 7-, 8-, and 9-substituted nitroCBIs of Tables 1 and 2 and aminoCBIs of Table 3 (compounds 9-18, 25-38, 41-52).

Synthesis of 9 and 25.

1-(Chloromethyl)-3-(trifluoroacetyl)-7-nitro-1,2-dihydro-3*H***-benzo[***e***]indole (90). A stirred solution of 89** (5.24 g, 16.7 mmol) in dry CH₂Cl₂ (70 mL) was treated dropwise at 10 °C with fHNO₃ (2.0 mL, 48 mmol) and then warmed to room temperature for 5 min. The mixture was diluted with CH₂Cl₂ (100 mL) and the resulting solution was washed with water, dried, filtered through a column of silica gel, then concentrated to 25 mL and diluted with EtOAc (25 mL). Following refrigeration the precipitate was collected and washed with EtOAc to give **90** (2.31 g, 39%) as a pale yellow solid: mp (CH₂Cl₂/iPr₂O) 213-214 °C; ¹H NMR [(CD₃)₂SO] δ 9.06 (s, 1 H), 8.48 (d, *J* = 9.0 Hz, 1 H), 8.36 (d, *J* = 9.1 Hz, 1 H), 8.33-8.25 (m, 2 H) 4.67-4.51 (m, 2 H), 4.46 (br d, *J* = 10.6 Hz, 1 H), 4.17 (dd, *J* = 11.3, 3.0 Hz, 1 H), 4.07 (dd, *J* = 11.3, 5.5 Hz, 1 H). Anal. (C₁₅H₁₀ClF₃N₂O₃) C, H, N.

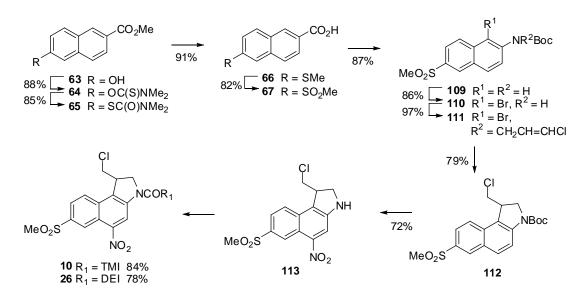
The mother liquor from the above crystallization was evaporated under reduced pressure, and the residue was chromatographed on silica gel. Elution with CH_2Cl_2 /petroleum ether (1:1) gave 1-(chloromethyl)-3-(trifluoroacetyl)-9-nitro-1,2-dihydro-3*H*-benzo[*e*]indole (**91**) (1.67 g, 28%) as a pale yellow solid: mp (EtOAc/petroleum ether) 139-140 °C; ¹H NMR [(CD₃)₂SO] δ 8.58 (d, *J* = 9.1 Hz, 1 H), 8.39 (d, *J* = 8.1 Hz, 1 H), 8.30 (d, *J* = 9.1 Hz, 1 H), 8.20 (dd, *J* = 7.6, 0.9 Hz, 1 H), 7.69 (t, *J* = 7.9 Hz, 1 H), 4.60 (dd, *J* = 11.1, 8.7 Hz, 1 H), 4.33 (d, *J* = 11.3 Hz, 1 H), 4.03-3.90 (m, 1 H), 3.73 (dd, *J* = 11.4, 3.3 Hz, 1 H), 3.51 (dd, *J* = 11.4, 6.8 Hz, 1 H). Anal. (C₁₅H₁₀ClF₃N₂O₃) C, H, N.

Further elution gave 1-(chloromethyl)-3-(trifluoroacetyl)-5-nitro-1,2-dihydro-3H-benzo[e]indole (**106**)¹ (165 mg, 3%).

1-(Chloromethyl)-7-nitro-1,2-dihydro-3H-benzo[*e*]indole (107). A solution of **90** (1.00 g, 2.79 mmol) in dioxane (30 mL) was treated with a solution of Cs_2CO_3 (3.26 g, 10 mmol) in water (3 mL) and MeOH (17 mL), and the mixture was stirred vigorously at room temperature for 15 min. The resulting solution was treated with AcOH (1.2 mL), then concentrated to a small volume under reduced pressure and partitioned between water and CH_2Cl_2 . The organic phase was washed with water (×2),

dried, and filtered through a column of silica gel. Evaporation and trituration with petroleum ether/iPr₂O gave **107** (702 mg, 96%) as an orange-red solid: mp (CH₂Cl₂/petroleum ether) 121-122 °C; ¹H NMR [(CD₃)₂SO] δ 8.76 (d, *J* = 2.2 Hz, 1 H), 8.05 (dd, *J* = 9.3, 2.3 Hz, 1 H), 7.97 (d, *J* = 8.7 Hz, 1 H), 7.76 (d, *J* = 9.3 Hz, 1 H), 7.09 (d, *J* = 8.7 Hz, 1 H), 6.79 (s, 1 H), 4.17-4.04 (m, 1 H), 3.95-3.78 (m, 2 H), 3.76-3.63 (m, 2 H). Anal. (C₁₃H₁₁ClN₂O₂) C, H, N.

1-(Chloromethyl)-5,7-dinitro-1,2-dihydro-3*H***-benzo**[*e*]**indole** (**108**). A stirred solution of **107** (901 mg, 3.43 mmol) in cH₂SO₄ (10 mL) was cooled to -5 °C and treated with powdered KNO₃ (520 mg, 5.14 mmol). The mixture was stirred at 0 °C for a further 15 min, then poured into ice-water and the solid was collected. This was dissolved in warm EtOAc, and the solution was diluted with an equal volume of CH₂Cl₂ and filtered through a short column of silica gel. The eluate was concentrated to a small volume and MeOH was added to precipitate **108** (824 mg, 78%) as a red solid: mp (EtOAc/iPr₂O) 239-240 °C; ¹H NMR [(CD₃)₂SO] δ 9.06 (d, *J* = 2.3 Hz, 1 H), 8.17 (dd, *J* = 9.3, 2.2 Hz, 1 H), 8.00 (d, *J* = 9.3 Hz, 1 H), 7.83 (s, 1 H), 7.14 (s, 1 H), 4.33-4.24 (m, 1 H), 3.98-3.88 (m, 2 H), 3.84 (dd, *J* = 11.1, 7.9 Hz, 1 H), 3.77 (dd, *J* = 10.7, 3.2 Hz, 1 H). Anal. (C₁₃H₁₀ClN₃O₄) C, H, N, Cl.


1-(Chloromethyl)-5,7-dinitro-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3*H***-benzo[***e***]indole (9).** A suspension of 5,6,7-trimethoxyindole-2-carboxylic acid (122 mg, 0.49 mmol) in dry CH₂Cl₂ (10 mL) was treated with oxalyl chloride (0.13 mL, 1.49 mmol) followed by DMF (10 µL). The mixture was stirred at room temperature for 15 min, then evaporated under reduced pressure and azeotroped dry with benzene. The resulting acid chloride was cooled to -5 °C and treated with an icecold solution of amine 108 (100 mg, 0.33 mmol) in dry pyridine (2 mL) containing DMAP (5 mg). The stirred mixture was warmed to room temperature for 30 min, then poured into dilute aqueous KHCO₃. The precipitate was collected, purified by chromatography on silica gel eluting with CH₂Cl₂/EtOAc (19:1), then crystallised from CH₂Cl₂/EtOAc to give **9** (124 mg, 71%) as an orange solid: mp 251-252 °C; ¹H NMR [(CD₃)₂SO] δ 11.66 (d, *J* = 1.6 Hz, 1 H), 9.33 (d, *J* = 2.2 Hz, 1 H), 9.31 (s, 1 H), 8.45 (d, *J* = 9.3 Hz, 1 H), 8.39 (dd, *J* = 9.3, 2.2 Hz, 1 H), 7.20 (d, *J* = 2.2 Hz, 1 H), 6.97 (s, 1 H), 4.95 (dd, *J* = 11.1, 10.3 Hz, 1 H), 4.72-4.58 (m, 2 H), 4.18-4.06 (m, 2 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H). HRMS (FAB) calcd. for C₂₅H₂₁³⁵ClN₄O₈ (M⁺) m/z 540.1048, found 540.1043. Anal. (C₂₅H₂₁ClN₄O₈) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5,7-dinitro-1,2-

dihydro-3*H***-benzo[***e***]indole (25). A mixture of amine 108 (100 mg, 0.33 mmol), 5-[2- (dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (111 mg, 0.39 mmol), EDCI (249 mg, 1.30 mmol) and anhydrous TsOH (4.0 mg, 0.02 mmol) in dry DMA (8 mL) was stirred at room temperature under N₂ for 6 h, then poured into dilute aqueous NH₃. The basic mixture was stirred for 1 h, then the precipitate was collected and dissolved in EtOAc (300 mL) at room temperature. The solution was washed with water, dried, and then concentrated to 10 mL under reduced pressure below 30 °C to give crude 25. Treatment of a suspension of the free base in MeOH with HCl(g)/EtOAc, followed by crystallization from MeOH/Me₂CO/EtOAc gave 25·HCl (114 mg, 60%) as a yellow solid: mp 263-264 °C; ¹H NMR [(CD₃)₂SO] \delta 11.88 (s, 1 H), 10.15 (br s, 1 H), 9.36 (s, 1 H), 9.34 (d,** *J* **= 2.2 Hz, 1 H), 8.48 (d,** *J* **= 9.3 Hz, 1 H), 8.41 (dd,** *J* **= 9.3, 2.2 Hz, 1 H), 7.46 (d,** *J* **= 8.9 Hz, 1 H), 7.26 (s, 2**

H), 7.03 (dd, *J* = 8.9, 2.3 Hz, 1 H), 5.00 (t, *J* = 10.5 Hz, 1 H), 4.78-4.65 (m, 2 H), 4.36 (t, *J* = 4.9 Hz, 2 H), 4.22-4.09 (m, 2 H), 3.52 (t, *J* = 4.5 Hz, 2 H), 2.80 (s, 6 H). Anal. (C₂₆H₂₄ClN₅O₆·HCl) C, H, N.

Synthesis of 10 and 26.

Methyl 6-{[(dimethylamino)carbothioyl]oxy}-2-naphthoate (64). A mixture of methyl 6-hydroxy-2-naphthoate² (**63**) (5.95 g, 29.4 mmol), DABCO (1,4-diazabicyclo[2,2,2]octane) (6.61 g, 58.9 mmol) and dimethylthiocarbamoyl chloride (5.46 g, 44.2 mmol) in dry DMF (40 mL) was stirred at room temperature for 8 h. The precipitated solid was collected, washed with water and dissolved in CH₂Cl₂. The solution was filtered through a column of silica gel and the product was triturated with i-Pr₂O and recrystallized from CH₂Cl₂/hexane to give **64** (7.47 g, 88%) as a white solid: mp 144-147 °C; ¹H NMR [(CD₃)₂SO] δ 8.66 (s, 1 H), 8.16 (d, *J* = 9.0 Hz, 1 H), 8.03 (d, *J* = 8.7 Hz, 1 H), 8.00 (dd, *J* = 8.6, 1.5 Hz, 1 H), 7.70 (d, *J* = 2.3 Hz, 1 H), 7.38 (dd, *J* = 8.9, 2.3 Hz, 1 H), 3.93 (s, 3 H), 3.40 (s, 3 H), 3.38 (s, 3 H). Anal. (C₁₅H₁₅NO₃S) C, H, N.

Methyl 6-{[(dimethylamino)carbonyl]sulfanyl}-2-naphthoate (65). Thiocarbamate 64 (8.10g, 28 mmol) was heated under N₂ at 225 °C for 3 h. The cooled mixture was purified by chromatography on silica gel, eluting with CH₂Cl₂/EtOAc, followed by trituration with i-Pr₂O to give 65 (6.91 g, 85%) as a white solid: mp (CH₂Cl₂/petroleum ether) 130-132 °C; ¹H NMR [(CD₃)₂SO] δ 8.67 (s, 1 H), 8.17 (d, *J* = 0.8 Hz, 1 H), 8.16 (d, *J* = 8.8 Hz, 1 H), 8.07 (d, *J* = 8.7 Hz, 1 H), 8.03 (dd, *J* = 8.5, 1.6 Hz, 1 H), 7.60 (dd, *J* = 8.5, 1.8 Hz, 1 H), 3.93 (s, 3 H), 3.09 (br s, 3 H), 2.97 (br s, 3 H). Anal. (C₁₅H₁₅NO₃S) C, H, N.

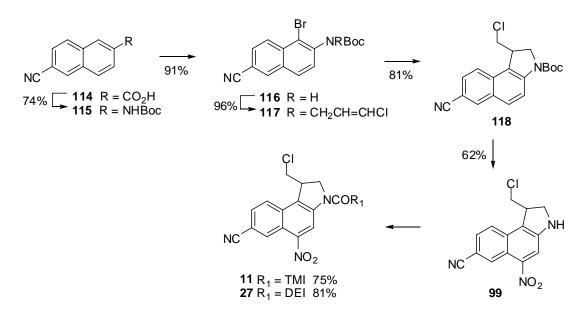
6-(Methylsulfanyl)-2-naphthoic acid (66). A suspension of **65** (6.36 g, 22 mmol) in a mixture of aq KOH (5N, 340 mL, 1.7 mol) and MeOH (205 mL) was stirred at reflux for 3 h, then cooled to 5 °C and treated dropwise with Me₂SO₄ (26 mL, 275 mmol). After stirring at room temperature for a further 4 h the mixture was concentrated to half volume, acidified with dilute aq HCl, and the precipitated product was crystallized from EtOAc/hexane to give **66** (4.39 g, 91%) as a white solid: mp (MeOH) 231-233 °C; ¹H NMR [(CD₃)₂SO] δ (CO₂H not observed) 8.53 (s, 1 H), 8.01 (d, *J* = 8.9 Hz, 1 H), 7.96 (dd, *J* = 8.6, 1.7 Hz, 1 H), 7.90 (d, *J* = 8.7 Hz, 1 H), 7.77 (d, *J* = 1.7 Hz, 1 H), 7.47 (dd, *J* = 8.7, 1.9 Hz, 1 H), 2.61 (s, 3 H). Anal. (C₁₂H₁₀O₂S) C, H.

6-(Methylsulfonyl)-2-naphthoic acid (67). A mixture of 66 (4.24 g, 19.4 mmol) and $NaBO_3$ ·4H₂O (20.0 g, 130 mmol) in AcOH (150 mL) was stirred at 55 °C for 2 h. Additional

NaBO₃·4H₂O (5.4 g, 35 mmol) was added and the mixture was stirred at 55 °C for a further 2 h, then diluted with water (1 L). The precipitated solid was collected, washed with water, and recrystallized from MeOH then DMF/H₂O to give **67** (3.98 g, 82%) as a white solid: mp 301-304 °C; ¹H NMR [(CD₃)₂SO] δ (CO₂H not observed) 8.74 (s, 1 H), 8.66 (s, 1 H), 8.39 (d, *J* = 8.8 Hz, 1 H), 8.30 (d, *J* = 8.8 Hz, 1 H), 8.13 (dd, *J* = 8.6, 1.7 Hz, 1 H), 8.03 (dd, *J* = 8.7, 1.9 Hz, 1 H), 3.32 (s, 3 H). Anal. (C₁₂H₁₀O₄S) C, H.

tert-Butyl 6-(methylsulfonyl)-2-naphthylcarbamate (109). A suspension of acid 67 (4.08 g, 16.30 mmol) in dry t-BuOH (70 mL) containing powdered molecular sieves (2 g) was treated with Et₃N (2.73 mL, 19.59 mmol) and stirred under N₂ at room temperature for 30 min. DPPA (3.87 mL, 17.96 mmol) was added and the mixture was stirred at reflux for 6 h, then concentrated to a small volume under reduced pressure and poured into dilute aqueous NaHCO₃. The resulting solid was purified by chromatography on silica gel, eluting with CH₂Cl₂, to give 109 (4.57 g, 87%) as a white solid: mp (EtOAc/hexane) 203-204 °C; ¹H NMR [(CD₃)₂SO] δ 9.81 (s, 1 H), 8.44 (d, *J* = 1.2 Hz, 1 H), 8.26 (s, 1 H), 8.08 (d, *J* = 9.0 Hz, 1 H), 8.01 (d, *J* = 8.7 Hz, 1 H), 7.84 (dd, *J* = 8.7, 1.8 Hz, 1 H), 7.66 (dd, *J* = 8.9, 2.0 Hz, 1 H), 3.25 (s, 3 H), 1.52 (s, 9 H). Anal. (C₁₆H₁₉NO₄S) C, H, N.

tert-Butyl 1-bromo-6-(methylsulfonyl)-2-naphthylcarbamate (110). A mixture of 109 (4.47 g, 13.91 mmol) and NBS (2.72 g, 15.28 mmol) in MeCN (80 mL) was stirred at reflux for 3 h, then concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ and the solution was washed with 10% aq Na₂SO₃ and water, dried, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with CH₂Cl₂, to give 110 (4.79 g, 86%) as a white solid: mp (MeOH) 190 °C; ¹H NMR [(CD₃)₂SO] δ 8.95 (s, 1 H), 8.61 (d, *J* = 1.8 Hz, 1 H), 8.36 (d, *J* = 9.0 Hz, 1 H), 8.22 (d, *J* = 8.8 Hz, 1 H), 8.08 (dd, *J* = 9.0, 1.9 Hz, 1 H), 7.96 (d, *J* = 8.9 Hz, 1 H), 3.25 (after D₂O exchange, s, 3 H), 1.50 (s, 9 H). Anal. (C₁₆H₁₈BrNO₄S) C, H, N.


tert-Butyl 1-bromo-6-(methylsulfonyl)-2-naphthyl(3-chloro-2-propen-1-yl)carbamate (111). A stirred suspension of 110 (4.70 g, 11.74 mmol) in dry DMF (40 mL) was treated portionwise at 0°C with NaH (564 mg, 60% in oil, 14.10 mmol). The mixture was warmed to room temperature for 1 h then cooled to 0 °C and treated with 1,3-dichloropropene (3.4 mL, 37 mmol, mixed isomers). The mixture was stirred at room temperature for a further 6 h, then diluted with 10% aqueous NaCl and extracted with EtOAc (×2). The combined organic layers were washed with water (×2), dried, and concentrated to dryness under reduced pressure at 100 °C. The residue was chromatographed on silica gel, eluting with CH₂Cl₂/EtOAc (9:1) to give 111 (5.41 g, 97%) as a foam; ¹H NMR [(CD₃)₂SO] (mixture of rotamers and E and Z forms) δ 8.73-8.69 (m, 1 H), 8.46 (d, *J* = 9.0 Hz, 1 H), 8.30, 8.29 (2 d, *J* = 8.6 Hz, 1 H), 8.14 (dd, *J* = 9.0, 1.8 Hz, 1 H), 7.71, 7.68 (2 d, *J* = 8.6 Hz, 1 H), 6.43-6.28 (m, 1 H), 6.19-6.01 (m, 1 H), 4.59-4.48, 4.44-4.23, 4.19-4.05 (3 m, 2 H), 3.27 (after D₂O exchange, s, 3 H), 1.50, 1.26 (2 s, 9 H). HRMS (FAB) calcd. for C₁₉H₂₂⁷⁹Br³⁵ClNO₄S (MH⁺) m/z 474.0141, found 474.0142.

tert-Butyl 1-(chloromethyl)-7-(methylsulfonyl)-1,2-dihydro-3*H*-benzo[*e*]indole 3carboxylate (112). A mixture of 111 (5.38 g, 11.33 mmol), Bu₃SnH (3.05 mL, 11.34 mmol) and AIBN (0.25 g, 1.5 mmol) in dry benzene (80 mL) under N₂ was stirred at reflux for 2 h, then concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ and the solution was diluted with excess hexane and refrigerated. The precipitated semisolid was purified by chromatography on silica gel, eluting with CH₂Cl₂/EtOAc (19:1), to give **112** (3.53 g, 79%) as a white solid: mp (iPr₂O) 125-126 °C; ¹H NMR [(CD₃)₂SO] δ 8.54 (d, *J* = 1.8 Hz, 1 H), 8.25-8.05 (m, 3 H), 7.91 (dd, *J* = 8.9, 1.9 Hz, 1 H), 4.36-4.27 (m, 1 H), 4.23 (t, *J* = 10.5 Hz, 1 H), 4.10 (dd, *J* = 11.4, 2.9 Hz, 1 H), 4.05 (dd, *J* = 11.1, 3.2 Hz, 1 H), 3.94 (dd, *J* = 11.1, 6.7 Hz, 1 H), 3.21 (after D₂O exchange, s, 3 H), 1.56 (s, 9 H). Anal. (C₁₉H₂₂CINO₄S) C, H, N.

1-(Chloromethyl)-7-(methylsulfonyl)-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole (113). Powdered 112 (1.50 g, 3.79 mmol) was added to stirred cH_2SO_4 (16 mL) at 0 °C, and the mixture was warmed to room temperature for 30 min. The resulting solution was cooled to -5°C and treated dropwise with a solution of KNO₃ (421 mg, 4.16 mmol) in cH_2SO_4 (3 mL). The mixture was stirred at 0 °C for a further 10 min then poured into ice/water and neutralized with aqueous NH₃. The resulting solid was purified by chromatography on silica gel, eluting with CH_2Cl_2 , to give 113 (926 mg, 72%) as a red solid: mp (EtOAc) 199-200 °C; ¹H NMR [(CD_3)₂SO] δ 8.68 (d, *J* = 1.6 Hz, 1 H), 8.06 (dd, *J* = 8.9, 0.4 Hz, 1 H), 7.90 (dd, *J* = 8.9, 1.8 Hz, 1 H), 7.79 (s, 1 H), 6.83 (s, 1 H), 4.31-4.23 (m, 1 H), 3.95-3.86 (m, 2 H), 3.82 (dd, *J* = 11.1, 8.1 Hz, 1 H), 3.76 (dd, *J* = 10.1, 3.1 Hz, 1 H), 3.25 (s, 3 H). Anal. ($C_{14}H_{13}CIN_2O_4S$) C, H, N, Cl.

1-(Chloromethyl)-7-(methylsulfonyl)-5-nitro-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2dihydro-3*H***-benzo**[*e*]**indole** (**10**). A mixture of amine **113** (250 mg, 0.73 mmol), 5,6,7trimethoxyindole-2-carboxylic acid (221 mg, 0.88 mmol), EDCI (563 mg, 2.94 mmol) and anhydrous TsOH (100 mg, 0.58 mmol) in dry DMA (8 mL) was stirred at room temperature for 4 h, then poured into dilute aqueous KHCO₃. The precipitate was collected and crystallized from DMF/H₂O to give **10** (353 mg, 84%) as a yellow solid: mp 296-297 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.62 (s, 1 H), 9.27 (s, 1 H), 8.98 (d, *J* = 1.7 Hz, 1 H), 8.48 (d, *J* = 8.9 Hz, 1 H), 8.15 (dd, *J* = 8.9, 1.8 Hz, 1 H), 7.21 (d, *J* = 2.2 Hz, 1 H), 6.99 (s, 1 H), 4.95 (t, *J* = 10.7 Hz, 1 H), 4.70-4.61 (m, 2 H), 4.20-4.06 (m, 2 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.28 (s, 3 H). Anal. (C₂₆H₂₄ClN₃O₈S·½H₂O) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-7-(methylsulfonyl)-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole (26). A mixture of amine 113 (350 mg, 1.03 mmol), 5-[2-(dimethylamino)ethoxy]indol-2-carboxylic acid hydrochloride (351 mg, 1.23 mmol), EDCI (788 mg, 4.11 mmol) and anhydrous TsOH (140 mg, 0.81 mmol) in dry DMF (20 mL) was stirred under N₂ at room temperature for 6 h, then poured into dilute aq NH₃. The precipitated solid was collected, dissolved in CH₂Cl₂, and the dried solution was diluted with EtOAc and concentrated under reduced pressure below 25°C to a small volume to give crude 26. Treatment of a suspension of the free base in MeOH with HCl(g)/EtOAc/hexane followed by crystallization from MeOH/EtOAc gave 26 HCl (484 mg, 78%) as a yellow solid: mp 250-252 °C; ¹H NMR [(CD₃)₂SO] δ 11.83 (d, *J* = 1.7 Hz, 1 H), 10.19 (br s, 1 H), 9.32 (s, 1 H), 8.98 (d, *J* = 1.7 Hz, 1 H), 8.50 (d, *J* = 8.9 Hz, 1 H), 8.17 (dd, *J* = 8.9, 1.8 Hz, 1 H), 7.47 (d, *J* = 8.9 Hz, 1 H), 7.27 (d, *J* = 2.3 Hz, 1 H), 7.25 (d, *J* = 1.7 Hz, 1 H), 7.04 (dd, *J* = 8.9, 2.4 Hz, 1 H), 5.00 (t, *J* = 10.1 Hz, 1 H), 4.77-4.65 (m, 2 H), 4.37 (t, *J* = 5.0 Hz, 2 H), 4.20-4.09 (m, 2 H), 3.51 (br s, 2 H), 3.36 (s, 3 H), 2.86 (s, 6 H). Anal. (C₂₇H₂₇ClN₄O₆S·HCl) C, H, N.

tert-Butyl 6-cyano-2-naphthylcarbamate (115). A suspension of 6-cyano-2-naphthoic acid³ (114) (4.62 g, 23.4 mmol) in dry t-BuOH (120 mL) containing powdered molecular sieves (2 g) was treated with Et₃N (3.91 mL, 28.1 mmol) and the mixture was stirred at room temperature under N₂ for 30 min. DPPA (5.55 mL, 25.8 mmol) was added, and the mixture was stirred at reflux for 6 h, then concentrated to half volume and poured into dilute aq NaHCO₃. The resulting solid was purified by chromatography on silica gel, eluting with CH₂Cl₂, to give **115** (4.68 g, 74%): mp (MeOH/H₂O) 135-136 °C; ¹H NMR [(CD₃)₂SO] δ 9.85 (s, 1 H), 8.42 (d, *J* = 0.9 Hz, 1 H), 8.23 (d, *J* = 1.0 Hz, 1 H), 7.95 (d, *J* = 8.7 Hz, 2 H), 7.68 (dd, *J* = 8.5, 1.6 Hz, 1 H), 7.64 (dd, *J* = 9.0, 2.0 Hz, 1 H), 1.52 (s, 9 H). Anal. (C₁₆H₁₆N₂O₂) C, H, N.

tert-Butyl 1-bromo-6-cyano-2-naphthylcarbamate (116). A solution of 115 (4.48 g, 18 mmol) and NBS (3.85 g, 21.6 mmol) in MeCN (80 mL) was stirred at reflux for 1 h, then concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂, washed with 10% aqueous Na₂SO₃, water, dried, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with CH₂Cl₂, to give **116** (5.69 g, 91%): mp (iPr₂O/hexane) 164-166 °C; ¹H NMR [(CD₃)₂SO] δ 9.01 (s, 1 H), 8.63 (d, *J* = 1.5 Hz, 1 H), 8.27 (d, *J* = 9.0 Hz, 1 H), 8.07 (d, *J* = 9.0 Hz, 1 H), 7.94 (d, *J* = 8.9 Hz, 1 H), 7.93 (dd, *J* = 8.9, 1.8 Hz, 1 H), 1.50 (s, 9 H). Anal. (C₁₆H₁₅BrN₂O₂) C, H, N, Br.

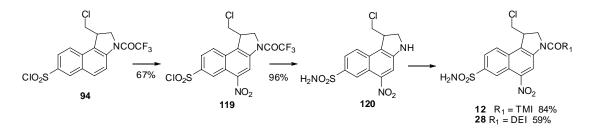
tert-Butyl 1-bromo-6-cyano-2-naphthyl(3-chloro-2-propenyl)carbamate (117). A stirred solution of 116 (5.78 g, 16.6 mmol) in dry DMF (50 mL) was treated at 0 °C with NaH (0.80 g, 20.0 mmol, 60% in oil). The resulting suspension was warmed to room temperature for 30 min, then cooled to 0 °C again and treated with 1,3-dichloropropene (4.8 mL, 52 mmol, mixed isomers). After stirring at room temperature for a further 6 h, the mixture was diluted with water and extracted with EtOAc (×3). The combined organic extracts were washed with water (×3), dried, and concentrated to dryness under high vacuum at 80 °C. The residue was chromatographed on silica gel, eluting with CH_2Cl_2 , to give 117 (6.77 g, 96%) as a foam; ¹H NMR [(CD_3)₂SO] (mixture of rotamers and E and Z forms) δ 8.69 (s, 1 H),

8.35 (d, J = 8.8 Hz, 1 H), 8.13, 8.12 (2 d, J = 8.6 Hz, 1 H), 7.96 (d, J = 8.9 Hz, 1 H), 7.69, 7.63 (2d, J = 8.7 Hz, 1 H), 6.42-6.29 (m, 1 H), 6.17-5.99 (m, 1 H), 4.55-4.45, 4.40-4.19, 4.15-3.98 (3 m, 2 H), 1.48, 1.24 (2 s, 9 H). HRMS (FAB) calcd. for $C_{19}H_{19}^{-79}Br^{35}ClN_2O_2$ (MH⁺) m/z 421.0318, found 421.0306.

tert-Butyl 1-(chloromethyl)-7-cyano-1,2-dihydro-3*H*-benzo[*e*]indole-3-carboxylate (118). A solution of 117 (6.78 g, 16.1 mmol) in dry benzene (80 mL) was treated with Bu₃SnH (4.33 mL, 16.1 mmol), followed by AIBN (0.3 g, 1.8 mmol). The mixture was stirred at reflux under N₂ for 2 h, then concentrated under reduced pressure, and the residue was chromatographed on silica gel. Elution with CH₂Cl₂ gave an oil that was triturated with iPr₂O, to provide **118** contaminated with *tert*-butyl 7-cyano-1-methyl-1,2-dihydro-3*H*-benzo[*e*]indole-3-carboxylate. Two recrystallizations from CH₂Cl₂/iPr₂O gave pure **118** (4.49 g, 81%): mp 171-172 °C; ¹H NMR [(CD₃)₂SO] δ 8.55 (d, *J* = 1.4 Hz, 1 H), 8.18 (v br, 1 H), 8.07 (d, *J* = 8.7 Hz, 1 H), 8.01 (d, *J* = 8.9 Hz, 1 H), 7.75 (dd, *J* = 8.7, 1.7 Hz, 1 H), 4.34-4.25 (m, 1 H), 4.21 (t, *J* = 10.5 Hz, 1 H), 4.09 (dd, *J* = 11.3, 2.8 Hz, 1 H), 4.03 (dd, *J* = 11.1, 3.1 Hz, 1H), 3.93 (dd, *J* = 11.1, 6.7 Hz, 1 H), 1.55 (s, 9 H). Anal. (C₁₉H₁₉ClN₂O₂·¹/4H₂O) C, H, N.

1-(Chloromethyl)-7-cyano-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole (99). Powdered 118 (1.00 g, 2.9 mmol) was added portionwise to stirred cH₂SO₄ (10 mL) at 0 °C, and the mixture was warmed to room temperature for 10 min. The resulting solution was cooled to -5 °C and treated dropwise with a solution of KNO₃ (324 mg, 3.2 mmol) in cH₂SO₄ (2 mL). After stirring for a further 5 min at 0 °C, the mixture was poured into ice/water and neutralized with dilute aq NH₃. The resulting solid was purified by chromatography on silica gel, eluting with CH₂Cl₂, followed by recrystallization from CH₂Cl₂, then EtOAc, to give **99** (522 mg, 62%) as a red solid: mp 237-238 °C; ¹H NMR [(CD₃)₂SO] δ 8.55 (d, *J* = 1.4 Hz, 1 H), 7.98 (d, *J* = 8.8 Hz, 1 H), 7.77 (s, 1 H), 7.74 (dd, *J* = 8.8, 1.5 Hz, 1 H), 6.87 (s, 1 H), 4.29-4.21 (m, 1 H), 3.94-3.85 (m, 2 H), 3.80 (dd, *J* = 11.1, 8.1 Hz, 1 H), 3.75 (dd, *J* = 10.6, 3.1 Hz, 1 H). Anal. (C₁₄H₁₀ClN₃O₂) C, H, N, Cl.

1-(Chloromethyl)-5-nitro-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3H-


benzo[*e*]**indole-7-carbonitrile (11).** A suspension of 5,6,7-trimethoxyindole-2-carboxylic acid (79 mg, 0.31 mmol) in dry CH₂Cl₂ (6 mL) was treated with oxalyl chloride (80 μ L, 0.92 mmol) followed by DMF (10 μ L). The mixture was stirred at room temperature for 30 min, then evaporated to dryness under reduced pressure and re-evaporated after addition of benzene. The resulting acid chloride was cooled to -5 °C and treated with an ice-cold solution of **99** (60 mg, 0.21 mmol) in dry pyridine (1.5 mL) containing DMAP (5 mg). The mixture was stirred at room temperature for 15 min, then poured into dilute aq KHCO₃. The resulting solid was purified by chromatography on silica gel, eluting with CH₂Cl₂/EtOAc (9:1), to give **11** (81 mg, 75%) as a yellow solid: mp (CH₂Cl₂/EtOAc) 257-258 °C; ¹H NMR [(CD₃)₂SO] δ 11.62 (s, 1 H), 9.23 (s, 1 H), 8.86 (d, *J* = 1.4 Hz, 1 H), 8.39 (d, *J* = 8.8 Hz, 1 H), 8.02 (dd, *J* = 8.8, 1.4 Hz, 1 H), 7.19 (d, *J* = 2.1 Hz, 1 H), 6.98 (s, 1 H), 4.93 (t, *J* = 10.6 Hz, 1 H), 4.69-4.59 (m, 2 H), 4.16-4.05 (m, 2 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H). Anal. (C₂₆H₂₁ClN₄O₆) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2-

dihydro-3*H***-benzo**[*e*]**indole-7-carbonitrile** (27). A mixture of 99 (60 mg, 0.21 mmol), 5-[2- (dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (71 mg, 0.25 mmol), EDCI (160 mg, 0.83 mmol) and anhydrous TsOH (25 mg, 0.15 mmol) in dry DMA (3 mL) was stirred under N_2 at

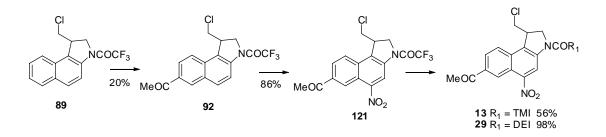
room temperature for 6 h, then poured into dilute aq NH₃. The precipitated solid was collected, washed with water, and dissolved in CH₂Cl₂. The dried solution was concentrated under reduced pressure below 25 °C to a small volume and diluted with i-Pr₂O to give crude **27**. Treatment of a solution of the free base in CH₂Cl₂ with HCl(g)/EtOAc/hexane, gave **27**·HCl (94 mg, 81%) as a yellow solid: mp (MeOH/EtOAc) >300 °C; ¹H NMR [(CD₃)₂SO] δ 11.86 (s, 1 H), 10.04 (v br s, 1 H), 9.31 (s, 1 H), 8.90 (d, *J* = 1.2 Hz, 1 H), 8.44 (d, *J* = 8.8 Hz, 1 H), 8.06 (dd, *J* = 8.8, 1.5 Hz, 1 H), 7.50 (d, *J* = 8.9 Hz, 1 H), 7.31 (d, *J* = 2.3 Hz, 1 H), 7.28 (d, *J* = 1.7 Hz, 1 H), 7.08 (dd, *J* = 8.9, 2.4 Hz, 1 H), 5.00 (t, *J* = 10.2 Hz, 1 H), 4.79-4.65 (m, 2 H), 4.39 (t, *J* = 5.1 Hz, 2 H), 4.21-4.10 (m, 2 H), 3.56 (t, *J* = 5.0 Hz, 2 H), 2.90 (s, 6 H). Anal. (C₂₇H₂₄ClN₅O₄·HCl) C, H, N.

Synthesis of 12 and 28.

1-(Chloromethyl)-5-nitro-3-(trifluoroacetyl)-1,2-dihydro-3*H***-benzo[***e***]indole-7-sulfonyl chloride (119). A solution of 94 (250 mg, 0.63 mmol) in cH₂SO₄ (10 mL) was nitrated with KNO₃ (65 mg, 0.65 mmol) in H₂SO₄ (5 mL) according to the general method, to give 119** (192 mg, 67%) as a red solid: mp (EtOAc/petroleum ether) 184-189 °C; ¹H NMR [(CDCl₃)] δ 9.34 (s, 1 H), 9.28 (d, J = 1.8 Hz, 1 H), 8.22 (dd, J = 9.0, 1.9 Hz, 1 H), 8.11 (d, J = 9.0 Hz, 1 H), 4.77-4.71 (m, 1 H), 4.58 (dd, J = 11.5, 8.8 Hz, 1 H), 4.42-4.33 (m, 1 H), 3.95 (dd, J = 11.7, 3.5 Hz, 1 H), 3.73 (dd, J = 11.7, 7.7 Hz, 1 H); ¹³C NMR δ 153.4 (q, J_{C-F} 38 Hz), 153.0, 148.2, 147.0, 138.7, 133.2, 129.1, 126.7, 124.5, 122.0, 119.3,

115.9 (q, J_{C-F} 288 Hz), 52.6, 47.3, 41.2. Anal. ($C_{15}H_9Cl_2F_3N_2O_5S$) C, H, N, Cl. **1-(chloromethyl)-5-nitro-1,2-dihydro-3***H***-benzo[***e***]indole-7-sulfonamide (120). Conc. aq NH₃ (0.5 mL, 7.3 mmol) was added to a solution of 119** (299 mg, 0.65 mmol) in THF (10 mL) at 0 °C, and the ice bath was removed. The mixture was stirred for 7 min and then Cs_2CO_3 (0.55 g, 1.7 mmol) and MeOH (4 mL) were added. After stirring for a further 15 min the mixture was diluted with brine and extracted with CH_2Cl_2 (×3). The combined extracts were dried and evaporated to give **120** (214 mg,

[(CD₃)₂SO] δ 8.59 (d, *J* = 1.7 Hz, 1 H), 8.03 (d, *J* = 8.9 Hz, 1 H), 7.85 (dd, *J* = 8.9, 1.7 Hz, 1 H), 7.75 (s, 1 H), 7.42 (s, 2 H), 6.68 (s, 1 H), 4.28-4.21 (m, 1 H), 3.95-3.85 (m, 2 H), 3.81 (dd, *J* = 11.2, 8.3 Hz, 1 H), 3.73 (dd, *J* = 10.4, 3.0 Hz, 1 H). Anal. (C₁₃H₁₂ClN₃O₄S) C, H, N.


96%) as an orange solid. A sample was triturated with EtOAc: mp 183-187 °C (dec.); ¹H NMR

1-(Chloromethyl)-5-nitro-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3H-

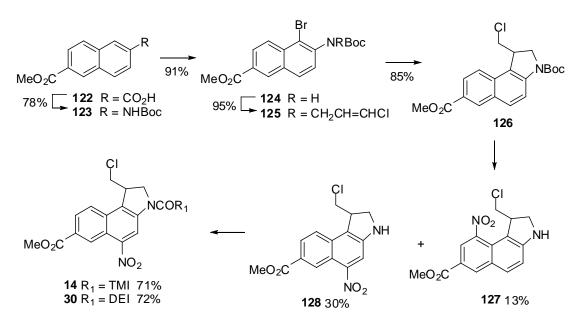
benzo[*e*]**indole-7-sulfonamide** (12). A mixture of 120 (161 mg, 0.47 mmol), 5,6,7-trimethoxyindole-2-carboxylic acid (154 mg, 0.61 mmol), EDCI (361 mg, 1.88 mmol), and TsOH (16 mg, 0.09 mmol) in DMA (3 mL) was stirred at room temperature for 22 h and then cooled to 0 °C. Ice-cold aq NaHCO₃ was added. The precipitated solid was filtered off and washed with aq NaHCO₃, water, and then dried in a vacuum desiccator. The crude product was triturated with EtOAc to give 12 (228 mg, 84%) as a yellow-brown solid: mp 280-285 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.60 (d, *J* = 1.7 Hz, 1 H), 9.23 (s, 1 H), 8.87 (d, *J* = 1.7 Hz, 1 H), 8.43 (d, *J* = 8.9 Hz, 1 H), 8.06 (dd, *J* = 8.9, 1.7 Hz, 1 H), 7.62 (s, 2 H), 7.19 (d, *J* = 2.2 Hz, 1 H), 6.98 (s, 1 H), 4.93 (dd, *J* = 11.1, 10.0 Hz, 1 H), 4.68-4.59 (m, 2 H), 4.17-4.09 (m, 2 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H). Anal. (C₂₅H₂₃ClN₄O₈S) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2-dihydro-3H-benzo[e]indole-7-sulfonamide (28). The amine 120 was reacted with 5-[2-(dimethylamino)ethoxy]indole-2-carboxylic acid as described in the general method. The product crystallized from CH₂Cl₂/MeOH to give 28. This proved to be unstable as the free base and was immediately dissolved in CH₂Cl₂/MeOH (1:1, 20 mL) and treated with methanolic HCl (5 mL), followed by precipitation with petroleum ether. The solid was collect by filtration and air-dried to give **28**·HCl (110 mg, 59%): mp >350 °C; ¹H NMR [(CD₃)₂SO] δ 11.82 (s, 1 H), 10.05 (br, 1 H), 9.28 (s, 1 H), 8.85 (d, *J* = 1.7 Hz, 1 H), 8.44 (d, *J* = 8.9 Hz, 1 H), 8.06 (dd, *J* = 8.9, 1.7 Hz, 1 H), 7.63 (s, 2 H), 7.47 (d, *J* = 8.8 Hz, 1 H), 7.28 (d, *J* = 2.4 Hz, 1 H), 7.24 (d, *J* = 1.7 Hz, 1 H), 7.04 (dd, *J* = 8.9, 2.4 Hz, 1 H), 5.02-4.94 (m, 1 H), 4.74-4.62 (m, 2 H), 4.38-4.33 (m, 2 H), 4.18-4.12 (m, 2 H), 3.57-3.51 (m, 2 H), 2.88 (s, 6 H); ¹³C NMR δ 160.6, 152.1, 147.0, 142.6, 142.5, 132.3, 132.2, 130.4, 130.0, 127.3, 125.6, 124.4, 121.3, 120.5, 116.2, 116.0, 113.4, 106.0, 104.0, 62.7, 55.5, 54.8, 47.6, 42.8, 41.4. Anal. (C₂₆H₂₆ClN₅O₆S·HCl·½H₂O) C, H, N.

Synthesis of 13 and 29.

7-Acetyl-1-(chloromethyl)-3-(trifluoroacetyl)-1,2-dihydro-3*H***-benzo[***e***]indole (92). Acylation of 89** (0.88 g, 2.8 mmol) with AlCl₃ and AcCl in PhNO₂ at 0 °C, stirring at room temperature for 16 h, and workup as above, gave a crude product. Chromatography on silica gel, eluting with EtOAc/petroleum ether (from 0:1 to 1:3) gave **92** (196 mg, 33% based on consumption of starting material): mp (EtOAc/petroleum ether) 168-170 °C; ¹H NMR (CDCl₃) δ 8.52 (d, *J* = 8.9 Hz, 1 H), 8.51 (s, 1 H), 8.14 (dd, *J* = 8.8, 1.7 Hz, 1 H), 8.02 (d, *J* = 9.0 Hz, 1 H), 7.84 (d, *J* = 8.8 Hz, 1 H), 4.68-4.62 (m, 1 H), 4.49-4.41 (m, 1 H), 4.28-4.19 (m, 1 H), 3.99-3.93 (m, 1 H), 3.61-3.55 (m, 1 H), 2.74 (s, 3 H); ¹³C NMR δ 197.6, 182.8, 154.9 (q, *J*_{C-F} 38.4 Hz), 142.1, 134.1, 132.2, 131.3, 131.1, 125.7, 125.5, 131.1, 118.1, 116.0 (q, *J*_{C-F} 288 Hz), 52.7, 45.4, 42.6, 26.6. Anal. (C₁₇H₁₃ClF₃NO₂) C, H, N.

Further elution gave recovered 89 (360 mg, 40%).


7-Acetyl-1-(chloromethyl)-5-nitro-3-(trifluoroacetyl)-1,2-dihydro-3H-benzo[e]indole

(121). A solution of 92 (200 mg, 0.56 mmol) in cH₂SO₄ (10 mL) was cooled to 5 °C and treated with KNO₃ (60 mg, 0.6 mmol) in one portion. The mixture was stirred vigorously for 30 min at 5 °C. The reaction was quenched with cold water and the mixture was extracted with EtOAc (3×50 ml). The extracts were dried and concentrated under reduced pressure. Chromatography of the residue on silica gel, eluting with EtOAc/petroleum ether (from 1:4 to 1:1) gave 121 (177 mg, 86%) as an orange solid: mp (EtOAc/petroleum ether) 158-160 °C; ¹H NMR (CDCl₃) δ 9.18 (s, 1 H), 9.06 (d, *J* = 1.4 Hz, 1 H), 8.28 (dd, *J* = 8.8, 1.6 Hz, 1 H), 7.95 (d, *J* = 8.8 Hz, 1 H), 4.74-4.68 (m, 1 H), 4.58-4.51 (m, 1 H), 4.40-4.31 (m, 1 H), 4.00-3.92 (m, 1 H), 3.74-3.66 (m, 1 H), 2.75 (s, 3 H); ¹³C NMR δ 196.9, 149.1 (q, *J*_{C-F} 38.8 Hz), 140.7, 136.5, 131.5, 130.9, 130.8, 127.0, 126.5, 123.6, 123.1, 115.7 (q, *J*_{C-F} 288 Hz), 115.5, 52.8, 45.3, 42.7, 26.5. Anal. (C₁₇H₁₂ClF₃N₂O₄) C, H, N.

7-Acetyl-1-(chloromethyl)-5-nitro-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3*H***-benzo**[*e*]**indole (13).** Deprotection of **121** (80 mg, 0.2 mmol) and reaction with 5,6,7-trimethoxyindole-2-carboxylic acid chloride as described in the general method, and purification of the crude product by chromatography, gave **13** (60 mg, 56%): mp (CH₂Cl₂/petroleum ether) 257-260 °C; ¹H NMR [(CD₃)₂SO] δ 11.58 (s, 1 H), 9.17 (s, 1 H), 8.96 (d, *J* = 1.4 Hz, 1 H), 8.29 (d, *J* = 8.8 Hz, 1 H), 8.15 (dd, *J* = 8.8, 1.6 Hz, 1 H), 7.18 (d, *J* = 2.2 Hz, 1 H), 6.97 (s, 1 H), 4.95-4.87 (m, 1 H), 4.67-4.58 (m, 2 H), 4.17-4.05 (m, 2 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 2.75 (s, 3 H); ¹³C NMR δ 197.2, 160.6, 149.3, 147.5, 142.6, 140.3, 139.0, 134.9, 131.8, 131.3, 129.6, 126.0, 125.8, 125.1, 124.5, 123.1, 120.9, 115.5, 107.2, 98.0, 61.0, 60.8, 55.9, 54.9, 47.5, 41.2, 26.6. Anal. (C₂₇H₂₄ClN₃O₇) C, H, N.

7-Acetyl-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2dihydro-3*H*-benzo[*e*]indole (29). Similar deprotection of 121 (177 mg, 0.44 mmol) and reaction with 5-[2-(dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride gave **29** (230 mg, 98%): mp (CH₂Cl₂/MeOH) >350 °C; ¹H NMR [(CD₃)₂SO] δ 11.71 (s, 1 H), 9.23 (s, 1 H), 8.97 (d, *J* = 1.3 Hz, 1 H), 8.33 (d, *J* = 8.8 Hz, 1 H), 8.16 (dd, *J* = 8.8, 1.5 Hz, 1 H), 7.40 (d, *J* = 8.9 Hz, 1 H), 7.20 (d, *J* = 1.7 Hz, 1 H), 7.18 (d, *J* = 2.3 Hz, 1 H), 6.94 (dd, *J* = 8.9, 2.4 Hz, 1 H), 4.92-4.80 (m, 1 H), 4.74-4.60 (m, 2 H), 4.18-4.03 (m, 4 H), 2.73 (s, 3 H), 2.66 (t, *J* = 7.8 Hz, 2 H), 2.24 (s, 6 H). Anal. (C₂₈H₂₇ClN₄O₅·H₂O) C, H, N, Cl.

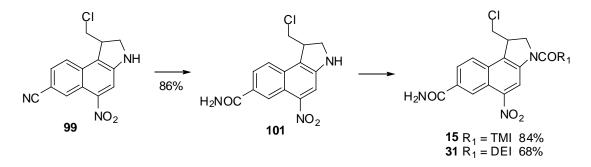
Synthesis of 14 and 30.

Methyl 6-[(*tert*-butoxycarbonyl)amino]-2-naphthoate (123). A suspension of 6-(methoxycarbonyl)-2-naphthoic acid³ (122) (1.21 g, 5.26 mmol) in dry t-BuOH (20 mL) containing powdered molecular sieves (1 g) was treated with Et₃N (0.88 mL, 6.31 mmol) and stirred under N₂ at room temperature for 30 min. DPPA (1.25 mL, 5.80 mmol) was added and the mixture was stirred at reflux for 7 h, then cooled and poured into dilute aq NaHCO₃. The resulting solid was purified by chromatography on silica gel, eluting with CH₂Cl₂, followed by trituration with iPr₂O and recrystallization from EtOAc to give **123** (1.24 g, 78%) as a white solid: mp 178-180 °C; ¹H NMR [(CD₃)₂SO] δ 9.76 (s, 1 H), 8.51 (s, 1 H), 8.19 (s, 1 H), 8.02 (d, *J* = 9.0 Hz, 1 H), 7.90 (dd, *J* = 8.6, 1.6 Hz, 1 H), 7.86 (d, *J* = 8.7 Hz, 1 H), 7.59 (dd, *J* = 8.9, 2.1 Hz, 1 H), 3.89 (s, 3 H), 1.52 (s, 9 H). Anal. (C₁₇H₁₉NO₄) C, H, N.

Methyl 2-[(*tert*-butoxycarbonyl)amino]-1-bromo-6-naphthoate (124). A mixture of 123 (977 mg, 3.24 mmol) and NBS (664 mg, 3.73 mmol) in CH₃CN (25 mL) was stirred at reflux for 45 min, then concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ and the solution was washed with 10% aq Na₂SO₃ and water (×2), dried, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with CH₂Cl₂, to give 124 (1.12 g, 91%) as a white solid: mp (petroleum ether) 130-131 °C; ¹H NMR [(CD₃)₂SO] δ 8.93 (s, 1 H), 8.65 (d, *J* = 1.6 Hz, 1 H), 8.64 (d, *J* = 8.9 Hz, 1 H), 8.16 (d, *J* = 8.9 Hz, 1 H), 8.11 (dd, *J* = 8.9, 1.7 Hz, 1 H), 7.86 (d, *J* = 8.9 Hz, 1 H), 3.93 (s, 3 H), 1.50 (s, 9 H). Anal. (C₁₇H₁₈BrNO₄) C, H, N, Br.

Methyl 2-[(*tert*-butoxycarbonyl)(3-chloro-2-propen-1-yl)amino]-1-bromo-6-naphthoate (125). A stirred solution of 124 (1.05 g, 2.76 mmol) in dry DMF (8 mL) was treated at 0 °C with NaH (132 mg, 60% in oil, 3.30 mmol). The resulting suspension was warmed to room temperature for 30 min, then cooled to 0 °C and treated with 1,3-dichloropropene (0.80 mL, 8.7 mmol, mixed isomers). The mixture was stirred at room temperature for a further 4 h then poured into dilute aqueous AcOH and extracted with EtOAc (\times 2). The combined organic layers were washed with dilute aq NaHCO₃ and water (\times 2), dried, and concentrated to dryness under reduced pressure at 100 °C. The residue was

chromatographed on silica gel, eluting with CH₂Cl₂/EtOAc (19:1) to give **125** (1.19 g, 95%) as a gum; ¹H NMR [(CD₃)₂SO] (mixture of rotamers and E and Z forms) δ 8.73 (s, 1 H), 8.34 (d, *J* = 8.9 Hz, 1 H), 8.16 (d, *J* = 8.9 Hz, 1 H), 7.63, 7.58 (2 d, *J* = 8.7 Hz, 1 H), 8.25, 8.24 (2 d, *J* = 8.6 Hz, 1 H), 6.45-6.31 (m, 1 H), 6.20-6.00 (m, 1 H), 4.58-4.48, 4.43-4.21, 4.16-4.00 (3 m, 2 H), 3.95 (s, 3 H), 1.50, 1.27 (2 s, 9 H). HRMS (FAB) calcd. for C₂₀H₂₂⁷⁹Br³⁵ClNO₄ (MH⁺) m/z 454.0421, found 454.0410.

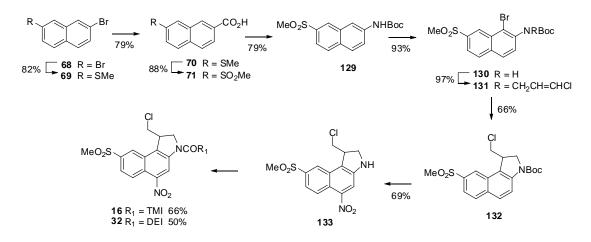

Methyl 3-(*tert*-butoxycarbonyl)-1-(chloromethyl)-1,2-dihydro-3*H*-benzo[*e*]indole-7carboxylate (126). A mixture of 125 (1.16 g, 2.55 mmol), Bu₃SnH (0.69 mL, 2.56 mmol) and AIBN (50 mg, 0.30 mmol) in dry benzene (15 mL) under N₂ was stirred at reflux for 2 h, then concentrated under reduced pressure. The residue was triturated with i-Pr₂O and the resulting solid was purified by chromatography on silica gel, eluting with CH₂Cl₂/EtOAc (19:1), to give 126 (817 mg, 85%) as a white solid: mp (EtOAc) 187-189 °C; ¹H NMR [(CD₃)₂SO] δ 8.60 (d, *J* = 1.2 Hz, 1 H), 8.1 (v br, 1 H), 8.09 (d, *J* = 8.6 Hz, 1 H), 8.00 (d, *J* = 8.8 Hz, 1 H), 7.97 (dd, *J* = 8.8, 1.6 Hz, 1 H), 4.31-4.23 (m, 1 H), 4.20 (t, *J* = 10.4 Hz, 1 H), 4.09 (dd, *J* = 11.2, 2.5 Hz, 1 H), 4.04 (dd, *J* = 11.1, 3.1 Hz, 1 H), 3.96-3.88 (m, 4 H), 1.55 (s, 9 H). Anal. (C₂₀H₂₂CINO₄) C, H, N.

Methyl 1-(chloromethyl)-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole-7-carboxylate (128). Powdered 126 (900 mg, 2.39 mmol) was added to stirred cH_2SO_4 (6 mL) at 0 °C and the mixture was warmed to room temperature for 15 min. The resulting solution was cooled to -5 °C and treated dropwise with a solution of KNO₃ (266 mg, 2.63 mmol) in cH_2SO_4 (1.5 mL). The mixture was stirred at -5 °C for a further 5 min, then poured into ice/water and neutralized with dilute aqueous NH₃. The resulting solid was chromatographed on silica gel, eluting with CH_2Cl_2 to give crude methyl 1- (chloromethyl)-9-nitro-1,2-dihydro-3*H*-benzo[*e*]indole-7-carboxylate (127) (102 mg, 13%) as an orange-brown solid; ¹H NMR [(CD₃)₂SO] δ 8.66 (d, *J* = 1.7 Hz, 1 H), 8.30 (d, *J* = 1.7 Hz, 1 H), 8.08 (d, *J* = 8.8 Hz, 1 H), 7.25 (s, 1 H), 7.18 (d, *J* = 8.8 Hz, 1 H), 3.92-3.83 (m, 4 H), 3.74-3.67 (m, 1 H), 3.63 (dd, *J* = 10.6, 2.3 Hz, 1 H), 3.39-3.28 (m, 2 H).

Further elution with CH₂Cl₂ gave **128** (228 mg, 30%) as a red solid: mp (CH₂Cl₂/i-Pr₂O) 191-192 °C; ¹H NMR [(CD₃)₂SO] δ 8.77 (s, 1 H), 7.96 (dd, *J* = 8.9, 1.5 Hz, 1 H), 7.93 (dd, *J* = 8.9, 0.7 Hz, 1 H), 7.73 (s, 1 H), 6.74 (s, 1 H), 4.27-4.19 (m, 1 H), 3.94-3.85 (m, 5 H), 3.79 (dd, *J* = 11.0, 8.4 Hz, 1 H), 3.74 (dd, *J* = 10.5, 3.1 Hz, 1 H). Anal. (C₁₅H₁₃ClN₂O₄) C, H, N, Cl.

Methyl 1-(chloromethyl)-3-(5,6,7-trimethoxyindol-2-carbonyl)-5-nitro-1,2-dihydro-3*H*benzo[*e*]indole-7-carboxylate (14). A suspension of 5,6,7-trimethoxyindole-2-carboxylic acid (47 mg, 0.19 mmol) in dry CH₂Cl₂ (2 mL) was treated with oxalyl chloride (50 µl, 0.57 mmol) followed by DMF (10 µl). The mixture was stirred at room temperature for 30 min, then evaporated to dryness under reduced pressure and re-evaporated after addition of benzene. The resulting acid chloride was cooled to -5 °C and treated with an ice-cold solution of amine 128 (40 mg, 0.12 mmol) in dry pyridine (1 mL) containing DMAP (4 mg). The mixture was stirred at room temperature for 15 min, then poured into dilute aqueous KHCO₃. The precipitated solid was purified by chromatography on silica gel, eluting with CH₂Cl₂/EtOAc (9:1), to give 14 (49 mg, 71%) as an orange solid: mp (CH₂Cl₂/iPr₂O) 256-257 °C; ¹H NMR [(CD₃)₂SO] δ 11.60 (d, *J* = 1.8 Hz, 1 H), 9.19 (s, 1 H), 9.03 (d, *J* = 1.5 Hz, 1 H), 8.34 (d, *J* = 8.8 Hz, 1 H), 8.16 (dd, *J* = 8.8, 1.6 Hz, 1 H), 7.19 (d, *J* = 2.2 Hz, 1 H), 6.98 (s, 1 H), 4.92 (dd, *J* = 10.6, 9.6 Hz, 1 H), 4.69-4.57 (m, 2 H), 4.18-4.05 (m, 2 H), 3.96 (s, 3 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H). Anal. (C₂₇H₂₄ClN₃O₈) C, H, N.

Methyl 1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2dihydro-3H-benzo[*e*]**indole-7-carboxylate (30).** A mixture of **128** (80 mg, 0.25 mmol), 5-[2-(dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (85 mg, 0.30 mmol), EDCI (191 mg, 1.00 mmol) and anhydrous TsOH (25 mg, 0.15 mmol) in dry DMA (4 mL) was stirred under N₂ at room temperature for 7 h, then poured into dilute aqueous NH₃. The resulting solid was recrystallized twice from CH₂Cl₂/EtOAc/i-Pr₂O to give **30**. Treatment of a solution of **30** in CH₂Cl₂ with HCl(g)/EtOAc/hexane gave **30**·HCl (106 mg, 72%) as a yellow solid: mp >300 °C; ¹H NMR [(CD₃)₂SO] δ 11.82 (d, *J* = 1.8 Hz, 1 H), 10.14 (br s, 1 H), 9.24 (s, 1 H), 9.03 (d, *J* = 1.4 Hz, 1 H), 8.35 (d, *J* = 8.7 Hz, 1 H), 8.17 (dd, *J* = 8.9, 2.4 Hz, 1 H), 7.47 (d, *J* = 8.9 Hz, 1 H), 7.28 (d, *J* = 2.4 Hz, 1 H), 7.24 (d, *J* = 1.6 Hz, 1 H), 7.04 (dd, *J* = 8.9, 2.4 Hz, 1 H), 4.97 (dd, *J* = 10.7, 9.7 Hz, 1 H), 4.71 (dd, *J* = 10.9, 2.4 Hz, 1 H), 4.68-4.61 (m, 1 H), 4.37 (t, *J* = 5.1 Hz, 2 H), 4.18-4.08 (m, 2 H), 3.96 (s, 3 H), 3.53 (t, *J* = 5.0 Hz, 2 H), 2.87 (s, 6 H). Anal. (C₂₈H₂₇ClN₄O₆·HCl·0.5H₂O) C, H, N.



1-(Chloromethyl)-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole-7-carboxamide (101). A solution of **99** (100 mg, 0.35 mmol) in a mixture of cH_2SO_4 (1.8 mL) and water (0.2 mL) was heated at 65 °C for 1 h, then cooled and neutralized with saturated aq KHCO₃. The precipitate was collected, washed with water, and dissolved in warm EtOAc. The solution was filtered through a column of silica gel and then concentrated and diluted with iPr₂O to give **101** (92 mg, 86%) as a red solid: mp (EtOAc/iPr₂O) >300 °C; ¹H NMR [(CD₃)₂SO] δ 8.61 (d, *J* = 1.3 Hz, 1 H), 8.09, 7.39 (2 br s, 2 H), 7.95 (dd, *J* = 8.8, 1.7 Hz, 1 H), 7.89 (d, *J* = 8.7 Hz, 1 H), 7.66 (s, 1 H), 6.54 (s, 1 H), 4.26-4.18 (m, 1 H), 3.91 (dd, *J* = 11.0, 3.8 Hz, 1 H), 3.86 (td, *J* = 9.9, 2.3 Hz, 1 H), 3.78 (dd, *J* = 11.0, 8.5 Hz, 1 H), 3.72 (dd, *J* = 10.3, 2.6 Hz, 1 H). Anal. (C₁₄H₁₂ClN₃O₃) C, H, N.

1-(Chloromethyl)-5-nitro-3-[5,6,7-trimethoxyindol-2-carbonyl]-1,2-dihydro-3*H*benzo[*e*]indole-7-carboxamide (15). A suspension of 5,6,7-trimethoxyindole-2-carboxylic acid (63 mg, 0.25 mmol) in dry CH₂Cl₂ (2 mL) was treated with oxalyl chloride (65 μ L, 0.75 mmol), followed by DMF (10 μ L), and the mixture was stirred at room temperature for 30 min. The mixture was evaporated under reduced pressure and then azeotroped with benzene. The resulting acid chloride was cooled to -5 °C and treated with an ice-cold solution of **101** (50 mg, 0.16 mmol) in dry pyridine (1 mL) containing DMAP (4 mg). After stirring at room temperature for 30 min the mixture was poured into dilute aq KHCO₃, and the precipitate was collected, washed with water, and dissolved in EtOAc/THF (4:1). This solution was filtered through a column of silica gel and then concentrated to give **15** (74 mg, 84%) as a yellow solid: mp (THF/EtOAc) 287-289 °C; ¹H NMR [(CD₃)₂SO] δ 11.58 (d, *J* = 1.6 Hz, 1 H), 9.12 (s, 1 H), 8.85 (d, *J* = 1.4 Hz, 1 H), 8.28 (d, *J* = 8.7 Hz, 1 H), 8.27, 7.60 (2 s, 2 H), 8.15 (dd, *J* = 8.8, 1.6 Hz, 1 H), 7.18 (d, *J* = 2.2 Hz, 1 H), 6.99 (s, 1 H), 4.92 (dd, *J* = 10.7, 9.5 Hz, 1 H), 4.68-4.56 (m, 2 H), 4.18-4.06 (m, 2 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H). Anal. (C₂₆H₂₃ClN₄O₇) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole-7-carboxamide (31). A mixture of 101 (86 mg, 0.28 mmol), 5-[2-(dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (96 mg, 0.34 mmol), EDCI (216 mg, 1.13 mmol) and anhydrous TsOH (30 mg, 0.17 mmol) in dry DMA (4 mL) was stirred at room temperature under N₂ for 2 h, then poured into dilute aq NH₃. The precipitate was collected, washed with water, stirred as a suspension in MeCN (30 mL) for 1 h, and then re-collected to provide crude **31**. Treatment of a suspension of the free base in MeOH with HCl(g)/EtOAc/hexane, followed by crystallization from MeOH, gave **31**·HCl (109 mg, 68%) as a yellow solid: mp >300 °C; ¹H NMR [(CD₃)₂SO] δ 11.80 (d, *J* = 1.7 Hz, 1 H), 10.09 (br s, 1 H), 9.16 (s, 1 H), 8.85 (d, *J* = 1.5 Hz, 1 H), 8.30 (d, J = 8.7 Hz, 1 H), 8.29, 7.61 (2 br s, 2 H), 8.16 (dd, J = 8.8, 1.6 Hz, 1 H), 7.47 (d, J = 8.9 Hz, 1 H), 7.28 (d, J = 2.4 Hz, 1 H), 7.23 (d, J = 1.7 Hz, 1 H), 7.04 (dd, J = 8.9, 2.4 Hz, 1 H), 4.96 (dd, J = 10.7, 9.7 Hz, 1 H), 4.70 (dd, J = 10.9, 2.5 Hz, 1 H), 4.68-4.59 (m, 1 H), 4.36 (t, J = 5.1 Hz, 2 H), 4.20-4.07 (m, 2 H), 3.50 (t, J = 4.9 Hz, 2 H), 2.87 (s, 6 H). Anal. (C₂₆H₂₆ClN₅O₅·HCl·H₂O) C, H, N.

Synthesis of 16 and 32.

2-Bromo-7-(methylsulfanyl)naphthalene (69). A stirred solution of 2,7-dibromonaphthalene (68) (5.72 g, 20.0 mmol) in THF (80 mL) was treated dropwise at -78 °C with n-BuLi (2.5 M in hexanes, 8.40 mL, 21.0 mmol) under N₂. The mixture was stirred at -78 °C for 20 min, then treated slowly with dimethyl disulfide (2.16 mL, 24 mmol) and allowed to warm to room temperature. The solvent was removed under reduced pressure to give a residue that was shaken with water, and the resulting solid was crystallized from petroleum ether to give 69 (4.14 g, 82%): mp 80-81 °C; ¹H NMR [(CD₃)₂SO] δ 8.11 (d, *J* = 1.9 Hz, 1 H), 7.86 (d, *J* = 9.1 Hz, 1 H), 7.83 (d, *J* = 9.1 Hz, 1 H), 7.71 (d, *J* = 1.8 Hz, 1 H), 7.54 (dd, *J* = 8.72, 2.0 Hz, 1 H), 7.44 (dd, *J* = 8.6, 2.0 Hz, 1 H), 2.58 (s, 3 H). Anal. (C₁₁H₉BrS) C, H, S.

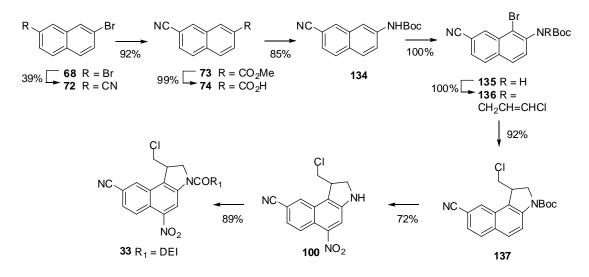
7-(Methylsulfanyl)-2-naphthoic acid (70). A stirred solution of **69** (850 mg, 3.36 mmol) in THF (10 mL) was treated at -78 °C with n-BuLi (2.5 M in hexanes, 1.48 mL, 3.70 mmol) under N₂. The mixture was stirred at -78 °C for 15 min, then treated with excess CO₂(g) and allowed to warm to room temperature. The solvent was removed under reduced pressure, and the residue was partitioned between water and EtOAc. The aqueous layer was acidified, and the resulting solid was crystallized from MeOH to give **70** (577 mg, 79%): mp 217 °C; ¹H NMR [(CD₃)₂SO] δ 13.0 (v br, 1 H), 8.53 (d, *J* = 0.7 Hz, 1 H), 7.98-7.87 (m, 4 H), 7.53 (dd, *J* = 8.7, 1.9 Hz, 1 H), 2.60 (s, 3 H). Anal. (C₁₂H₁₀O₂S) C, H.

7-(Methylsulfonyl)-2-naphthoic acid (71). A mixture of **70** (2.00 g, 9.16 mmol) and NaBO₃·4H₂O (8.00 g, 52 mmol) in AcOH (50 mL) was stirred at 55 °C for 2 h, then cooled and diluted with water. The resulting solid was recrystallized twice from EtOAc to give **71** (2.02 g, 88%) as a white solid: mp 273-274 °C; ¹H NMR [(CD₃)₂SO] δ 13.3 (br s, 1 H), 8.85 (d, *J* = 0.5 Hz, 1 H), 8.79 (d, *J* = 1.8 Hz, 1 H), 8.27 (d, *J* = 8.7 Hz, 1 H), 8.18 (2 s, 2 H), 8.08 (dd, *J* = 8.7, 1.9 Hz, 1 H), 3.25 (after D₂O exchange, s, 3 H). Anal. (C₁₂H₁₀O₄S) C, H.

tert-Butyl 7-(methylsulfonyl)-2-naphthylcarbamate (129). A suspension of acid 71 (2.08 g, 8.31 mmol) in dry t-BuOH (30 mL) containing powdered molecular sieves (1 g) was treated with Et₃N (1.39 mL, 9.97 mmol) and stirred under N₂ at room temperature for 30 min. DPPA (1.97 mL, 9.14 mmol) was added and the mixture was stirred at reflux for 7 h, then concentrated to half volume under reduced pressure and poured into dilute aq KHCO₃. The resulting solid was purified by

chromatography on silica gel, eluting with CH₂Cl₂/EtOAc (19:1), followed by recrystallization from CH₂Cl₂/iPr₂O to give **129** (2.11 g, 79%) as a white solid: mp 179-180 °C; ¹H NMR [(CD₃)₂SO] δ 9.76 (s, 1 H), 8.39 (d, *J* = 1.5 Hz, 1 H), 8.28 (d, *J* = 1.5 Hz, 1 H), 8.06 (d, *J* = 8.6 Hz, 1 H), 7.98 (d, *J* = 9.0 Hz, 1 H), 7.77 (dd, *J* = 8.6, 1.9 Hz, 1 H), 7.74 (dd, *J* = 9.2, 2.0 Hz, 1 H), 3.27 (s, 3 H), 1.52 (s, 9 H). Anal. (C₁₆H₁₉NO₄S) C, H, N.

tert-Butyl 1-bromo-7-(methylsulfonyl)-2-naphthylcarbamate (130). A mixture of 129 (2.05 g, 6.38 mmol) and NBS (1.31 g, 7.36 mmol) in MeCN (40 mL) was stirred at reflux for 2 h, then concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂, and the solution was washed with 10% aq Na₂SO₃ and water, dried and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with CH₂Cl₂/EtOAc (19:1), followed by recrystallization from MeOH to give 130 (2.37 g, 93%) as a white solid: mp 166-167 °C; ¹H NMR [(CD₃)₂SO] δ 8.99 (s, 1 H), 8.70 (d, *J* = 1.7 Hz, 1 H), 8.25 (d, *J* = 8.5 Hz, 1 H), 8.10 (d, *J* = 8.8 Hz, 1 H), 8.00 (dd, *J* = 8.5, 1.8 Hz, 1 H), 7.97 (d, *J* = 8.9 Hz, 1 H), 3.32 (s, 3 H), 1.50 (s, 9 H). Anal. (C₁₆H₁₈BrNO₄S) C, H, N.


tert-Butyl 1-bromo-7-(methylsulfonyl)-2-naphthyl(3-chloro-2-propen-1-yl)carbamate (131). A stirred solution of 130 (2.29 g, 5.72 mmol) in dry DMF (20 mL) was treated portionwise at 0°C with NaH (275 mg, 60% in oil, 6.88 mmol). The mixture was warmed to room temperature for 30 min, then cooled to 0°C and treated with 1,3-dichloropropene (1.66 mL, 18 mmol, mixed isomers). The mixture was stirred at room temperature for a further 6 h, then diluted with 10% aq NaCl and extracted with EtOAc (×2). The combined organic layers were washed with water (×2), dried, and concentrated to dryness under reduced pressure at 100°C. The residue was chromatographed on silica gel, eluting with CH₂Cl₂ /EtOAc (19:1) to give crude 131 (2.63 g, 97%) as a foam: ¹H NMR [(CD₃)₂SO] (mixture of rotamers and E and Z forms) δ 8.78 (s, 1 H), 8.32 (dd, *J* = 8.6, 2.2 Hz, 1 H), 8.18, 8.17 (2d, *J* = 8.7 Hz, 1 H), 8.13-8.06 (m, 1 H), 7.75, 7.70 (2 d, *J* = 8.7 Hz, 1 H), 6.44-6.29 (m, 1 H), 6.20-6.01 (m, 1 H), 4.58-4.48, 4.43-4.22, 4.16-4.05 (3 m, 2 H), 3.35 (s, 3 H), 1.50, 1.27 (2 s, 9 H). HRMS (FAB) calcd. for C₁₉H₂₂⁷⁹Br³⁵ClNO₄S (MH⁺) m/z 474.0141, found 474.0143.

tert-Butyl 1-(chloromethyl)-8-(methylsulfonyl)-1,2-dihydro-3*H*-benzo[*e*]indole-3carboxylate (132). A solution of 131 (1.60 g, 3.37 mmol) in dry benzene (30 mL) was treated with Bu₃SnH (0.91 mL, 3.38 mmol) followed by AIBN (0.1 g, 0.6 mmol). The mixture was stirred under N₂ at reflux for 2 h, then concentrated under reduced pressure. The residue was dissolved in EtOAc, and the solution was diluted with hexane and refrigerated. The resulting semisolid was chromatographed on silica gel, eluting with CH₂Cl₂/EtOAc (19:1), and the product was triturated with i-Pr₂O/hexane to give 132 (0.88 g, 66%) as an amorphous solid: ¹H NMR [(CD₃)₂SO] δ 8.41 (d, *J* = 1.6 Hz, 1 H), 8.2 (v br, 1 H), 8.17 (d, *J* = 8.6 Hz, 1 H), 8.03 (d, *J* = 8.9 Hz, 1 H), 7.80 (dd, *J* = 8.6, 1.8 Hz, 1 H), 4.42-4.33 (m, 1 H), 4.21 (t, *J* = 10.4 Hz, 1 H), 4.12 (dd, *J* = 11.6, 2.9 Hz, 1 H), 4.07 (dd, *J* = 11.2, 3.4 Hz, 1 H). 3.89 (dd, *J* = 11.2, 7.1 Hz, 1 H), 3.33 (s, 3 H), 1.55 (s, 9 H). Anal. (C₁₉H₂₂ClNO₄S·½i-Pr₂O) C, H, N.

1-(Chloromethyl)-8-(methylsulfonyl)-5-nitro-1,2-dihydro-3H-benzo[*e*]indole (133). Powdered **132** (350 mg, 0.88 mmol) was added to stirred cH_2SO_4 (4 mL) at 0 °C and the mixture was warmed to room temperature for 20 min. The resulting solution of amine was cooled to -5°C and treated dropwise with a solution of KNO₃ (98 mg, 0.97 mmol) in cH_2SO_4 (1 mL). The mixture was stirred at 0°C for a further 5 min, then poured into ice/water and neutralized with dilute aq NH₃. The resulting solid was filtered off, dissolved in CH₂Cl₂, and the solution was filtered through a column of silica gel and evaporated to dryness. Recrystallization from CH₂Cl₂/i-Pr₂O followed by EtOAc gave **133** (207 mg, 69%) as a red solid: mp 193-194 °C; ¹H NMR [(CD₃)₂SO] δ 8.34 (d, *J* = 1.5 Hz, 1 H), 8.31 (d, *J* = 9.1 Hz, 1 H), 7.82 (s, 1 H), 7.76 (dd, *J* = 9.1, 1.9 Hz, 1 H), 6.62 (br s, 1 H), 4.37-4.28 (m, 1 H), 3.93 (dd, *J* = 11.1, 4.1 Hz, 1 H), 3.87 (td, *J* = 9.8, 2.3 Hz, 1 H), 3.80-3.70 (m, 2 H), 3.33 (s, 3 H). Anal. (C₁₄H₁₃ClN₂O₄S) C, H, N. The structure of **133** was confirmed by x-ray crystallography.

1-(Chloromethyl)-8-(methylsulfonyl)-5-nitro-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2dihydro-3*H***-benzo[***e***]indole (16). A suspension of 5,6,7-trimethoxyindole-2-carboxylic acid (77 mg, 0.31 mmol) in dry CH₂Cl₂ (3 mL) was treated with oxalyl chloride (80 μL, 0.92 mmol) followed by DMF (10 μl). The mixture was stirred at room temperature for 30 min, then evaporated to dryness under reduced pressure and re-evaporated after addition of benzene. The resulting acid chloride was cooled to -5°C and treated with an ice-cold solution of 133** (70 mg, 0.21 mmol) in dry pyridine (2 mL) containing DMAP (5 mg). The mixture was warmed to room temperature for 15 min then poured into dilute aq KHCO₃ and the precipitated solid was collected and dissolved in CH₂Cl₂/EtOAc (8:1). The solution was filtered through a column of silica gel and the product was recrystallized from CH₂Cl₂/EtOAc to give **16** (78 mg, 66%) as an orange solid: mp 265 °C; ¹H NMR [(CD₃)₂SO] δ 11.61 (d, *J* = 1.8 Hz, 1 H), 9.26 (s, 1 H), 8.69 (d, *J* = 1.5 Hz, 1 H), 8.59 (d, *J* = 9.2 Hz, 1 H), 8.13 (dd, *J* = 9.2, 1.8 Hz, 1 H), 7.21 (d, *J* = 2.2 Hz, 1 H), 6.98 (s, 1 H), 4.93 (dd, *J* = 10.7, 9.4 Hz, 1 H), 4.78-4.70 (m, 1 H), 4.66 (dd, *J* = 10.9, 2.1 Hz, 1 H), 4.16 (dd, *J* = 11.3, 3.5 Hz, 1 H), 4.07 (t, *J* = 5.7 Hz, 1 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.42 (s, 3 H). Anal. (C₂₆H₂₄ClN₃O₈S) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-8-(methylsulfonyl)-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole (32). A mixture of 133 (80 mg, 0.23 mmol), 5-[2-(dimethylamino)ethoxy]-indol-2-carboxylic acid hydrochloride (80 mg, 0.28 mmol), EDCI (180 mg, 0.94 mmol) and anhydrous TsOH (30 mg, 0.17 mmol) in dry DMA (5 mL) under N₂ was stirred at room temperature for 3 h, then poured into dilute aq NH₃. The precipitated solid was collected, stirred as a suspension in MeOH (10 mL) for 15 min, cooled to 0°C and then recollected to give crude 32. Treatment of 32 in MeOH/CH₂Cl₂ with HCl(g)/EtOAc/hexane, followed by crystallization from MeOH gave 32·HCl (71 mg, 50%) as a yellow solid: mp >300 °C; ¹H NMR [(CD₃)₂SO] δ 11.82 (s, 1 H), 10.0 (v br, 1 H), 9.31 (s, 1 H), 8.70 (d, *J* = 1.5 Hz, 1 H), 8.60 (d, *J* = 9.2 Hz, 1 H), 8.14 (dd, *J* = 9.2, 1.8 Hz, 1 H), 7.47 (d, *J* = 8.9 Hz, 1 H), 7.27 (d, *J* = 2.3 Hz, 1 H), 7.25 (d, *J* = 1.7 Hz, 1 H), 7.04 (dd, *J* = 8.9, 2.4 Hz, 1 H), 4.97 (t, *J* = 9.8 Hz, 1 H), 4.82-4.69 (m, 2 H), 4.35 (t, *J* = 5.0 Hz, 2 H), 4.18 (dd, *J* = 11.3, 3.2 Hz, 1 H), 4.08 (dd, *J* = 11.4, 5.7 Hz, 1 H), 3.52 (br s, 2 H), 3.42 (s, 3H), 2.87 (s, 6 H). Anal. (C₂₇H₂₇ClN₄O₆S·HCl) C, H, N.

7-Bromo-2-naphthonitrile (72). A solution of 2,7-dibromonaphthalene (**68**) (20.0 g, 0.07 mol) in 1-methyl-2-pyrrolidinone (60 mL) was purged with N₂ for 10 min. CuCN (7.52 g, 0.09 mol) and pyridine (0.5 mL) were added and the mixture was heated at 180 °C under N₂ for 1.5 h. After cooling to 80 °C, FeCl₃ (40 g), water (200 mL) and cHCl (50 mL) were added and the mixture was stirred for 1 h at 80 °C. The mixture was cooled, brine was added, and the mixture was extracted with CH₂Cl₂ (×3). The organic extracts were washed with aq HCl (2N, ×2), water, 10% aq NaOH, brine, and dried. Chromatography eluting with CH₂Cl₂/petroleum ether (1:1, then 4:1) gave **72** (6.40 g, 39%) as a cream powder. A sample was recrystallized (petroleum ether) to give colorless needles: mp 126-128 °C; ¹H NMR (CDCl₃) δ 8.13 (s, 1 H), 8.06 (d, *J* = 1.5 Hz, 1 H), 7.89 (d, *J* = 8.5 Hz, 1 H), 7.76 (d, *J* = 8.8 Hz, 1 H), 7.71 (dd, *J* = 8.8, 1.9 Hz, 1 H), 7.62 (dd, *J* = 8.4, 1.5 Hz, 1 H); ¹³C NMR δ 133.2, 133.0, 132.4, 130.6, 130.3, 129.6, 129.2, 126.8, 121.9, 118.7, 110.6. Anal. (C₁₁H₆BrN) C, H, N, Br.

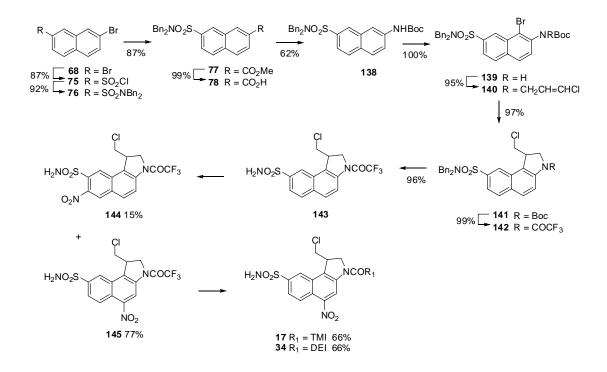
Methyl 7-cyano-2-naphthoate (73). Nitrile 72 (6.0 g, 26 mmol), Pd(OAc)₂ (0.58 g, 2.59 mmol), 1,3-bis(diphenylphosphino)propane (1.07 g, 2.59 mmol), MeOH (30 mL), Et₃N (12 mL) and DMSO (30 mL) were placed in a Berghof reactor (HR-200) and purged with CO(g) for 5 min. The reactor was then pressurized with CO(g) (15 bar) and heated at 70 °C for 20 h. After cooling, EtOAc was added and the mixture was filtered through Celite/silica gel. The solvents were removed under reduced pressure and the residue partitioned between CH₂Cl₂ and brine. The organic layer was dried and evaporated, and the residue was recrystallized (MeOH) to give 73 (5.15 g, 92%), as a colorless solid: mp 136-136.5 °C (Lit mp⁴ 137-139 °C); ¹H NMR (CDCl₃) δ 8.65 (s, 1 H), 8.34 (s, 1 H), 8.22 (d, J = 8.2 Hz, 1 H), 7.97 (d, J = 8.9 Hz, 1 H), 7.95 (d, J = 8.9 Hz, 1 H), 7.72 (d, J = 8.2 Hz, 1 H), 4.01 (s, 3 H).

7-Cyano-2-naphthoic acid (74). A solution of NaOH (1.36 g, 34 mmol) in water (35 mL) was added dropwise to a solution of **73** (4.95 g, 24 mmol) in EtOH (100 mL) and CH₂Cl₂ (30 mL) and the mixture was stirred for 15 h. Water was added to dissolve the white solid and the mixture was extracted with CH_2Cl_2 (×2) and EtOAc. The aqueous portion was acidified (pH 2) with aq HCl (2N) and the resulting precipitate was filtered off, washed with water, and dried in a vacuum desiccator to

give **74** (4.60 g, 99%), as a colorless powder: mp 279-283 °C (Lit mp⁴ 286-288 °C); ¹H NMR [(CD₃)₂SO] δ 13.25 (br s, 1 H), 8.81 (s, 1 H), 8.75 (s, 1 H), 8.20 (d, *J* = 8.5 Hz, 1 H), 8.17 (d, *J* = 8.5 Hz, 2 H), 8.15 (d, *J* = 8.5 Hz, 2 H), 7.92 (dd, *J* = 8.5, 1.3 Hz, 1 H).

tert-Butyl 7-cyano-2-naphthylcarbamate (134). A solution of 74 (6.60 g, 23 mmol), DPPA (7.71 g, 28 mmol) and Et₃N (5.19 g, 51 mmol) in *t*-BuOH (50 mL) was heated under reflux for 6 h. The mixture was partitioned between EtOAc and brine. The EtOAc layer was dried and filtered through silica gel. Chromatography eluting with CH₂Cl₂/petroleum ether/MeOH (25:24:1) followed by recrystallization (CH₂Cl₂/petroleum ether) gave **134** (5.30 g, 85%) as colorless needles. A sample was recrystallized (EtOAc/*n*-hexane): mp 126-128 °C; ¹H NMR (CDCl₃) δ 8.13 (s, 1 H), 8.07 (s, 1 H), 7.82 (d, *J* = 8.1 Hz, 1 H), 7.80 (d, *J* = 8.1 Hz, 1 H), 7.51-7.48 (m, 2 H), 6.71 (br s, 1 H), 1.56 (s, 9 H); ¹³C NMR δ 152.5, 137.5, 133.4, 133.1, 131.0, 128.9, 128.8, 124.9, 122.0, 119.3, 114.4, 110.0, 81.3, 28.3. Anal. (C₁₆H₁₆N₂O₂) C, H, N.

tert-Butyl 1-bromo-7-cyano-2-naphthylcarbamate (135). A mixture of 134 (1.90 g, 7.09 mmol), NBS (1.41 g, 7.20 mmol) and K₂CO₃ (1.11 g, 8.50 mmol) in MeCN (20 mL) was heated at 60 °C under N₂ for 30 min. The solvent was removed under reduced pressure and the residue was partitioned between CH₂Cl₂ and water. The organic layer was washed with water (×2), brine, and dried. Filtration through silica gel gave 135 (2.45 g, 100%) as a colorless powder. A sample was recrystallized (petroleum ether) to give colorless needles: mp 139-141 °C; ¹H NMR (CDCl₃) δ 8.58 (d, *J* = 9.1 Hz, 1 H), 8.54 (d, *J* = 1.0 Hz, 1 H), 7.86 (d, *J* = 8.4 Hz, 1 H), 7.83 (d, *J* = 9.1 Hz, 1 H), 7.56 (dd, *J* = 8.3, 1.4 Hz, 1 H), 7.36 (br s, 1 H), 1.57 (s, 9 H); ¹³C NMR δ 152.3, 136.7, 132.5, 132.0, 131.4, 129.4, 128.3, 125.6, 122.4, 119.0, 111.3, 109.4, 81.9, 28.3. Anal. (C₁₆H₁₅BrN₂O₂) C, H, N, Br.


tert-Butyl 1-bromo-7-cyano-2-naphthyl(3-chloro-2-propen-1-yl)carbamate (136). A solution of 135 (2.50 g, 7.21 mmol) in DMF (20 mL) was added to a suspension of NaH (350 mg, 8.65 mmol, 60% in oil) in DMF (20 mL) at 0 °C. 1,3-Dichloropropene (1.60 g, 14 mmol) was added and the mixture was allowed to warm to room temperature over 2 h. The DMF was removed under reduced pressure and the residue was partitioned between CH_2Cl_2 and water. The organic layer was washed with water (×2), brine (×2), and dried. Filtration through silica gel gave 136 (3.28 g, 100%) as a pale yellow oil; ¹H NMR (CDCl₃) (mixture of rotamers and E and Z forms) δ 8.73 (s, 1 H), 7.93-7.96 (m, 1 H), 7.83-7.87 (m, 1 H), 7.68-7.70 (m, 1 H), 7.39-7.46 (m, 1 H), 6.00-6.11 (m, 2 H), 4.49-4.62 (m, 1 H), 4.33-4.43 (m, 1 H), 1.33, 1.32 (2 s, 9 H). HRMS (FAB) calcd. for $C_{19}H_{18}^{79}Br^{35}ClN_2O_2$ (MH⁺) m/z 421.0318, found 421.0330.

tert-Butyl 1-(chloromethyl)-8-cyano-1,2-dihydro-3*H*-benzo[*e*]indole-3-carboxylate (137). A mixture of 136 (3.00 g, 7.13 mmol), Bu₃SnH (2.49 g, 8.55 mmol) and AIBN (120 mg, 0.71 mmol) in benzene (20 mL) was heated under reflux for 1.5 h. The benzene was removed under reduced pressure and the residue was triturated with pentane (×4) and recrystallized (MeOH) to give 137 (2.24 g, 92%) as colorless needles: mp 138-140 °C; ¹H NMR (CDCl₃) δ 8.35 (br s, 1 H), 8.09 (s, 1 H), 7.90 (d, *J* = 8.5 Hz, 1 H), 7.82 (d, *J* = 9.0 Hz, 1 H), 7.48 (dd, *J* = 8.5, 1.5 Hz, 1 H), 4.30 (br d, *J* = 11.2 Hz, 1 H), 4.18 (dd, *J* = 11.8, 8.7 Hz, 1 H), 4.50 (tt, *J* = 9.3, 3.0 Hz, 1 H), 3.87 (dd, *J* = 11.3, 3.3 Hz, 1 H), 3.53 (dd, *J* =

11.2, 9.6 Hz, 1 H), 1.61 (s, 9 H); ¹³C NMR δ 152.3, 142.9, 131.2, 130.2, 130.0, 128.9, 128.2, 124.2, 123.3, 119.2, 118.8, 110.5, 81.8, 52.8, 46.2, 41.5, 28.4. Anal. (C₁₉H₁₉ClN₂O₂) C, H, N.

1-(Chloromethyl)-5-nitro-1,2-dihydro-3*H***-benzo[***e***]indole-8-carbonitrile (100). A solution of 137** (30 mg, 0.088 mmol) in HCl(g) saturated dioxane (3 mL) was stirred for 1 h. The solvent was evaporated to provide the crude amine hydrochloride (24 mg, 100%). This solid was cooled to 0 °C and treated with cH₂SO₄ (2 mL). A cooled (0 °C) solution of KNO₃ (9 mg, 0.088 mmol) in cH₂SO₄ (0.5 mL) was then added dropwise. After 15 min, the mixture was poured into ice water and conc. aq NH₃ was carefully added until the pH of the mixture was 3-4. Solid KHCO₃ was then carefully added until the pH of the mixture was partitioned between CH₂Cl₂ and water, and the aqueous layer was extracted with CH₂Cl₂ (×3). The combined organic extracts were washed with brine and dried. The CH₂Cl₂ was removed under reduced pressure and the residue was triturated with MeOH to give **100** (18 mg, 72%) as red crystals: mp 231-234°C; ¹H NMR [(CD₃)₂SO] δ 8.54 (dd, *J* = 1.5, 0.5 Hz, 1 H), 8.22 (dd, *J* = 9.0, 0.4 Hz, 1 H), 7.80 (s, 1 H), 7.59 (dd, *J* = 9.0, 1.6 Hz, 1 H), 6.63 (d, *J* = 1.3 Hz, 1 H), 4.32-4.23 (m, 1 H), 3.95 (dd, *J* = 11.0, 3.8 Hz, 1 H), 3.84 (td, *J* = 10.3, 2.3 Hz, 1 H), 3.79-3.70 (m, 2 H); ¹³C NMR δ 151.8, 148.1, 130.6, 129.9, 126.8, 125.7, 125.0, 120.0, 119.6, 112.8, 111.4, 51.8, 47.5, 43.5. Anal. (C₁₄H₁₀ClN₃O₂) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2-dihydro-3H-benzo[e]indole-8-carbonitrile (33). A solution of 100 (160 mg, 0.56 mmol) in HCl(g) saturated dioxane (15 mL) was stirred for 1 h, then the dioxane was removed under reduced pressure to give the crude amine hydrochloride (180 mg, 0.56 mmol, 100%). 5-[2-(Dimethylamino)ethoxy]indole-2carboxylic acid hydrochloride (190 mg, 0.67 mmol), EDCI (319 mg, 1.67 mmol), and DMA (5 mL) were added and the mixture was stirred under a N_2 atmosphere for 4 h. The mixture was then partitioned between CH₂Cl₂ and cold (0 °C) 5% aq KHCO₃. The aqueous layer was extracted with cold $CH_2Cl_2(\times 4)$ and the combined extracts were washed with water ($\times 3$), brine, and dried. The solvent was evaporated and the residue was dissolved in CH2Cl2/MeOH and solvents were concentrated under reduced pressure until precipitation began. The precipitate was filtered off and washed with MeOH to give **33** (256 mg, 89%) as an orange powder: mp >340 °C; ¹H NMR [(CD₃)₂SO] δ 11.67 (d, J = 1.5 Hz, 1 H), 9.29 (s, 1 H), 8.91 (d, J = 1.0 Hz, 1H), 8.49 (d, J = 9.1 Hz, 1 H), 7.97 (dd, J = 9.1, 1.5 Hz, 1 H), 7.40 (d, J = 8.9 Hz, 1 H), 7.20 (d, J = 1.7 Hz, 1 H), 7.17 (d, J = 2.3 Hz, 1 H), 6.95 (dd, J = 8.9, 2.4 Hz, 1 H), 4.95 (dd, *J* = 10.6, 9.5 Hz, 1 H), 4.75-4.63 (m, 2 H), 4.19-4.09 (m, 2 H), 4.07 (t, *J* = 5.9 Hz, 2 H), 2.67 (t, J = 5.9 Hz, 2 H), 2.25 (s, 6 H); ¹³C NMR δ 160.5, 152.9, 146.2, 142.1, 133.0, 131.9, 130.5, 129.6, 128.5, 127.9, 127.3, 124.9, 122.8, 118.2, 117.3, 116.4, 113.2, 111.0, 106.2, 103.1, 65.9, 57.6, 54.7, 47.9, 45.3, 41.2. Anal. (C₂₇H₂₄ClN₅O₄) C, H, N.

7-Bromo-2-naphthalenesulfonyl chloride (**75**). n-BuLi (1.50 mL, 3.50 mmol, 2.3 M solution in hexanes) was added to a solution of **68** (1.00 g, 3.50 mmol) in THF (15 mL) under nitrogen at -78 °C. After 20 min, SO₂(g) was bubbled into the solvent and the resulting mixture was allowed to warm to room temperature and stirred for 12 h. The THF was evaporated, the resulting solid was suspended in CH₂Cl₂ (25 mL) at 0 °C, and NCS (0.47 g, 3.50 mmol) was added. After 1 h the mixture was filtered through Celite and purified by chromatography on silica gel, eluting with petroleum ether/EtOAc (95:5), followed by recrystallization (petroleum ether/Et₂O) to give **75** (1.86 g, 87%) as colorless crystals: mp 100-101 °C; ¹H NMR (CDCl₃) δ 8.51 (d, *J* = 1.3 Hz, 1 H), 8.21 (d, *J* = 1.2 Hz, 1 H), 8.04 (d, *J* = 8.8 Hz, 1 H), 8.01 (dd, *J* = 8.8, 1.8 Hz, 1 H), 7.84 (d, *J* = 8.8 Hz, 1 H), 7.81 (dd, *J* = 8.8, 1.8 Hz, 1 H). Anal. (C₁₀H₆BrClO₂S) C, H.

N,*N*-Dibenzyl-7-bromo-2-naphthalenesulfonamide (76). A mixture of 75 (1.50 g, 4.92 mmol), dibenzylamine (1.45 g, 7.38 mmol), and Et₃N (0.75 g, 7.38 mmol) in THF (15 mL) was stirred at room temperature for 48 h. The solvents were evaporated under reduced pressure and the residue was extracted with EtOAc. The EtOAc extracts were washed with water and brine, then dried and evaporated. The residue was purified by chromatography on silica gel eluting with petroleum ether/EtOAc (95:5 then 1:1) to give **76** (2.11 g, 92%). A sample was recrystallized from petroleum ether/EtOAc as colorless crystals: mp 127-129°C; ¹H NMR (CDCl₃) δ 8.25 (d, *J* = 1.4 Hz, 1 H), 8.05 (d, *J* = 1.6 Hz, 1 H), 7.91 (d, *J* = 8.7 Hz, 1 H), 7.79 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.77 (d, *J* = 8.5 Hz, 1 H), 7.71 (dd, *J* = 8.8, 1.9 Hz, 1 H), 7.22-7.15 (m, 6 H), 7.09-7.04 (m, 4 H), 4.39 (s, 4 H); ¹³C NMR δ 138.9, 135.4, 133.3, 133.0, 132.1, 131.2, 129.4, 129.3, 128.6, 128.5, 127.8, 127.3, 123.0, 121.6, 50.6. Anal. (C₂₄H₂₀BrNO₂S⁻¹/₁₀Bn₂NH) C, H, N.

Methyl 7-[(dibenzylamino)sulfonyl]-2-naphthoate (77). A mixture of 76 (2.10 g, 4.51 mmol), Pd(OAc)₂ (101 mg, 0.45 mmol), 1,3-bis(diphenylphosphino)propane (186 mg, 0.45 mmol), MeOH (30 mL), Et₃N (10 mL), and DMSO (5 mL) were placed in a pressure vessel and purged with CO(g) for 5 min. The reactor was then pressurized with CO(g) (50 bar) and heated at 70 °C for 12 h. After cooling EtOAc was added and the mixture was filtered through Celite. Solvents were removed under reduced pressure and the residue was partitioned between CH₂Cl₂ and brine. The CH₂Cl₂ layer was dried and evaporated, and the residue was purified by chromatography on silica gel, eluting with petroleum ther/EtOAc/CH₂Cl₂ (7:1:2) to give 77 (1.75 g, 87%). A sample was recrystallized from petroleum ether/EtOAc as colorless crystals: mp 141-142 °C; ¹H NMR (CDCl₃) δ 8.64 (s, 1 H), 8.45 (s, 1 H), 8.22 (dd, *J* = 8.6, 1.6 Hz, 1 H), 7.98 (d, *J* = 8.4 Hz, 1 H), 7.95 (d, *J* = 7.0 Hz, 1 H), 7.88 (dd, *J* = 8.7, 1.8 Hz, 1 H), 7.22-7.15 (m, 6 H), 7.10-7.04 (m, 4 H), 4.40 (s, 4 H), 4.01 (s, 3H); ¹³C NMR δ 166.5, 138.7, 136.6, 135.4, 132.0, 131.5, 129.6, 129.2, 129.1, 128.6, 128.5, 128.2, 128.1, 127.8, 124.8, 52.5, 50.6. Anal. (C₂₆H₂₃NO₄S) C, H, N.

7-[(Dibenzylamino)sulfonyl]-2-naphthoic acid (78). A solution of KOH (720 mg, 12.8 mmol) in MeOH (5 mL) and H₂O (2 mL) was added dropwise to a solution of **77** (1.90 g, 4.27 mmol) in MeOH (10 mL) and CH₂Cl₂ (15 mL). After 48 h at room temperature CH₂Cl₂ and H₂O were added. The aqueous layer was separated and acidified to pH 2 with 2 M HCl. The resulting white precipitate was collected, dissolved in CH₂Cl₂, and the solution was washed with H₂O and brine. The CH₂Cl₂ layer was dried, the solvent was evaporated, and the residue was dried in a vacuum desiccator. Recrystallization from CH₂Cl₂/petroleum ether gave **78** (2.00 g, 99%) as colorless crystals: mp 189-190 °C; ¹H NMR (CDCl₃) δ (CO₂H not observed) 8.76 (s, 1 H), 8.47 (s, 1 H), 8.29 (dd, *J* = 8.6, 1.5 Hz, 1 H), 8.01 (d, *J* = 8.8 Hz, 1 H), 7.92 (dd, *J* = 8.7, 1.8 Hz, 1 H), 7.23-7.15 (m, 6 H), 7.12-7.05 (m, 4 H), 5.29 (s, 1 H), 4.42 (s, 4 H); ¹³C NMR δ 170.8, 139.0, 137.0, 135.4, 133.1, 131.4, 129.7, 129.3, 128.6, 128.5, 128.4, 128.2, 128.1, 127.8, 125.3, 50.7. Anal. (C₂5H₂₁NO₄S) C, H, N.

tert-Butyl 7-[(dibenzylamino)sulfonyl]-2-naphthylcarbamate (138). A solution of 78 (1.95 g, 4.52 mmol), DPPA (1.49 g, 5.43 mmol) and Et₃N (1.01 g, 9.95 mmol) in t-BuOH (40 mL) was heated at reflux for 15 h. The solvents were removed under reduced pressure and the residue purified by chromatography on silica gel, eluting with petroleum ether/EtOAc (4:1), to give 138 (1.37 g, 62%). A sample was recrystallized from Et₂O/petroleum ether as colorless needles: mp 139-140 °C; ¹H NMR (CDCl₃) δ 8.51 (d, *J* = 1.2 Hz, 1 H), 8.03 (d, *J* = 1.3 Hz, 1 H), 7.86 (d, *J* = 8.7 Hz, 1 H), 7.82 (d, *J* = 8.9 Hz, 1 H), 7.68 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.57 (dd, *J* = 8.8, 2.1 Hz, 1 H), 7.22-7.12 (m, 6 H), 7.08-7.01 (m, 4 H), 6.75 (s, 1 H), 4.37 (s, 4 H), 1.56 (s, 9 H); ¹³C NMR δ 152.1, 137.7, 137.0, 135.1, 132.5, 130.6, 128.5, 128.2, 128.1, 127.9, 127.2, 127.1, 121.3, 120.6, 114.9, 80.6, 50.1, 27.8. Anal. (C₂₉H₃₀N₂O₄S) C, H, N.

tert-Butyl 1-bromo-7-[(dibenzylamino)sulfonyl]-2-naphthylcarbamate (139). A mixture of 138 (1.15 g, 2.29 mmol), NBS (450 mg, 2.52 mmol), and K_2CO_3 (380 mg, 2.75 mmol) in MeCN (25 mL) was stirred at 40 °C under nitrogen for 30 min. The solvent was removed under reduced pressure and the residue was partitioned between EtOAc and H₂O. The EtOAc layer was washed with H₂O, brine, then dried and evaporated. The residue was recrystallized from EtOAc/Et₂O/petroleum ether to give 139 (1.33 g, 100%) as colorless crystals: mp 150-151 °C; ¹H NMR (CDCl₃) δ 8.69 (d, *J* = 1.6 Hz,

1 H), 8.57 (d, J = 9.1 Hz, 1 H), 7.89 (d, J = 8.6 Hz, 1 H), 7.85 (d, J = 9.1 Hz, 1 H), 7.74 (dd, J = 8.6, 1.8 Hz, 1 H), 7.38 (s, 1 H), 7.22-7.15 (m, 6 H), 7.12-7.05 (m, 4 H), 4.40 (s, 4 H), 1.58 (s, 9 H); ¹³C NMR δ 152.4, 139.6, 136.5, 135.5, 132.0, 131.5, 129.7, 128.6, 128.5, 128.1, 127.7, 126.8, 122.1, 121.8, 110.4, 81.8, 50.6, 28.3. Anal. ($C_{29}H_{29}BrN_2O_4S$) C, H, N.

tert-Butyl 1-bromo-7-[(dibenzylamino)sulfonyl]-2-naphthyl(3-chloro-2-propen-1yl)carbamate (140). NaH (107 mg, 2.69 mmol, 60% in oil) was added to a solution of 139 (1.3 g, 2.24 mmol) in DMF (15 mL) at 0 °C. 1,3-Dichloropropene (414 mg, 3.36 mmol, mixed isomers) was added and the mixture was allowed to warm to room temperature over 12 h. The DMF was evaporated under reduced pressure and the residue was partitioned between EtOAc and H₂O. The EtOAc layer was washed with H₂O, brine, then dried and evaporated. The residue was purified by chromatography on silica gel, eluting with petroleum ether/EtOAc (4:1) to give 140 (1.39 g, 95%) as a yellow foam: ¹H NMR (CDCl₃) (mixture of rotamers and E and Z forms) δ 8.86 (s, 1 H), 7.97-7.91 (m, 1 H), 7.89-7.82 (m, 2 H), 7.51-7.31, 7.26-7.16 (2 m, 7 H), 7.13-7.06 (m, 4 H), 6.14-6.01 (m, 2 H), 4.64-4.48, 4.02-3.90 (2 m, 2 H), 4.43 (s, 4 H), 1.56, 1.33 (2 s, 9 H). HRMS (FAB) calcd. for C₃₂H₃₂⁷⁹Br³⁵ClN₂O₄S (MH⁺) 655.1033, found 655.1032.

tert-Butyl 1-(chloromethyl)-8-[(dibenzylamino)sulfonyl]-1,2-dihydro-3*H*-benzo[*e*]indole-3-carboxylate (141). A mixture of 140 (1.00 g, 1.53 mmol), Bu₃SnH (550 mg, 1.83 mmol), and AIBN (50 mg, 0.31 mmol) in benzene (25 mL) was heated at reflux for 15 min, then concentrated under reduced pressure. The residue was partitioned between EtOAc and H₂O and the EtOAc layer was washed with H₂O, brine and dried and evaporated. The residue was purified by chromatography on silica gel, eluting with petroleum ether/EtOAc (9:1) to give 141 (850 mg, 97%). A sample was recrystallized from Et₂O/petroleum ether as colorless needles: mp 131-133 °C; ¹H NMR (CDCl₃) δ 8.30 (br s, 1 H), 8.29 (d, *J* = 1.5 Hz, 1 H), 7.93 (d, *J* = 8.7 Hz, 1 H), 7.84 (d, *J* = 9.0 Hz, 1 H), 7.66 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.23-7.15 (m, 6 H), 7.09-7.03 (m, 4 H), 4.41 (s, 4 H), 4.28 (d, *J* = 11.5 Hz, 1 H), 4.15 (dd, *J* = 11.6, 9.0 Hz, 1 H), 4.02 (tt, *J* = 9.0, 2.9 Hz, 1 H), 3.75 (dd, *J* = 11.3, 3.5 Hz, 1 H), 3.48 (dd, *J* = 11.2, 9.3 Hz, 1 H), 1.61 (s, 9 H); ¹³C NMR δ 152.4, 142.7, 138.9, 135.5, 131.3, 130.5, 129.8, 128.9, 128.50, 128.46, 127.7, 124.3, 122.4, 120.3, 118.4, 81.8, 52.7, 50.5, 46.4, 41.4, 28.4. Anal. (C₃₂H₃₃ClN₂O₄S) C, H, N.

N,*N*-Dibenzyl-1-(chloromethyl)-3-(trifluoroacetyl)-1,2-dihydro-3*H*-benzo[*e*]indole-8sulfonamide (142). A solution of 141 (850 mg, 1.48 mmol) in HCl(g)-saturated dioxane (10 mL) was stirred for 4 h at room temperature. The dioxane was evaporated under reduced pressure and the resulting pale yellow solid was dissolved in pyridine (10 mL) at 0 °C. Trifluoroacetic anhydride (470 mg, 2.23 mmol) was added and the mixture was stirred at 0 °C for 30 min, then poured into ice water and extracted with EtOAc (×3). The combined EtOAc extracts were washed with 1 M HCl (×3), H₂O, and brine, then dried and evaporated. The residue was purified by chromatography on silica gel, eluting with petroleum ether/EtOAc (9:1) to give **142** (840 mg, 99%). A sample was recrystallized from EtOAc/Et₂O/petroleum ether as colorless crystals: mp 119-121 °C; ¹H NMR (CDCl₃) δ 8.60 (d, *J* = 9.0 Hz, 1 H), 8.25 (d, *J* = 1.7 Hz, 1 H), 8.02 (d, *J* = 8.7 Hz, 1 H), 7.95 (d, *J* = 9.0 Hz, 1 H), 7.78 (dd, *J* = 8.7, 1.8 Hz, 1 H), 7.23-7.16 (m, 6 H), 7.10-7.04 (m, 4 H), 4.65 (d, *J* = 11.6 Hz, 1 H), 4.48-4.37 (m, 5 H), 4.22-4.16 (m, 1 H), 3.78 (dd, J = 11.5, 3.5 Hz, 1 H), 3.54 (dd, J = 11.5, 8.5 Hz, 1 H). Anal. (C₂₉H₂₄ClF₃N₂O₃S) C, H, N.

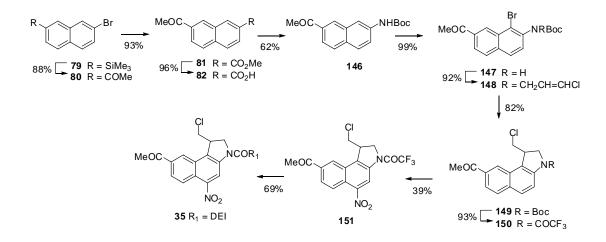
1-(Chloromethyl)-3-(trifluoroacetyl)-1,2-dihydro-3H-benzo[e]indole-8-sulfonamide

(143). Sulfonamide 142 (750 mg, 1.31 mmol) was cooled to 0 °C, dissolved in cH₂SO₄ (20 mL) at 0 °C, and the solution was stirred at this temperature for 2 h. Ice water and EtOAc were added and the mixture was extracted with EtOAc (×3). The combined extracts were washed with brine (×3), dried, and evaporated to give 143 (490 mg, 96%). A sample was recrystallized from CH₂Cl₂/EtOAc as yellow crystals: mp 229-231 °C; ¹H NMR [(CD₃)₂SO] δ 8.45 (d, *J* = 9.0 Hz, 1 H), 8.42 (s, 1 H), 8.21 (d, *J* = 8.7 Hz, 1 H), 8.11 (d, *J* = 9.0 Hz, 1 H), 7.87 (dd, *J* = 8.7, 1.7 Hz, 1 H), 7.51 (s, 2 H), 4.65-4.57 (m, 1 H), 4.57-4.50 (m, 1 H), 4.44 (d, *J* = 10.8 Hz, 1 H), 4.18 (dd, *J* = 11.3, 3.1 Hz, 1 H), 4.05 (dd, *J* = 11.3, 5.9 Hz, 1 H). Anal. (C₁₅H₁₂ClF₃N₂O₃S·¹/₂H₂O) C, H, N.

1-(Chloromethyl)-5-nitro-3-(trifluoroacetyl)-1,2-dihydro-3H-benzo[e]indole-8-

sulfonamide (145). Ice-cold cH₂SO₄ (14 mL) was added to 143 (450 mg, 1.15 mmol) at 0 °C with stirring. A solution of KNO₃ (128 mg, 1.26 mmol) in cH₂SO₄ (1 mL) at 0 °C was then added dropwise. After 15 min the mixture was poured into ice water and extracted with EtOAc (×3). The combined extracts were washed with H₂O, brine, dried, and evaporated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with petroleum ether/EtOAc (3:2) to give 1- (chloromethyl)-7-nitro-3-(trifluoroacetyl)-1,2-dihydro-3*H*-benzo[*e*]indole-8-sulfonamide (144) (76 mg, 15%). A sample was recrystallized from petroleum ether/EtOAc as yellow crystals: mp 192-195 °C; ¹H NMR [(CD₃)₂SO] δ 8.79 (s, 1 H), 8.65 (s, 1 H), 8.59 (d, *J* = 9.0 Hz, 1 H), 8.31 (d, *J* = 9.1 Hz, 1 H), 7.88 (s, 2 H), 4.66 (dd, *J* = 10.5, 9.3 Hz, 1 H), 4.58-4.51 (m, 1 H), 4.47 (d, *J* = 11.1 Hz, 1 H), 4.19 (dd, *J* = 11.3, 3.3 Hz, 1 H), 4.08 (dd, *J* = 11.3, 5.9 Hz, 1 H). Anal. (C₁₅H₁₁ClF₃N₃O₅S) C, H, N.

Further elution gave **145** (383 mg, 77%). A sample was recrystallized from petroleum ether/EtOAc as orange crystals: mp 251-254 °C; ¹H NMR [(CD₃)₂SO] δ 9.09 (s, 1 H), 8.58 (d, *J* = 8.9 Hz, 1 H), 8.57 (d, *J* = 2.0 Hz, 1 H), 8.11 (dd, *J* = 9.4, 1.6 Hz, 1 H), 7.66 (s, 2 H), 4.76-4.63 (m, 2 H), 4.52 (d, *J* = 10.5 Hz, 1 H), 4.22 (dd, *J* = 11.3, 3.1 Hz, 1 H), 4.11 (dd, *J* = 11.4, 5.3 Hz, 1 H). Anal. (C₁₅H₁₁ClF₃N₃O₅S) C, H, N.


1-(Chloromethyl)-5-nitro-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3H-

benzo[*e*]**indole-8-sulfonamide (17).** A solution of **145** (50 mg, 0.114 mmol) and Cs₂CO₃ (58 mg, 0.172 mmol) in MeOH (2 mL), THF (2 mL), and CH₂Cl₂ (2 mL) was stirred at room temperature for 15 min. Water was added and the mixture was extracted with EtOAc (×3). The combined EtOAc extracts were washed with H₂O (×2), brine (×3), then dried and evaporated under reduced pressure. The resulting red solid was stirred in HCl(g)-saturated dioxane (5 mL) for 30 min then evaporated under reduced pressure. 5,6,7-Trimethoxyindole-2-carboxylic acid (34 mg, 0.137 mmol), EDCI (87 mg, 0.456 mmol), and DMA (3 mL) were added and the mixture was stirred at room temperature under nitrogen for 15 h. The mixture was partitioned between EtOAc and ice-cold 5% aq KHCO₃. The aqueous portion was extracted with cold EtOAc (×4) and the combined extracts were washed with H₂O (×3), brine (×2) and dried. Addition of Et₂O gave a precipitate of **17** (43 mg, 66%) as a red powder: mp 264-266 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.60 (s, 1 H), 9.21 (s, 1 H), 8.54 (d, *J* = 9.4 Hz, 1 H), 8.53 (d, *J* = 2.3 Hz, 1 H), 8.04 (dd, *J* = 9.2, 1.8 Hz, 1 H), 7.64 (s, 2 H), 7.19 (d, *J* = 1.9 Hz, 1 H), 6.98 (s, 1

H), 4.94 (dd, J = 11.1, 9.9 Hz, 1 H), 4.70-4.60 (m, 2 H), 4.17 (dd, J = 11.4, 3.4 Hz, 1 H), 4.08 (dd, J = 11.4, 5.8 Hz, 1 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H). HRMS (FAB) calcd. for $C_{25}H_{23}{}^{35}ClN_4O_8S$ (MH⁺) 575.1003, found 575.0989. Anal. ($C_{25}H_{23}ClN_4O_8S{}^{1/2}EtOAc$) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2-dihydro-3H-benzo[e]indole-8-sulfonamide (34). A solution of 145 (50 mg, 0.114 mmol) and Cs₂CO₃ (58 mg, 0.172 mmol) in MeOH (2 mL), THF (2 mL), and CH₂Cl₂ (2 mL) was stirred at room temperature for 15 min. Water was added and the mixture was extracted with EtOAc (×3). The combined EtOAc extracts were washed with H_2O (×2), brine (×3), then dried and evaporated under reduced pressure. The resulting red solid was stirred in HCl(g)-saturated dioxane (5 mL) for 30 min then evaporated under reduced pressure. 5-[2-(Dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (39 mg, 0.137 mmol), EDCI (87 mg, 0.456 mmol), and DMA (3 mL) were added and the mixture was stirred at room temperature under nitrogen for 15 h. The mixture was partitioned between CH₂Cl₂ and ice-cold 5% aq KHCO₃. The aqueous portion was extracted with cold CH_2Cl_2 (×4) and the combined extracts were washed with $H_2O(\times 3)$, brine (×2) and dried. Addition of Et₂O gave a precipitate of **34** (43 mg, 66%) as an orange powder: mp 260-265 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.71 (d, J = 1.7 Hz, 1 H), 9.26 (s, 1 H), 8.55 (d, J = 8.9 Hz, 1 H), 8.53 (d, J = 2.1 Hz, 1 H), 8.04 (dd, J = 9.3, 1.7 Hz, 1 H), 7.64 (s, 2 H), 7.42 (d, J = 8.9 Hz, 1 H), 7.19 (dd, J = 10.2, 1.7 Hz, 2 H), 6.95 (dd, J = 8.9, 2.4 Hz, 1 H), 4.98 (dd, J = 10.1, 9.6 Hz, 1 H), 4.72 (dd, J = 11.0, 2.4 Hz, 1 H), 4.71-4.63 (m, 1 H), 4.18 (dd, J = 11.5, 3.4 Hz, 1 H), 4.10 (dd, J = 11.4, 5.9 Hz, 1 H), 4.08 (t, J = 5.9 Hz, 2 H), 2.66 (t, J = 5.8 Hz, 2 H), 2.24 (s, 6 H). HRMS (FAB) calcd. for $C_{26}H_{26}^{35}ClN_5O_6S$ (MH⁺) m/z 572.1371, found 572.1362. Anal. $(C_{26}H_{26}ClN_5O_6S^{1/2}H_2O)C, H, N.$

Synthesis of 35.

2-Acetyl-7-bromonaphthalene (80). A solution of Ac₂O (340 mg, 3.35 mmol) in CH₂Cl₂ (2.5 mL) was added dropwise to a suspension of AlCl₃ (490 mg, 3.66 mmol, 99.99%) in CH₂Cl₂ (15 mL) at 0 °C. A solution of 7-bromo-2-(trimethylsilyl)naphthalene (**79**)⁵ (850 mg, 3.05 mmol) in CH₂Cl₂ (2.5 mL) was added dropwise. After 15 min, the mixture was poured into ice water and extracted with CH₂Cl₂ (×3). The combined organic extracts were washed with brine and dried. Filtration through Celite followed by chromatography eluting with petroleum ether/EtOAc (95:5 then 4:1) gave **80** (120 mg, 88%) as a colorless solid; ¹H NMR (CDCl₃) δ 8.36 (d, *J* = 0.9 Hz, 1 H), 8.13 (d, *J* = 1.7 Hz, 1 H), 8.04 (dd, *J* = 8.6, 1.7 Hz, 1 H), 7.87 (d, *J* = 8.6 Hz, 1 H), 7.75 (d, *J* = 8.7 Hz, 1 H), 7.67 (dd, *J* = 8.7, 1.9 Hz, 1 H), 2.72 (s, 3 H) (identical to that reported⁶).

Methyl 7-acetyl-2-naphthoate (81). A mixture of 80 (750 mg, 3.01 mmol), Pd(OAc)₂ (68 mg, 0.30 mmol), 1,3-bis(diphenylphosphino)propane (124 mg, 0.30 mmol), MeOH (10 mL), Et₃N (5 mL) and DMSO (5 mL) were placed in a Berghof reactor (HR-200) and purged with CO(g) for 5 min. The reactor was then pressurized with CO(g) (25 bar) and heated at 70 °C for 15 h. After cooling, EtOAc was added and the mixture was filtered through Celite/silica gel. Solvents were removed under reduced pressure, and CH₂Cl₂ and water were added. The mixture was extracted with CH₂Cl₂ (×3) and the combined organic extracts were washed with brine and dried. Filtration through silica gel, followed by chromatography eluting with petroleum ether/EtOAc (4:1 then 1:1 then 2:3) gave 81 (640 mg, 93%) as a white solid. A sample was recrystallized from petroleum ether/CH₂Cl₂: mp 103-105 °C; ¹H NMR (CDCl₃) δ 8.72 (s, 1 H), 8.55 (s, 1 H), 8.18 (dd, *J* = 8.6, 1.7 Hz, 1 H), 8.13 (dd, *J* = 8.6, 1.7 Hz, 1 H), 7.93 (d, *J* = 8.6 Hz, 1 H), 7.92 (d, *J* = 8.6 Hz, 1 H), 4.00 (s, 3 H), 2.74 (s, 3 H); ¹³C NMR δ 197.5, 166.7, 137.5, 135.2, 132.4, 131.8, 131.3, 128.5, 128.3, 128.1, 127.8, 126.2, 52.4, 26.6. Anal. (C₁₄H₁₂O₃) C, H.

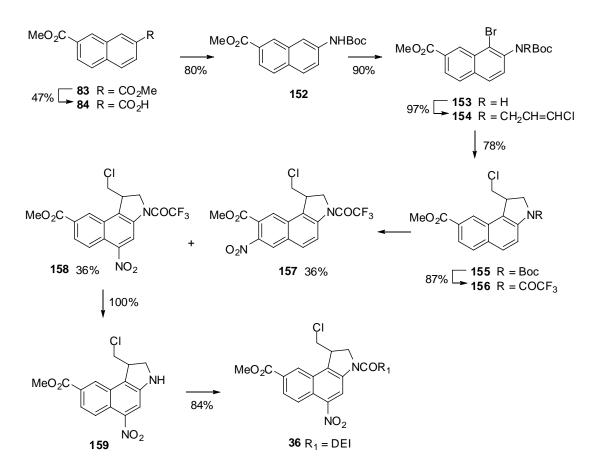
7-Acetyl-2-naphthoic acid (82). A solution of KOH (570 mg, 10 mmol) in water (3.5 mL) was added dropwise to a cooled solution of **81** (640 mg, 2.81 mmol) in MeOH (10 mL) and CH₂Cl₂ (10 mL) at 0 °C. After allowing the mixture to warm to room temperature and stirring for 96 h, excess CH_2Cl_2 and water were added. The aqueous portion was acidified (pH 2) with 2N HCl and the resulting white precipitate was extracted with EtOAc (×2). The combined EtOAc extracts were washed with

water, brine, and dried, to give **82** (575 mg, 96%) as a colorless solid. A sample was recrystallized from petroleum ether/CH₂Cl₂/Et₂O: mp 224-228 °C; ¹H NMR (CDCl₃) δ (CO₂H not observed) 8.82 (s, 1 H), 8.60 (s, 1 H), 8.23 (dd, *J* = 8.6, 1.6 Hz, 1 H), 8.18 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.97 (d, *J* = 8.7 Hz, 2 H), 2.76 (s, 3 H). Anal. (C₁₃H₁₀O₃) C, H.

tert-Butyl 7-acetyl-2-naphthylcarbamate (146). A solution of 82 (550 mg, 2.57 mmol), DPPA (850 mg, 3.08 mmol) and Et₃N (570 mg, 5.65 mmol) in *t*-BuOH (20 mL) was heated under reflux for 15 h. The mixture was poured into EtOAc and filtered through Celite. Chromatography on silica gel eluting with petroleum ether/CH₂Cl₂/EtOAc (8:1:1) gave 146 (451 mg, 62%) as a colorless solid: mp (EtOAc) 161-163 °C; ¹H NMR (CDCl₃) δ 8.38 (br s, 1 H), 8.16 (br s, 1 H), 7.91 (dd, *J* = 8.5, 1.7 Hz, 1 H), 7.80 (d, *J* = 8.6 Hz, 1 H), 7.78 (d, *J* = 8.8 Hz, 1 H), 7.43 (dd, *J* = 8.8, 2.2 Hz, 1 H), 6.68 (br s, 1 H), 2.70 (s, 3 H), 1.55 (s, 9 H); ¹³C NMR δ 198.2, 152.7, 136.7, 135.0, 133.2, 132.0, 129.7, 128.5, 128.0, 122.4, 121.6, 115.8, 81.0, 28.3, 26.6. Anal. (C₁₇H₁₉NO₃) C, H, N.

tert-Butyl 7-acetyl-1-bromo-2-naphthylcarbamate (147). A mixture of 146 (420 mg, 1.47 mmol), NBS (292 mg, 1.62 mmol) and K₂CO₃ (244 mg, 1.77 mmol) in MeCN (10 mL) was heated at 40 °C under N₂ for 30 min then concentrated under reduced pressure. EtOAc and water were added to the residue, and the EtOAc portion was washed with water, brine and dried to give 147 (530 mg, 99%) as a colorless solid: mp (petroleum ether/EtOAc) 114-117 °C; ¹H NMR (CDCl₃) δ 8.70 (s, 1 H), 8.50 (d, *J* = 9.0 Hz, 1 H), 7.97 (dd, *J* = 8.5, 1.6 Hz, 1 H), 7.84 (d, *J* = 8.8 Hz, 1 H), 7.81 (d, *J* = 9.6 Hz, 1 H), 7.34 (br s, 1 H), 2.76 (s, 3 H), 1.58 (s, 9 H); ¹³C NMR δ 197.9, 152.4, 136.0, 135.8, 133.0, 131.5, 128.7, 128.5, 128.0, 123.1, 122.0, 111.0, 81.6, 28.3, 26.7. Anal. (C₁₇H₁₈BrNO₃) C, H, N.

tert-Butyl 7-acetyl-1-bromo-2-naphthyl-(3-chloro-2-propen-1-yl)carbamate (148). NaH (7 mg, 0.17 mmol, 60% in oil) was added to a solution of 147 (50 mg, 0.14 mmol) in DMF (3 mL) at -40 °C. 1,3-Dichloropropene (25 mg, 0.21 mmol) was added and the mixture was allowed to warm to room temperature over 1 h, then concentrated under reduced pressure. CH_2Cl_2 and water were added and the organic layer was washed with water, brine and dried. Chromatography eluting with petroleum ether/EtOAc (4:1) gave 148 (55 mg, 92%) as a yellow oil; ¹H NMR (CDCl₃) (mixture of rotamers and E and Z forms) δ 8.94 (s, 1 H), 8.13-8.07 (m, 1 H), 7.94-7.79 (m, 2 H), 7.50-7.35 (m, 1 H), 6.15-6.02 (m, 2 H), 4.66-4.28, 4.02-3.91 (2 m, 2 H), 2.78 (s, 3 H), 1.34 (s, 9 H). HRMS (CI) calcd. for $C_{20}H_{21}^{79}Br^{35}CINO_3$ (MH⁺) m/z 438.0472, found 438.0460.


tert-Butyl 8-acetyl-1-(chloromethyl)-1,2-dihydro-3*H*-benzo[*e*]indole-3-carboxylate (149). A mixture of 148 (470 mg, 1.07 mmol), Bu₃SnH (380 mg, 1.29 mmol) and AIBN (18 mg, 0.11 mmol) in benzene (10 mL) was heated under reflux for 15 h, then concentrated under reduced pressure. EtOAc and water were added and the EtOAc portion was washed with water (×2), brine, and dried. Chromatography eluting with petroleum ether/EtOAc (4:1) followed by recrystallization (MeOH) gave 149 (320 mg, 82%) as colorless needles: mp 98-100 °C; ¹H NMR (CDCl₃) δ 8.34 (s, 1 H), 8.26 (br s, 1 H), 7.91-7.84 (m, 2 H), 7.81 (d, *J* = 8.9 Hz, 1 H), 4.36-4.28 (m, 1 H), 4.21-4.09 (m, 2 H), 3.97-3.90 (m, 1 H), 3.59-3.51 (m, 1 H), 2.72 (s, 3 H), 1.61 (s, 9 H); ¹³C NMR δ (one C not observed) 198.0, 142.4, 135.4, 132.2, 129.7, 129.5, 129.2, 123.6, 122.2, 119.1, 118.2, 68.2, 52.7, 46.5, 28.5, 26.9, 25.2. Anal. (C₂₀H₂₂CINO₃) C, H, N. **8-Acetyl-1-(chloromethyl)-3-(trifluoroacetyl)-1,2-dihydro-3***H***-benzo[***e***]indole (150). A solution of 149** (100 mg, 0.28 mmol) in HCl(g) saturated dioxane (10 mL) was stirred for 4 h. The solvent was removed under reduced pressure to give the crude amine hydrochloride (82 mg, 0.26 mmol, 100%). This was immediately dissolved in pyridine (5 mL), cooled (0 °C) and treated with TFAA (88 mg, 0.42 mmol). After 1 h, the mixture was poured into ice water and extracted with CH₂Cl₂ (×3). The combined organic extracts were washed with aqueous HCl (1N, ×3), water, brine, and dried. Chromatography eluting with petroleum ether/EtOAc (1:1) gave **150** (92 mg, 93%) as a colorless solid: mp (petroleum ether/Et₂O) 161-163 °C; ¹H NMR (CDCl₃) δ 8.55 (d, *J* = 9.0 Hz, 1 H), 8.41 (s, 1 H), 8.02-7.95 (m, 2 H), 7.92 (d, *J* = 9.0 Hz, 1 H), 4.68 (dt, *J* = 11.5, 1.4 Hz, 1 H), 4.47 (dd, *J* = 11.4, 8.6 Hz, 1 H), 4.34-4.26 (m, 1 H), 3.98 (dd, *J* = 11.5, 3.5 Hz, 1 H), 3.63 (dd, *J* = 11.5, 8.9 Hz, 1 H), 2.74 (s, 3 H); ¹³C NMR δ 197.7, 154.6 (q, *J*_{C-F} 37.8 Hz), 140.9, 135.8, 134.0, 130.2, 129.7, 128.6, 127.1, 124.0, 123.8, 119.5, 116.1 (q, *J*_{C-F} 288 Hz), 52.6 (q, *J*_{C-F} 4.1 Hz), 45.7, 42.7, 26.9. Anal. (C₁₇H₁₃ClF₃NO₂) C, H, N.

8-Acetyl-1-(chloromethyl)-5-nitro-3-(trifluoroacetyl)-1,2-dihydro-3*H*-benzo[*e*]indole (151). Solid 150 (57 mg, 0.16 mmol) was dissolved in cH₂SO₄ (5 mL) at 0 °C, then treated dropwise with a cold (0 °C) solution of KNO₃ (16 mg, 0.16 mmol) in cH₂SO₄ (0.5 mL). After 15 min, the mixture was poured into ice water and extracted with CH₂Cl₂ (×6). The combined organic extracts were washed with water (×2), brine, and dried. Chromatography eluting with petroleum ether/EtOAc (7:3) gave 151 (25 mg, 39%) as an orange powder: mp (petroleum ether/EtOAc) 196-198 °C; ¹H NMR (CDCl₃) δ 9.23 (s, 1H), 8.58 (d, *J* = 9.1 Hz, 1 H), 8.49 (d, *J* = 1.3 Hz, 1 H), 8.17 (dd, *J* = 9.1, 1.6 Hz, 1 H), 4.73 (d, *J* = 11.5 Hz, 1 H), 4.56 (dd, *J* = 11.4, 8.8 Hz, 1 H), 4.47-4.39 (m, 1 H), 3.98 (dd, *J* = 11.6, 3.6 Hz, 1 H), 3.77 (dd, *J* = 11.6, 7.8 Hz, 1 H), 2.78 (s, 3 H). Anal. (C₁₇H₁₂ClF₃N₂O₄) C, H, N.

8-Acetyl-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2dihydro-3H-benzo[e]indole (35). A solution of **151** (45 mg, 0.11 mmol) and Cs₂CO₃ (38 mg, 0.11 mmol) in MeOH (3 mL) and CH₂Cl₂ (6 mL) was stirred for 15 min. Water was added and the mixture was extracted with EtOAc (×3). The combined EtOAc extracts were washed with water (×2), brine (×3), dried, and evaporated. The residue was dissolved in HCl(g) saturated dioxane (5 mL) and stirred for 1 h. The dioxane was evaporated to give 8-acetyl-1-(chloromethyl)-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole hydrochloride (38 mg, 100%): mp >300 °C; ¹H NMR [(CD₃)₂SO] δ (two H not observed) 8.42 (d, *J* = 1.3 Hz, 1 H), 8.19 (d, *J* = 9.1 Hz, 1 H), 7.80 (dd, *J* = 9.1, 1.7 Hz, 1 H), 7.77 (s, 1 H), 4.41-4.33 (m, 1 H), 3.96 (dd, *J* = 11.0, 4.1 Hz, 1 H), 3.85 (t, *J* = 10.1 Hz, 1 H), 3.77 (dd, *J* = 11.0, 2.6 Hz, 1 H), 3.73 (dd, *J* = 10.3, 2.7 Hz, 1 H), 2.74 (s, 3 H); ¹³C NMR δ 197.9, 150.0, 147.1, 135.3, 130.0, 127.1, 124.3, 123.6, 121.6, 119.8, 111.0, 50.8, 46.6, 42.7, 26.8. This material was used directly in the next step.

A mixture of the amine hydrochloride (35 mg, 0.10 mmol), 5-[2-(dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (35 mg, 0.12 mmol) and EDCI (79 mg, 0.41 mmol) in DMA (3 mL) was stirred under a N₂ atmosphere for 15 h. The mixture was then partitioned between CH₂Cl₂ and cold (0 °C) 5% aq KHCO₃. The aqueous portion was extracted with cold CH₂Cl₂ (×4) and the combined extracts were washed with water (×3), brine (×2) and dried. The solvent was evaporated and the residue was dissolved in CH₂Cl₂/MeOH and solvents were evaporated until precipitation began. The precipitate was filtered off and washed with MeOH to give **35** (38 mg, 69%) as an orange powder: mp 210-215°C; ¹H NMR [(CD₃)₂SO] δ 11.71 (s, 1 H), 9.26 (s, 1 H), 8.73 (s, 1 H), 8.45 (d, *J* = 9.1 Hz, 1 H), 8.12 (dd, *J* = 9.1, 1.5 Hz, 1 H), 7.41 (d, *J* = 8.9 Hz, 1 H), 7.22 (d, *J* = 1.4 Hz, 1 H), 7.18 (d, *J* = 2.2 Hz, 1 H), 6.95 (dd, *J* = 8.9, 2.4 Hz, 1 H), 4.97 (t, *J* = 10.1 Hz, 1 H), 4.87-4.78 (m, 1 H), 4.74 (dd, *J* = 10.8, 2.0 Hz, 1 H), 4.22-4.12 (m, 2 H), 4.08 (t, *J* = 5.9 Hz, 2 H), 2.81 (s, 3 H), 2.66 (t, *J* = 5.8 Hz, 2 H), 2.25 (s, 6 H); ¹³C NMR δ 197.7, 160.5, 153.0, 146.3, 141.5, 135.6, 133.9, 131.9, 129.8, 129.0, 127.4, 125.7, 125.2, 123.9, 123.4, 116.4, 116.3, 113.2, 106.1, 103.2, 66.1, 57.6, 54.7, 48.1, 45.3, 41.2, 27.0. Anal. (C₂₈H₂₇ClN₄O₅·½H₂O) C, H, N.

Synthesis of 36.

7-(Methoxycarbonyl)-2-naphthoic acid (84). A solution of KOH (340 mg, 6.17 mmol) in MeOH (8 mL) and water (1 mL) was added dropwise to a solution of dimethyl 2,7-naphthalenedicarboxylate $(83)^7$ (1.52 g, 6.23 mmol) in MeOH (8 mL) and CH₂Cl₂ (8 mL). After 20 h, more CH₂Cl₂ and water were added, and the separated aqueous phase was acidified (pH 2) with 2N HCl. The resulting white precipitate was filtered off, washed with water, and dried in a vacuum desiccator. Chromatography eluting with CH₂Cl₂/MeOH (9:1 then 4:1) gave recovered **83** (0.50 g, 33%) and **84** (672 mg, 47%) as colorless crystals: mp (MeOH) 262-264 °C; ¹H NMR [(CD₃)₂SO] δ 13.0 (br s, 1 H), 8.802 (s, 1 H), 8.796 (s, 1 H), 8.17-8.05 (m, 4 H), 3.95 (s, 3 H); ¹³C NMR δ (one C not observed) 167.0, 166.0, 136.8, 131.8, 131.3, 129.2, 128.3, 128.1, 127.7, 127.6, 126.9, 52.3. Anal. (C₁₃H₁₀O₄) C, H.

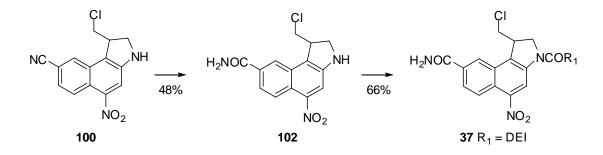
Methyl 7-[(*tert*-butoxycarbonyl)amino]-2-naphthoate (152). A solution of acid 84 (50 mg, 0.22 mmol), DPPA (72 mg, 0.26 mmol) and Et₃N (48 mg, 0.48 mmol) in *t*-BuOH (5 mL) was heated under reflux for 20 h. The solvents were removed under reduced pressure and the residue was purified by chromatography eluting with CH₂Cl₂/MeOH (49:1) followed by recrystallization (EtOAc/petroleum ether) to give 152 (52 mg, 80%) as colorless needles. A sample was recrystallized: mp (CH₂Cl₂/*n*-hexane) 181-183 °C; ¹H NMR (CDCl₃) δ 8.52 (br s, 1 H), 8.05 (br s, 1 H), 7.94 (dd, *J* = 8.5, 1.7 Hz, 1 H), 7.79 (d, *J* = 8.7 Hz, 2 H), 7.51 (dd, *J* = 8.8, 2.1 Hz, 1 H), 6.67 (br s, 1 H), 3.97 (s, 3 H), 1.56 (s, 9

H); ¹³C NMR δ 167.3, 152.7, 136.6, 133.1, 132.0, 130.4, 128.6, 127.9, 127.8, 123.8, 121.5, 115.6, 80.9, 52.2, 28.3. Anal. (C₁₇H₁₉NO₄) C, H, N.

Methyl 8-bromo-7-[(*tert*-butoxycarbonyl)amino]-2-naphthoate (153). A mixture of 152(50 mg, 0.17 mmol), NBS (33 mg, 0.18 mmol) and K₂CO₃ (28 mg, 0.20 mmol) in MeCN (3 mL) was heated at 60 °C under N₂ for 30 min. The solvent was removed under reduced pressure and the residue was purified by chromatography eluting with petroleum ether/EtOAc (9:1) followed by recrystallization (petroleum ether) to give 153 (57 mg, 90%) as colorless crystals: mp 137-140 °C; ¹H NMR (CDCl₃) δ 8.89 (d, *J* = 1.2 Hz, 1 H), 8.49 (d, *J* = 9.1 Hz, 1 H), 8.01 (dd, *J* = 8.6, 1.7 Hz, 1 H), 7.83 (d, *J* = 8.6 Hz, 1 H), 7.82 (d, *J* = 9.0 Hz, 1 H), 7.35 (br s, 1 H), 4.00 (s, 3 H), 1.57 (s, 9 H). Anal. (C₁₇H₁₈BrNO₄) C, H, N, Br.

Methyl 8-bromo-7-[(*tert*-butoxycarbonyl)(3-chloro-2-propen-1-yl)amino]-2-naphthoate (154). NaH (57 mg, 1.42 mmol, 60% in oil) was added to a solution of 153 (450 mg, 1.18 mmol) in DMF (5 mL) at 0 °C. 1,3-Dichloropropene (260 mg, 2.37 mmol) was added and the mixture was allowed to warm to room temperature over 1 h, then concentrated under reduced pressure. CH_2Cl_2 and water were added and the organic phase was washed with water (×2), brine (×2), dried, and filtered through silica gel to give 154 (520 mg, 97%) as a yellow oil; ¹H NMR (CDCl₃) (mixture of rotamers and E and Z forms) δ 9.07 (s, 1 H), 8.18-8.08 (m, 1 H), 7.93-7.78 (m, 2 H), 7.42-7.32 (m, 1 H), 6.15-5.98 (m, 2 H), 4.01 (s, 3 H), 4.63-4.48 (m, 2 H), 1.26, 1.24 (2s, 9 H). HRMS (FAB) calcd. for $C_{20}H_{21}^{79}Br^{35}CINO_4$ (MH⁺) m/z 454.0421, found 454.0421.

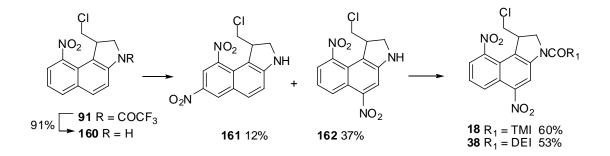
8-Methyl 3-(*tert*-butoxycarbonyl)-1-(chloromethyl)-1,2-dihydro-3*H*-benzo[*e*]indole-8carboxylate (155). A mixture of 154 (500 mg, 1.10 mmol), Bu₃SnH (350 mg, 1.21 mmol) and AIBN (19 mg, 0.11 mmol) in benzene (8 mL) was heated under reflux for 1.5 h. The benzene was removed under reduced pressure, the residue was triturated with pentane, and the solid obtained was recrystallized (MeOH) to give 155 (369 mg, 78%) as colorless needles: mp 143-145 °C; ¹H NMR (CDCl₃) δ 8.45 (s, 1 H), 8.31 (br s, 1 H), 7.93 (dd, J = 8.6, 1.5 Hz, 1 H), 7.87 (d, J = 8.6 Hz, 1 H), 7.82 (d, J = 8.9 Hz, 1 H), 4.36-4.27 (m, 1 H), 4.20-4.08 (m, 2 H), 4.00 (s, 3 H), 3.99-3.92 (m, 1 H), 3.57-3.48 (m, 1 H), 1.61 (s, 9 H); ¹³C NMR δ 167.1, 152.4, 142.0, 132.1, 129.6, 129.2, 129.0, 128.4, 124.9, 124.1, 123.2, 118.0, 81.4, 52.6, 52.3, 46.5, 41.6, 28.4. Anal. (C₂₀H₂₂ClNO₄) C, H, N, Cl.


Methyl 1-(chloromethyl)-3-(trifluoroacetyl)-1,2-dihydro-3*H*-benzo[*e*]indole-8carboxylate (156). A solution of 155 (200 mg, 0.53 mmol) in HCl(g) saturated dioxane (10 mL) was stirred for 4 h, then evaporated, to give the amine hydrochloride (169 mg, 100%). A cold (0 °C) solution of this (85 mg, 0.27 mmol) in pyridine (4 mL) was treated with TFAA (66 mg, 0.32 mmol). After 30 min at 0 °C, the mixture was poured into ice water and extracted with CH₂Cl₂ (×3). The combined organic extracts were washed with HCl (1N, ×2), water, brine, and dried. Chromatography eluting with petroleum ether/EtOAc/CH₂Cl₂ (7:2:1 then 8:1:1) followed by trituration with *n*-hexane gave **156** (88 mg, 87%) as colorless crystals: mp 161-163 °C; ¹H NMR (CDCl₃) δ 8.55 (d, *J* = 9.0 Hz, 1 H), 8.52 (s, 1 H), 8.07 (dd, *J* = 8.6, 1.5 Hz, 1 H), 7.95 (d, *J* = 8.6 Hz, 1 H), 7.92 (d, *J* = 9.0 Hz, 1 H), 4.68 (dt, *J* = 11.5, 1.4 Hz, 1 H), 4.45 (dd, *J* = 11.4, 8.6 Hz, 1 H), 4.32-4.27 (m, 1 H), 4.02 (s, 3 H), 4.00 (dd, *J* = 11.6, 3.3 Hz, 1 H), 3.62 (dd, *J* = 11.5, 9.2 Hz, 1 H); ¹³C NMR δ 166.7, 154.8 (q, *J*_{C-F} 37.4 Hz), 140.7, 134.0, 130.2, 129.4, 129.1, 128.4, 126.8, 125.4, 125.0, 119.4, 116.0 (q, *J*_{C-F} 288 Hz), 76.7, 52.6 (q, *J*_{C-F} 4.0 Hz), 45.7, 42.6. Anal. (C₁₇H₁₃ClF₃NO₃) C, H, N.

Methyl 1-(chloromethyl)-5-nitro-3-(trifluoroacetyl)-1,2-dihydro-3*H*-benzo[*e*]indole-8carboxylate (158). Cold (0 °C) cH₂SO₄ (8 mL) was added to cooled (0 °C) 156 (350 mg, 0.94 mmol). A cooled (0 °C) solution of KNO₃ (95 mg, 0.94 mmol) in 98% H₂SO₄ (0.5 mL) was then added dropwise. After 15 min, the mixture was poured into ice water and extracted with CH₂Cl₂ (×3). The combined CH₂Cl₂ extracts were washed with water (×2), brine and dried. Chromatography eluting with EtOAc/petroleum ether (4:1) gave methyl 1-(chloromethyl)-7-nitro-3-(trifluoroacetyl)-1,2-dihydro-3*H*benzo[*e*]indole-8-carboxylate (157) (136 mg, 36%) as a brown powder: mp (CH₂Cl₂/MeOH) 165-168 °C; ¹H NMR (CDCl₃) δ 8.69 (d, *J* = 9.0 Hz, 1 H), 8.53 (s, 1 H), 8.13 (s, 1 H), 8.07 (d, *J* = 9.0 Hz, 1 H), 4.69 (d, *J* = 11.5 Hz, 1 H), 4.52 (dd, *J* = 11.5, 8.6 Hz, 1 H), 4.32-4.25 (m, 1 H), 3.99 (s, 3 H), 3.95 (dd, *J* = 11.6, 3.5 Hz, 1 H), 3.66 (dd, *J* = 11.6, 8.5 Hz, 1 H); ¹³C NMR δ 165.9, 154.9 (q, *J*_{C-F} 38.4 Hz), 144.8, 143.8, 132.1, 131.0, 130.0, 126.7, 126.11, 126.05, 125.7, 120.7, 115.8 (q, *J*_{C-F} 288 Hz), 53.5, 52.8, 45.6, 42.3. Anal (C₁₇H₁₂ClF₃N₂O₅.¹/4EtOAc) C, H, N.

Further elution gave **158** (140 mg, 36%) as a cream powder. A sample was triturated with MeOH to give colorless crystals: mp 243-245 °C; ¹H NMR [(CD₃)₂SO] δ 9.09 (s, 1 H), 8.75 (d, *J* = 1.2 Hz, 1 H), 8.51 (d, *J* = 9.2 Hz, 1 H), 8.22 (dd, *J* = 9.1, 1.6 Hz, 1 H), 4.86-4.79 (m, 1 H), 4.68-4.61 (m, 1 H), 4.55-4.49 (m, 1 H), 4.19 (dd, *J* = 11.5, 3.5 Hz, 1 H), 4.08 (dd, *J* = 11.5, 5.5 Hz, 1 H), 3.97 (s, 3 H); ¹³C NMR δ 165.5, 150.3, 146.6, 139.3, 139.2, 134.8, 129.6, 128.7, 127.5, 126.3, 124.5, 123.0, 116.0, 52.8, 52.7, 47.6, 40.9. Anal. (C₁₇H₁₂ClF₃N₂O₅) C, H, N.

Methyl 1-(chloromethyl)-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole-8-carboxylate (159). A solution of 158 (100 mg, 0.24 mmol) and Cs₂CO₃ (312 mg, 0.96 mmol) in MeOH (10 mL) and CH₂Cl₂ (15 mL) was stirred for 1.5 h. Water was added and the mixture was extracted with CH₂Cl₂ (×3). The combined organic extracts were washed with water, brine and dried. The solvent was evaporated and the residue was dissolved in CH₂Cl₂/MeOH and solvents were evaporated under reduced pressure until precipitation began. The precipitate was filtered off and washed with MeOH to give 159 (76 mg, 100%): mp 161-163 °C; ¹H NMR [(CD₃)₂SO] δ 8.40 (dd, *J* = 1.6, 0.6 Hz, 1 H), 8.22 (dd, *J* = 9.1, 0.4 Hz, 1 H), 7.82 (dd, *J* = 9.1, 1.7 Hz, 1 H), 7.78 (s, 1 H), 6.49 (d, *J* = 1.6 Hz, 1 H), 4.35-4.28 (m, 1 H), 3.93 (s, 3 H), 3.89-3.82 (m, 2 H), 3.79-3.69 (m, 2 H). HRMS (CI) calcd. for C₁₅H₁₃³⁵CIN₂O₄ (M⁺) m/z 320.0534, found 320.0563.


Methyl 1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2dihydro-3*H*-benzo[*e*]indole-8-carboxylate (36). A solution of 159 (70 mg, 0.22 mmol) in HCl(g) saturated dioxane (5 mL) was stirred for 2 h. The dioxane was removed under reduced pressure to give the hydrochloride salt (78 mg, 100%). 5-[2-(Dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (75 mg, 0.26 mmol), EDCI (126 mg, 0.66 mmol), and DMA (5 mL) were added and the mixture was stirred under a N₂ atmosphere for 5 h. The mixture was partitioned between CH_2Cl_2 and ice-cold 5% aq KHCO₃. The aqueous portion was extracted with cold CH_2Cl_2 (×3) and the combined extracts were washed with water, brine and dried. The solvent was evaporated and the residue was dissolved in $CH_2Cl_2/MeOH$ and solvents were concentrated under reduced pressure until precipitation began. The precipitate was filtered off and washed with MeOH to give crude **36** (101 mg, 84%) as an orange powder: HRMS (FAB) calcd. for $C_{28}H_{27}^{35}ClN_4O_6$ (MH⁺) m/z 551.1697, found 551.1696. ¹H NMR analysis showed that this sample contained 8% of the corresponding exomethylene compound (methyl 3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-1-methylene-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole-8-carboxylate). The sample was purified by HPLC (Synergi MAX column, CH₃CN/H₂O/TFA, pH 2.5) to give **36**·TFA (38 mg, 99% purity by HPLC analysis) as an orange powder: mp >320 °C; ¹H NMR [(CD₃)₂SO] δ 11.80 (d, *J* = 1.8 Hz, 1 H), 9.63 (br s, 1 H), 9.26 (s, 1 H), 8.74 (d, *J* = 1.1 Hz, 1 H), 8.49 (d, *J* = 9.4 Hz, 1 H), 8.17 (dd, *J* = 9.1, 1.7 Hz, 1 H), 7.48 (d, *J* = 8.9 Hz, 1 H), 7.28 (d, *J* = 2.4 Hz, 1 H), 7.25 (d, *J* = 1.6 Hz, 1 H), 7.05 (dd, *J* = 8.9, 2.4 Hz, 1 H), 4.96 (dd, *J* = 10.6, 9.4 Hz, 1 H), 4.83-4.74 (m, 1 H), 4.70 (dd, *J* = 10.8, 2.3 Hz, 1 H), 4.35 (t, *J* = 4.8 Hz, 2 H), 4.14 (dd, *J* = 11.4, 3.4 Hz, 1 H), 4.05 (dd, *J* = 11.4, 5.8 Hz, 1 H), 3.98 (s, 3 H), 3.57 (br s, 2 H), 2.91 (br s, 6 H); ¹³C NMR δ 165.5, 160.5, 152.0, 146.3, 141.5, 133.5, 132.3, 130.1, 129.1, 128.9, 127.3, 126.5, 125.9, 124.3, 123.5, 116.6, 116.1, 113.3, 106.2, 104.0, 62.6, 55.6, 54.8, 52.6, 47.8, 42.8, 41.4.

1-(Chloromethyl)-5-nitro-1,2-dihydro-3H-benzo[*e*]indole-8-carboxamide (102). A solution of 100 HCl (81 mg, 0.25 mmol) in cH₂SO₄ (9 mL) and water (1 mL) was heated at 60 °C for 1 h, then poured into cold water. Conc. aq NH₃ was carefully added until the pH of the mixture was 3, followed by careful addition of solid KHCO₃ until the pH of the mixture was 8. The mixture was extracted with cold CH₂Cl₂ (×3), and the combined organic extracts were washed with water, brine, and dried. The solvent was evaporated and the residue was dissolved in CH₂Cl₂/MeOH. The solvents were concentrated until precipitation began. The precipitate was filtered off and washed with MeOH to give crude 102 (37 mg, 48%) as red crystals: mp >300 °C; ¹H NMR [(CD₃)₂SO] δ (two H not observed) 8.32 (d, *J* = 1.3 Hz, 1 H), 8.17 (d, *J* = 9.1 Hz, 1 H), 7.80 (dd, *J* = 9.1, 1.7 Hz, 1 H), 7.72 (s, 1 H), 7.53 (br s, 1 H), 4.26-4.18 (m, 1 H), 3.99 (dd, *J* = 10.9, 3.8 Hz, 1 H), 3.83 (t, *J* = 10.1 Hz, 1 H), 3.77-3.69 (m, 2 H). ¹H NMR also showed the presence of an unidentified impurity (ca. 10%) which was not removed by chromatography. HRMS (CI) calcd. for C₁₄H₁₂³⁵ClN₃O₃ (M⁺) m/z 305.0567, found 305.0564.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5-nitro-1,2-dihydro-3H-benzo[e]indole-8-carboxamide (37). A solution of 102 (30 mg, 0.098 mmol) in HCl(g) saturated dioxane (5 mL) was stirred for 1 h, then evaporated to give the amine hydrochloride (34 mg, 0.098 mmol, 100%). 5-[2-(Dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (34 mg, 0.098 mmol), EDCI (57 mg, 0.30 mmol), and DMA (4 mL) were added and the mixture was stirred under a N₂ atmosphere for 15 h. The mixture was partitioned between EtOAc and cold (0 °C) 5% aq KHCO₃. The aqueous portion was extracted with cold EtOAc (\times 3) and the combined extracts were washed with water, brine and dried. The solvent was evaporated and the residue was dissolved in CH₂Cl₂/MeOH, and solvents were concentrated until precipitation began. The precipitate was filtered off and washed with MeOH to give crude 37 (35 mg, 66%) as an orange powder: HRMS (FAB) calcd. for $C_{27}H_{26}^{35}ClN_5O_5$ (MH⁺) m/z 536.1701, found 536.1710. ¹H NMR analysis showed that this sample contained 13% of the corresponding exomethylene compound (3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl-1-methylene-5-nitro-1,2-dihydro-3*H*-benzo[*e*]indole-8-carboxamide). The sample was purified by HPLC (Synergi MAX column, CH₃CN/H₂O/TFA, pH 2.5) to give 37 TFA (38 mg) as an orange powder: mp >320 °C; ¹H NMR [(CD₃)₂SO] δ 11.71 (d, J = 1.7 Hz, 1 H), 9.60 (br s, 1 H), 9.21 (s, 1 H), 8.62 (d, J = 1.2 Hz, 1 H), 8.43 (d, J = 9.1 Hz, 1 H), 8.40 (s, 1 H), 8.14 (dd, J = 7.3, 1.7 Hz, 1 H), 7.70 (br s, 1 H), 7.47 (d, J = 8.9 Hz, 1 H), 7.27 (d, J = 2.4 Hz, 1 H), 7.23 (d, J = 1.7 Hz, 1 H), 7.04 (dd, J = 8.9, 2.4 Hz, 1 H), 4.97 (dd, J = 10.8, 9.5 Hz, 1 H), 4.72 (dd, J = 10.8, 2.2 Hz, 1 H), 4.68-4.61

(m, 1 H), 4.33 (t, J = 5.0 Hz, 2 H), 4.21 (dd, J = 11.3, 3.2 Hz, 1 H), 4.13 (dd, J = 11.1, 6.1 Hz, 1 H), 3.48 (br s, 2 H), 2.85 (s, 6 H); ¹³C NMR δ 166.9, 160.5, 152.1, 146.3, 141.1, 133.6, 133.2, 132.2, 130.2, 129.0, 127.3, 126.5, 123.6, 123.0, 122.8, 116.1, 115.8, 113.3, 106.0, 104.0, 63.0, 55.8, 54.7, 47.7, 43.0, 41.5. Anal. (C₂₇H₂₆ClN₅O₆·TFA·1½H₂O) C, H.

1-(Chloromethyl)-9-nitro-1,2-dihydro-3*H*-benzo[*e*]indole (160). A solution of 91 (1.54 g, 4.29 mmol) in dioxane (10 mL) was treated with a solution of Cs₂CO₃ (3.26 g, 10 mmol) in water (3 mL) and MeOH (7 mL) and the mixture was stirred at room temperature for 10 min. The mixture was treated with AcOH (1.2 mL), then concentrated under reduced pressure to a small volume and partitioned between water and CH₂Cl₂. The organic phase was washed with water (×2), dried, and filtered through a column of silica gel. The resulting oil was crystallized from EtOAc/petroleum ether to give 160 (1.03 g, 91%) as a red solid: mp 100 °C; ¹H NMR [(CD₃)₂SO] δ 8.07 (dd, *J* = 8.0, 1.1 Hz, 1 H), 7.94 (dd, *J* = 7.6, 1.3 Hz, 1 H), 7.87 (d, *J* = 8.7 Hz, 1 H), 7.21 (t, *J* = 7.8 Hz, 1 H), 7.13 (d, *J* = 8.7 Hz, 1 H), 6.63 (s, 1 H), 3.81-3.71 (m, 1 H), 3.71-3.62 (m, 1 H), 3.62-3.54 (m, 1 H), 3.33-3.25 (m, 2 H). Anal. (C₁₃H₁₁ClN₂O₂) C, H, N.

1-(Chloromethyl)-5,9-dinitro-1,2-dihydro-3*H***-benzo[***e***]indole (162). A stirred solution of 160** (900 mg, 3.43 mmol) in cH₂SO₄ (9 mL) was cooled to -5 °C and treated with powdered KNO₃ (520 mg, 5.14 mmol). The mixture was stirred at 0 °C for a further 15 min, then poured into ice-water and the solid was collected. Chromatography on silica gel, eluting with petroleum ether/EtOAc (3:1), followed by two recrystallizations from CH₂Cl₂/iPr₂O gave **162** (394 mg, 37%) as a red solid: mp 130-131 °C; ¹H NMR [(CD₃)₂SO] δ 8.21 (dd, *J* = 8.6, 1.1 Hz, 1 H), 8.10 (dd, *J* = 7.6, 1.1 Hz, 1 H), 7.75 (s, 1 H), 7.44 (dd, *J* = 8.6, 7.6 Hz, 1 H), 7.02 (s, 1 H), 3.89-3.81 (m, 1 H), 3.72-3.62 (m, 2 H), 3.41-3.35 (m, 2 H). Anal. (C₁₃H₁₀ClN₃O₄) C, H, N, Cl.

Further elution with petroleum ether/EtOAc (2:1) gave 1-(chloromethyl)-7,9-dinitro-1,2dihydro-3*H*-benzo[*e*]indole (**161**) (122 mg, 12%) as a red solid: mp (EtOAc/iPr₂O) 216-218 °C; ¹H NMR [(CD₃)₂SO] δ 9.00 (d, *J* = 2.4 Hz, 1 H), 8.65 (d, *J* = 2.5 Hz, 1 H), 8.19 (d, *J* = 8.9 Hz, 1 H), 7.74 (s, 1 H), 7.24 (d, *J* = 8.9 Hz, 1 H), 3.93 (dd, *J* = 10.8, 9.0 Hz, 1 H), 3.76-3.68 (m, 1 H), 3.67 (dd, *J* = 11.0, 2.4 Hz, 1 H), 3.38-3.24 (after D₂O exchange, m, 2 H). Anal. (C₁₃H₁₀ClN₃O₄) C, H, N, Cl.

1-(Chloromethyl)-5,9-dinitro-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3*H*benzo[*e*]indole (18). A suspension of 5,6,7-trimethoxyindole-2-carboxylic acid (122 mg, 0.49 mmol) in dry CH₂Cl₂ (10 mL) was treated with oxalyl chloride (0.13 mL, 1.49 mmol) followed by DMF (10 μ L). The mixture was stirred at room temperature for 15 min, then evaporated under reduced pressure and azeotroped dry with benzene. The resulting acid chloride was cooled to -5 °C and treated with an ice-cold solution of 162 (100 mg, 0.33 mmol) in dry pyridine (2 mL) containing DMAP (5 mg). The stirred mixture was warmed to room temperature for 30 min, then poured into dilute aqueous KHCO₃. The precipitate was collected, purified by chromatography on silica gel eluting with CH₂Cl₂/EtOAc (19:1), then crystallized from CH₂Cl₂/EtOAc to give **18** (106 mg, 60%) as a yellow solid: mp 270-271 ^oC; ¹H NMR [(CD₃)₂SO] δ 11.67 (d, *J* = 1.0 Hz, 1 H), 9.22 (s, 1 H), 8.53 (dd, *J* = 8.8, 0.9 Hz, 1 H), 8.34 (dd, *J* = 7.4, 0.9 Hz, 1 H), 7.84 (dd, *J* = 8.7, 7.6 Hz, 1 H), 7.17 (d, *J* = 2.1 Hz, 1 H), 6.99 (s, 1 H), 4.93 (dd, *J* = 10.9, 9.0 Hz, 1 H), 4.53 (dd, *J* = 11.0, 1.8 Hz, 1 H), 3.99-3.89 (m, 4 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.70 (dd, *J* = 11.5, 3.3 Hz, 1 H), 3.55 (dd, *J* = 11.5, 7.0 Hz, 1 H). HRMS (FAB) calcd. for C₂₅H₂₁³⁵ClN₄O₈ (M+) m/z 540.1048, found 540.1034. Anal. (C₂₅H₂₁ClN₄O₈) C, H, N.

1-(Chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-5,9-dinitro-1,2dihydro-3*H***-benzo[***e***]indole (38). A mixture of 162 (100 mg, 0.33 mmol), 5-[2-(dimethylamino)ethoxy]indole-2-carboxylic acid hydrochloride (111 mg, 0.39 mmol), EDCI (249 mg, 1.30 mmol) and anhydrous TsOH (40 mg, 0.23 mmol) in dry DMA (6 mL) was stirred at room temperature under N₂ for 6 h, then poured into dilute aq NH₃. The solid was collected, dissolved in CH₂Cl₂ at room temperature, dried, and concentrated under reduced pressure below 30 °C to a small volume and diluted with EtOAc/iPr2O to give 38**. Treatment of a solution of the free base in CH₂Cl₂ with HCl(g)/EtOAc/hexane, followed by crystallization from MeOH/Me₂CO/EtOAc, gave **38**·HCl (99 mg, 53%) as a yellow solid: mp 187-191 °C; ¹H NMR [(CD₃)₂SO] δ 11.87 (d, *J* = 1.6 Hz, 1 H), 10.01 (br s, 1 H), 9.28 (s, 1 H), 8.53 (dd, *J* = 8.8, 1.0 Hz, 1 H), 8.36 (dd, *J* = 7.5, 1.0 Hz, 1 H), 7.85 (dd, *J* = 8.7, 7.6 Hz, 1 H), 7.46 (d, *J* = 8.9 Hz, 1 H), 7.28 (d, *J* = 2.3 Hz, 1 H), 7.21 (d, *J* = 1.6 Hz, 1 H), 7.04 (dd, *J* = 8.9, 2.4 Hz, 1 H), 4.99 (dd, *J* = 10.8, 9.0 Hz, 1 H), 4.60 (dd, *J* = 10.9, 1.7 Hz, 1 H), 4.35 (t, *J* = 5.0 Hz, 2 H), 4.02-3.92 (m, 1 H), 3.70 (dd, *J* = 11.4, 3.3 Hz, 1 H), 3.58 (dd, *J* = 11.4, 7.2 Hz, 1 H), 3.52 (t, *J* = 4.8 Hz, 2 H), 2.87 (s, 6 H). Anal. (C₂₆H₂₄ClN₅O₆·HCl) C, H, N. Synthesis of anilines 41-44 and 47-52.

5-Amino-1-(chloromethyl)-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3*H***-benzo**[*e*]**indole-7-carbonitrile (41).** Compound **11** was hydrogenated as described in the general method (50 psi for 30 min) and the crude product purified by chromatography on silica gel, eluting with EtOAc/petroleum ether (1:1), to give **41** (60%) as a yellow solid: mp 280-285 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.42 (d, *J* = 1.6 Hz, 1 H), 8.67 (d, *J* = 1.3 Hz, 1 H), 7.88 (d, *J* = 8.7 Hz, 1 H), 7.72 (s, 1 H), 7.63 (dd, *J* = 8.7, 1.5 Hz, 1 H), 7.06 (d, *J* = 2.2 Hz, 1 H), 6.96 (s, 1 H), 6.41 (s, 2 H), 4.69 (dd, *J* = 10.9, 9.0 Hz, 1 H), 4.42 (dd, *J* = 11.0, 1.8 Hz, 1 H), 4.15-4.08 (m, 1 H), 3.97-3.92 (m, 1 H), 3.93 (s, 3 H), 3.82 (s, 3 H), 3.80 (s, 3 H), 3.76 (dd, *J* = 11.0, 7.7 Hz, 1 H). ¹H NMR and HPLC analysis showed the presence of an impurity (7%), presumably formed by over-reduction of the 7-CN substituent. HRMS (FAB) calcd. for C₂₆H₂₃³⁵ClN₄O₄ (MH⁺) m/z 490.1408, found 490.1400.

5-Amino-1-(chloromethyl)-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3*H***-benzo**[*e*]**indole-7-sulfonamide (42).** Compound **10** was hydrogenated as described in the general method (50 psi for 60 min) to give **42** (65%) as a yellow powder: mp 240-245 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.40 (s, 1 H), 8.55 (d, *J* = 1.6 Hz, 1 H), 7.92 (d, *J* = 8.9 Hz, 1 H), 7.80 (dd, *J* = 8.9, 1.7 Hz, 1 H), 7.73 (s, 1 H), 7.24 (s, 2 H), 7.06 (s, 1 H), 6.97 (s, 1 H), 6.21 (s, 2 H), 4.70 (dd, *J* = 10.9, 9.0 Hz, 1 H), 4.43 (dd, *J* = 11.0, 1.8 Hz, 1 H), 4.16-4.09 (m, 1 H), 3.98 (dd, *J* = 11.0, 3.1 Hz, 1 H), 3.94 (s, 3 H), 3.82 (s, 3 H), 3.80 (s, 3 H), 3.76 (dd, *J* = 11.0, 7.9 Hz, 1 H). Anal. (C₂₅H₂₅ClN₄O₆S) C, H, N.

5-Amino-1-(chloromethyl)-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2-dihydro-3*H***-benzo**[*e*]**indole-7-carboxamide (43).** Compound **15** was hydrogenated as described (50 psi for 45 min) to give **43** (71%) as a pale yellow-green solid: mp 260-265 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.39 (d, J = 1.4 Hz, 1 H), 8.65 (d, J = 0.9 Hz, 1 H), 7.91 (dd, J = 8.7, 1.4 Hz, 1 H), 7.84 (s, 1 H), 7.78 (d, J = 8.8 Hz, 1 H), 7.66 (s, 1 H), 7.33 (s, 1 H), 7.04 (d, J = 2.0 Hz, 1 H), 6.96 (s, 1 H), 6.10 (s, 2 H), 4.68 (dd, J = 10.9, 9.0 Hz, 1 H), 4.41 (dd, J = 11.0, 1.7 Hz, 1 H), 4.14-4.08 (m, 1 H), 3.97 (dd, J = 11.1, 3.2 Hz, 1 H), 3.94 (s, 3 H), 3.83 (s, 3 H), 3.80 (s, 3 H), 3.75 (dd, J = 11.0, 8.0 Hz, 1 H). Anal. (C₂₆H₂₅ClN₄O₅) C, H, N.

5-Amino-1-(chloromethyl)-8-(methylsulfonyl)-3-(5,6,7-trimethoxyindol-2-carbonyl)-1,2dihydro-3*H***-benzo**[*e*]**indole (44).** Compound **16** was hydrogenated as described in the general method (45 psi for 90 min) to give **44** (84%) as a yellow solid: mp (*i*Pr₂O/THF) 165-170 °C; ¹H NMR [(CD₃)₂SO] δ 11.41 (d, *J* = 2.0 Hz, 1 H), 8.33 (d, *J* = 8.9 Hz, 1 H), 8.26 (d, *J* = 1.8 Hz, 1 H), 7.81 (s, 1 H), 7.66 (dd, *J* = 8.9, 1.8 Hz, 1 H), 7.08 (d, *J* = 2.2 Hz, 1 H), 6.96 (s, 1 H), 6.26 (s, 2 H), 4.71 (dd, *J* = 10.9, 8.8 Hz, 1 H), 4.45 (dd, *J* = 11.0, 1.6 Hz, 1 H), 4.24-4.17 (m, 1 H), 4.00 (dd, *J* = 11.0, 3.3 Hz, 1 H), 3.95 (s, 3 H), 3.81 (s, 3 H), 3.74 (dd, *J* = 11.0, 7.9 Hz, 1 H), 3.32 (s, 3 H). Anal. (C₂₆H₂₆ClN₃O₆S·¹/₂H₂O) C, H, N.

5-Amino-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-7-(methylsulfonyl)-1,2-dihydro-3H-benzo[*e*]indole (46). Compound 26 (as the free base) was hydrogenated as described in the general method (45 psi for 60 min) to give 46 (81%) as a yellow solid: mp (*i*Pr₂O/THF) 280-285 °C; ¹H NMR [(CD₃)₂SO] δ 11.57 (s, 1 H), 8.70 (d, *J* = 1.6 Hz, 1 H), 7.97 (d, *J* = 8.9 Hz, 1 H), 7.85-7.79 (m, 2 H), 7.40 (d, *J* = 8.9 Hz, 1 H), 7.17 (d, *J* = 2.3 Hz, 1 H), 7.10 (d, *J* = 1.7 Hz, 1 H), 6.93 (dd, *J* = 8.9, 2.4 Hz, 1 H), 6.40 (s, 2 H), 4.77 (dd, *J* = 10.8, 9.0 Hz, 1 H), 4.54 (dd, J = 10.9, 1.8 Hz, 1 H), 4.24-4.16 (m, 1 H), 4.06 (t, J = 5.9 Hz, 2 H), 3.99 (dd, J = 11.0, 3.0 Hz, 1 H), 3.81 (dd, J = 11.0, 7.5 Hz, 1 H), 3.26 (s, 3 H), 2.65 (t, J = 5.9 Hz, 2 H), 2.24 (s, 6 H). Anal. (C₂₇H₂₉ClN₄O₄S) C, H, N, Cl.

5-Amino-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-1,2dihydro-3*H***-benzo**[*e*]**indole-7-carbonitrile (47).** Compound **27** (as the free base) was hydrogenated as described in the general method (50 psi for 60 min) to give **47** (48%) as a yellow solid: mp 250-255 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.57 (d, *J* = 1.5 Hz, 1 H), 8.67 (s, 1 H), 7.89 (d, *J* = 8.7 Hz, 1 H), 7.80 (s, 1 H), 7.64 (dd, *J* = 8.7, 1.5 Hz, 1 H), 7.39 (d, *J* = 8.9 Hz, 1 H), 7.17 (d, *J* = 2.3 Hz, 1 H), 7.09 (s, 1 H), 6.91 (dd, *J* = 8.9, 2.4 Hz, 1 H), 6.40 (s, 2 H), 4.75 (dd, *J* = 10.7, 9.1 Hz, 1 H), 4.52 (dd, *J* = 10.9, 1.8 Hz, 1 H), 4.20-4.14 (m, 1 H), 4.06 (t, *J* = 5.9 Hz, 2 H), 3.96 (dd, *J* = 11.0, 3.1 Hz, 1 H), 3.77 (dd, *J* = 11.0, 7.6 Hz, 1 H), 2.65 (t, *J* = 5.9 Hz, 2 H), 2.24 (s, 6 H). HRMS (FAB) calcd. for C₂₇H₂₇³⁵ClN₅O₂ (MH⁺) m/z 488.1853, found 488.1847.

5-Amino-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-1,2dihydro-3*H***-benzo**[*e*]**indole-7-sulfonamide (48).** Compound **28** (as the free base) was hydrogenated as described in the general method (50 psi for 60 min) to give **48** (43%) as a yellow solid: mp 260-266 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.56 (s, 1 H), 8.56 (d, *J* = 1.5 Hz, 1 H), 7.93 (d, *J* = 8.9 Hz, 1 H), 7.81 (s, 1 H), 7.80 (dd, *J* = 8.8, 1.7 Hz, 1 H), 7.40 (d, *J* = 8.9 Hz, 1 H), 7.24 (s, 2 H), 7.17 (d, *J* = 2.3 Hz, 1 H), 7.08 (s, 1 H), 6.91 (dd, *J* = 8.9, 2.4 Hz, 1 H), 6.22 (s, 2 H), 4.77 (dd, *J* = 10.8, 9.1 Hz, 1 H), 4.53 (dd, *J* = 10.9, 1.8 Hz, 1 H), 4.22-4.14 (m, 1 H), 4.06 (t, *J* = 5.9 Hz, 2 H), 3.99 (dd, *J* = 11.0, 3.0 Hz, 1 H), 3.80 (dd, *J* = 10.9, 7.7 Hz, 1 H), 2.65 (t, *J* = 5.8 Hz, 2 H), 2.24 (s, 6 H). HRMS (FAB) calcd. for C₂₆H₂₉³⁵ClN₅O₄S (MH⁺) m/z 542.1629, found 542.1625.

7-Acetyl-5-amino-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-1,2-dihydro-3H-benzo[*e***]indole (49). Compound 29 (as the free base) was hydrogenated as described in the general method (50 psi for 20 min). The crude product purified by chromatography on silica gel, eluting with EtOAc/MeOH (4:1), followed by trituration with EtOAc to give 49 (31%) as a yellow solid: mp 220-224 °C (dec.); ¹H NMR [(CD₃)₂SO] \delta 11.56 (s, 1 H), 8.78 (d,** *J* **= 1.2 Hz, 1 H), 7.88 (dd,** *J* **= 8.8, 1.5 Hz, 1 H), 7.78 (d,** *J* **= 8.8 Hz, 1 H), 7.75 (s, 1 H), 7.38 (d,** *J* **= 8.9 Hz, 1 H), 7.16 (d,** *J* **= 2.3 Hz, 1 H), 7.08 (d,** *J* **= 1.5 Hz, 1 H), 6.92 (dd,** *J* **= 8.9, 2.4 Hz, 1 H), 6.43 (s, 2 H), 4.75 (dd,** *J* **= 10.8, 9.0 Hz, 1 H), 4.51 (dd,** *J* **= 10.9, 1.9 Hz, 1 H), 4.19-4.13 (m, 1 H), 4.07 (t,** *J* **= 5.9 Hz, 2 H), 3.97 (dd,** *J* **= 10.9, 3.1 Hz, 1 H), 3.81-3.75 (m, 1 H), 2.68 (s, 3 H), 2.65 (t,** *J* **= 5.9 Hz, 2 H), 2.24 (s, 6 H). HRMS (FAB) calcd. for C₂₈H₃₀³⁵ClN₄O₃ (MH⁺) m/z 505.2006, found 505.1999.**

Methyl 5-amino-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-1,2dihydro-3*H***-benzo**[*e*]**indole-7-carboxylate (50).** Compound **30** (as the free base) was hydrogenated as described in the general method (50 psi for 45 min) to give **50** (82%) as a yellow solid: mp 225-230 °C; ¹H NMR [(CD₃)₂SO] δ 11.57 (d, *J* = 1.6 Hz, 1 H), 8.80 (d, *J* = 1.4 Hz, 1 H), 7.90 (dd, *J* = 8.8, 1.6 Hz, 1 H), 7.82 (d, *J* = 8.8 Hz, 1 H), 7.76 (s, 1 H), 7.40 (d, *J* = 8.9 Hz, 1 H), 7.17 (d, *J* = 2.4 Hz, 1 H), 7.08 (d, *J* = 1.5 Hz, 1 H), 6.91 (dd, *J* = 8.9, 2.4 Hz, 1 H), 6.34 (s, 2 H), 4.75 (dd, *J* = 10.8, 8.9 Hz, 1 H), 4.18-4.11 (m, 1 H), 4.06 (t, *J* = 5.9 Hz, 2 H), 3.98 (dd, *J* = 11.0, 3.1 Hz, 1 H), 3.90 (s, 3 H), 3.78 (dd, *J* = 11.0, 7.9 Hz, 1 H), 2.65 (t, *J* = 5.9 Hz, 2 H), 2.23 (s, 6 H). Anal. (C₂₈H₂₉ClN₄O₄) C, H, N.

5-Amino-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-1,2-

dihydro-3*H***-benzo**[*e*]**indole-7-carboxamide (51).** Compound **31** (as the free base) was hydrogenated as described in the general method (50 psi for 45 min) to give **51** (70%) as a green solid: mp 232-236 °C (dec.); ¹H NMR [(CD₃)₂SO] δ 11.55 (d, *J* = 1.6 Hz, 1 H), 8.66 (s, 1 H), 7.90 (dd, *J* = 8.7, 1.5 Hz, 1 H), 7.83 (br s, 1 H), 7.78 (d, *J* = 8.8 Hz, 1 H), 7.73 (s, 1 H), 7.39 (d, *J* = 8.9 Hz, 1 H), 7.32 (br s, 1 H), 7.17 (d, *J* = 2.3 Hz, 1 H), 7.07 (d, *J* = 1.4 Hz, 1 H), 6.91 (dd, *J* = 8.9, 2.4 Hz, 1 H), 6.11 (s, 2 H), 4.75 (dd, *J* = 10.8, 9.0 Hz, 1 H), 4.51 (dd, *J* = 10.9, 1.8 Hz, 1 H), 4.18-4.12 (m, 1 H), 4.06 (t, *J* = 5.9 Hz, 2 H), 3.98 (dd, *J* = 10.9, 3.1 Hz, 1 H), 3.78 (dd, *J* = 11.0, 7.9 Hz, 1 H), 2.65 (t, *J* = 5.9 Hz, 2 H), 2.24 (s, 6 H). Anal. (C₂₇H₂₈ClN₅O₃·½H₂O) C, H, N.

5-Amino-1-(chloromethyl)-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-8-(**methylsulfonyl)-1,2-dihydro-3H-benzo**[*e*]**indole** (**52**). Compound **32** (as the free base) was hydrogenated as described in the general method (50 psi for 60 min) to give **52** as a pale yellow solid: mp (*i*-Pr₂O/THF) 235-240 °C; ¹H NMR [(CD₃)₂SO] δ 11.56 (d, *J* = 1.6 Hz, 1 H), 8.33 (d, *J* = 8.9 Hz, 1 H), 8.26 (d, *J* = 1.8 Hz, 1 H), 7.88 (s, 1 H), 7.67 (dd, *J* = 8.9, 1.8 Hz, 1 H), 7.40 (d, *J* = 8.9 Hz, 1 H), 7.17 (d, *J* = 2.3 Hz, 1 H), 7.10 (d, *J* = 1.4 Hz, 1 H), 6.92 (dd, *J* = 8.9, 2.4 Hz, 1 H), 6.26 (s, 2 H), 4.76 (dd, *J* = 10.8, 8.9 Hz, 1 H), 4.55 (dd, *J* = 10.9, 1.6 Hz, 1 H), 4.28-4.21 (m, 1 H), 4.06 (t, *J* = 5.9 Hz, 2 H), 4.01 (dd, *J* = 11.0, 3.3 Hz, 1 H), 3.78 (dd, *J* = 11.1, 7.8 Hz, 1 H), 3.32 (s, 3 H), 2.65 (t, *J* = 5.9 Hz, 2 H), 2.23 (s, 6 H). Anal. (C₂₇H₂₉CIN₄O₄S·½H₂O) C, H, N.

No		F	ound			C	Calculated	
	С	Н	Ν	Other	С	Н	Ν	Other
7	55.60	4.02	10.44		55.51	3.91	10.36	
8	59.48	4.35	7.50		59.29	4.57	7.68	
9	55.76	4.17	10.29		55.51	3.91	10.36	
10	53.57	4.46	7.30		53.56	4.32	7.21	
11	59.94	3.83	10.71		59.94	4.06	10.76	
12	52.00	4.28	9.35		52.22	4.03	9.74	
13	60.35	4.47	7.52		60.28	4.50	7.81	
14	58.30	4.23	7.38		58.54	4.37	7.59	
15	58.07	4.36	9.89		57.94	4.30	10.40	
16	54.41	4.31	7.39		54.40	4.21	7.32	
17	52.54	4.42	9.16		52.39	4.40	9.05	
18	55.52	3.90	10.22		55.51	3.91	10.36	
20	51.87	4.74	11.69		51.92	4.69	11.65	
21	62.09	4.71	13.12		62.09	4.69	13.41	
22	54.39	4.60	12.12	6.37 (Cl)	54.59	4.58	12.24	6.20 (Cl)
23	61.80	5.10	10.49	6.65 (Cl)	61.86	5.09	10.47	6.65 (Cl)
24	60.30	4.86	12.91	6.67 (Cl)	60.50	4.89	13.07	6.61 (Cl)
25	54.26	4.54	11.92		54.37	4.39	12.19	
26	53.35	4.66	8.97		53.38	4.65	9.22	
27	57.57	4.39	12.24		57.56	4.65	12.43	
28	50.63	4.83	11.25		50.57	4.57	11.34	
29	60.88	5.17	10.16	5.75 (Cl)	60.82	5.24	10.13	6.40 (Cl)
30	56.23	4.75	9.31		56.38	4.90	9.40	
31	54.87	4.79	11.86		54.92	4.95	11.86	
32	53.05	4.51	9.27		53.38	4.65	9.22	
33	62.35	4.67	13.21		62.61	4.67	13.52	
34	53.61	4.67	11.75		53.75	4.68	12.05	
35	60.87	4.90	9.72		60.81	5.29	10.13	
37	51.65	3.90	10.03		51.79	4.42	10.41	
38	52.95	4.57	11.91		52.71	4.59	11.82	
40	57.59	4.81	7.59		57.40	4.82	7.73	
42	54.93	4.84	9.88		55.10	4.62	10.28	
43	61.26	5.04	10.80		61.36	4.95	11.01	
44	56.78	4.88	7.48		56.46	4.92	7.60	
46	59.91	5.60	10.22	6.33 (Cl)	59.93	5.40	10.36	6.55 (Cl)
50	64.31	5.70	10.46		64.55	5.61	10.75	

Combustion analyses for the new compounds of Tables 1 - 3

51	63.08	5.70	13.46	62.97	5.68	13.60	
52	58.93	5.61	10.00	58.96	5.50	10.19	

Combustion analyses for new intermediate compounds.

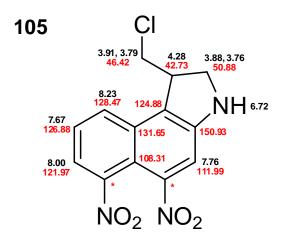
No]	Found			Са	alculated	
	C	Н	Ν	Other	С	Н	Ν	other
59	50.96	2.75	6.71		50.95	3.02	6.99	
EWG=6-COMe								
59	39.22	1.76	6.13		39.41	1.98	6.13	
EWG=6-SO ₂ Cl								
59	50.01	2.15	10.68		50.08	2.36	10.95	
EWG=6-CN								
59	48.23	3.28	9.98	8.48 (Cl)	47.84	2.76	10.46	8.83 (Cl)
EWG=6-CONH ₂								
64	62.32	5.49	4.92		62.26	5.23	4.84	
65	62.74	5.35	5.15		62.26	5.23	4.84	
66	66.25	4.39			66.03	4.62		
67	57.67	3.79			57.59	4.03		
69	52.28	3.53		12.45 (S)	52.19	3.58		12.66 (S)
70	66.34	4.40			66.03	4.62		
71	57.36	3.99			57.59	4.03		
72	56.80	2.39	5.91	34.32 (Br)	56.93	2.61	6.04	34.43 (Br)
75	39.45	1.94			39.11	1.98		
76	62.82	4.26	2.90		62.76	4.46	3.17	
77	69.94	5.24	3.22		70.09	5.20	3.14	
78	69.47	4.66	3.47		69.59	4.91	3.25	
81	73.96	5.27			73.67	5.30		
82	72.60	4.60			72.89	4.71		
84	67.50	3.99			67.82	4.38		
86	56.10	5.11	4.38	24.66 (Br)	55.92	5.01	4.35	24.80 (Br)
88	68.02	6.15	4.48		68.02	6.34	4.41	
89	57.40	3.65	4.44		57.43	3.53	4.46	
90	50.12	3.00	7.54		50.22	2.81	7.81	
91	50.44	2.94	7.76		50.22	2.81	7.81	
92	57.48	3.44	3.83		57.40	3.68	3.94	
93	57.13	3.54	3.79		57.40	3.68	3.94	
94	43.81	2.16	3.28	17.10 (Cl)	43.71	2.45	3.40	17.20 (Cl)
95	43.85	2.15	3.27	17.27 (Cl)	43.71	2.45	3.40	17.20 (Cl)
96	41.20	1.99	2.97		40.98	2.29	3.19	

97	55.73	2.76	8.07		55.75	3.02	8.13	
98	54.03	3.27	7.87	9.95 (Cl)	53.87	3.39	7.85	9.94 (Cl)
99	58.74	3.44	14.53	12.13 (Cl)	58.44	3.50	14.61	12.32 (Cl)
100	57.99	3.39	14.42		58.45	3.50	14.61	. ,
101	55.30	4.18	13.49		55.00	3.96	13.75	
104	59.59	4.17	10.47		59.44	4.22	10.66	
105	50.98	3.27	13.67		50.74	3.28	13.66	
107	59.72	4.25	10.76		59.44	4.22	10.67	
108	51.03	2.99	13.45	11.55 (Cl)	50.74	3.28	13.66	11.52 (Cl)
109	60.00	5.75	4.32		59.79	5.96	4.36	
110	48.05	4.32	3.67		48.01	4.53	3.50	
112	57.94	5.54	3.81		57.64	5.60	3.54	
113	49.63	3.56	8.14	10.45 (Cl)	49.34	3.84	8.22	10.40 (Cl)
115	71.47	5.93	10.16		71.62	6.01	10.44	
116	55.61	4.28	8.08	23.24 (Br)	55.35	4.36	8.07	23.01 (Br)
118	66.00	5.43	7.96		65.70	5.66	8.07	
119	39.63	1.74	6.16	15.96 (Cl)	39.41	1.98	6.13	15.51 (Cl)
120	45.95	3.80	12.15		45.69	3.54	12.30	
121	51.25	2.86	7.00		50.95	3.02	6.99	
123	68.04	6.38	4.64		67.76	6.36	4.65	
124	53.93	4.70	3.59	20.97 (Br)	53.70	4.77	3.68	21.01 (Br)
126	64.21	6.07	3.62		63.91	5.90	3.73	
128	56.37	3.83	8.67	10.98 (Cl)	56.18	4.09	8.73	11.05 (Cl)
129	59.49	6.08	4.27		59.79	5.96	4.36	
130	48.06	4.59	3.33		48.01	4.53	3.50	
132	59.23	6.01	3.34		59.11	6.54	3.13	
133	49.60	3.70	8.06		49.34	3.84	8.22	
134	71.38	6.05	10.34		71.62	6.01	10.44	
135	55.59	4.22	8.06	23.27 (Br)	55.35	4.36	8.07	23.01 (Br)
137	66.65	5.41	8.09		66.57	5.59	8.17	
138	69.47	6.13	5.55		69.30	6.02	5.57	
139	60.19	5.11	4.73		59.90	5.03	4.82	
141	66.81	5.86	4.95		66.60	5.76	4.85	
141	60.74	4.19	4.98		60.79	4.22	4.89	
143	44.92	3.16	6.76		44.84	3.26	6.97	
144	41.53	2.64	9.38		41.15	2.53	9.60	
145	41.16	2.64	9.26		41.15	2.53	9.60	
146	71.55	6.90	5.06		71.56	6.71	4.91	
147	56.37	5.15	3.98		56.06	4.98	3.85	

149	66.80	6.23	3.85		66.76	6.16	3.89	
150	57.61	3.65	3.91		57.40	3.68	3.94	
151	50.94	2.89	6.73		50.95	3.02	6.99	
152	68.03	6.37	4.57		67.76	6.36	4.65	
153	53.88	4.75	3.69	21.16 (Br)	53.70	4.77	3.69	21.01
155	64.18	6.01	3.61	9.20 (Cl)	63.91	5.90	3.73	9.43 (Cl)
156	54.98	3.73	3.67		54.93	3.52	3.77	
157	49.60	3.06	6.49		49.27	3.22	6.39	
158	49.26	2.73	6.59		49.00	2.90	6.73	
160	59.47	4.25	10.51		59.44	4.22	10.67	
161	50.86	3.20	13.39	11.83 (Cl)	50.74	3.28	13.66	11.52 (Cl)
162	50.67	3.56	13.86	11.62 (Cl)	50.74	3.28	13.66	11.52 (Cl)

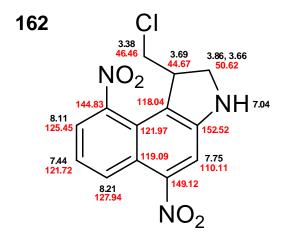
2D NMR Spectra of 105, 162, 161, 97, 59 (EWG = 6-COMe), 92, 119, 144

NMR data were collected on a Bruker Avance 400 spectrometer operating at frequencies of 400.13 MHz (¹H) and 100.62 MHz (¹³C) and equipped with a 5mm triple-resonance (¹H/¹³C/¹⁵N) inverse detection probe with a self-shielded z-gradient coil for 2D experiments (90° pulse width 7.6/15.8/40 μ s). A 5mm ¹H/¹³C dual probe (90° pulse width 12.0/7.56 μ s) was used to observe standard 1D spectra, which were obtained in (CD₃)₂SO at 300 K, and referenced to Me₄Si. Typical experimental parameters for one-dimensional ¹H/¹³C spectra were as follows: spectral width 17/240 ppm, data points 32K/64K, spectral resolution 0.21/0.40 Hz, number of scans 32/2000, acquisition time 2.42/1.25 s, relaxation delay 0.1/0.75 s, flip angle 30/50°.

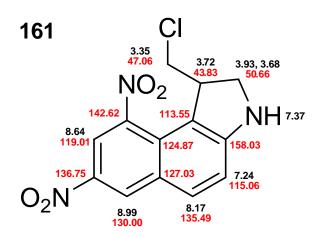

Assignments were determined using ¹H-¹H gs-COSY, ¹H-¹H ROESY, ¹H-¹³C gs-HSQC and gs-HMBC two-dimensional experiments using standard pulse sequences from the Bruker pulse library. The pulse conditions are as follows:

¹H-¹H gs-COSY: Spectral width of 10ppm was used in both dimensions and the acquisition data size was 2048 points. One transient was acquired per increment, with a 1.5 s relaxation delay, for a total of 256 experiments.

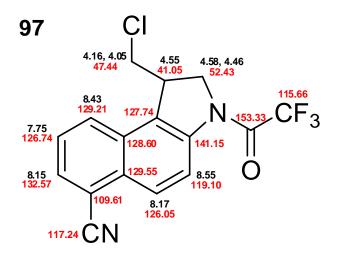
¹H-¹H ROESY: Spectral width of 10 ppm was used in both dimensions and the acquisition data size was 2048 points. Eight transients were acquired per increment, with a 2 s relaxation delay, for a total of 256 experiments. Mixing time was 250ms.

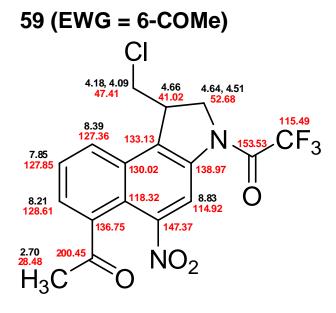

 1 H- 13 C gs-HSQC and gs-HMBC: Spectral width of 10 ppm in F₂ and 200 ppm (10-210 ppm) in F₁ was used and the HSQC/HMBC experiments optimized for C-H coupling of 140/8.3 Hz. Typically, acquisition data size was 2048 points and the number of increments for time evolution was 256. The number of scans per increment was 2/4 with 0.5/1 s delays between transients. Gradient ratios were 40:10 and 50:30:40% for the 1 H- 13 C gs-HSQC and gs-HMBC experiments respectively.

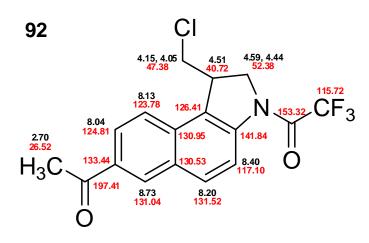
The following compounds were analysed by 2D NMR experiments (COSY, ROESY, HSQC, HMBC) in d₆-DMSO solution. The deduced assignments and key interactions are shown below:

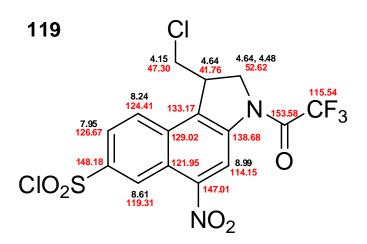


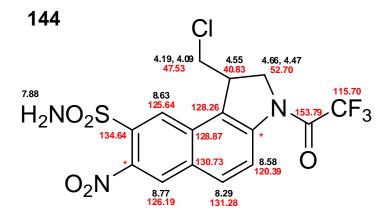
NOEs observed between: 6.72 and 7.76 8.23 and aliphatic protons, confirming 5,6-diNO₂ substitution pattern.


* Two signals at δ 145.92 and 145.84 could not be assigned.


NOE observed between: 7.75 and 7.04 but none from aromatic to aliphatic protons, <u>HMBC link from:</u> 7.75 to 149.12 8.21 to 149.12 confirming 5,9-diNO₂ substitution pattern.


<u>HMBC links:</u> consistent with 7,9-diNO₂ substitution pattern. (NOESY experiment not performed)


<u>NOE</u> observed between: 8.43 and aliphatic protons, confirming 6- and not 9-CN substitution pattern.


NOE observed between: 8.39 and aliphatic protons, confirming 6- and not 9-COMe, <u>HMBC link from:</u> 8.83 only to 147.37, 138.97, 118.32, and 133.13, confirms 5-NO₂ substitution pattern.

<u>NOE observed between:</u> 8.13 and aliphatic protons 8.73 and 8.20, confirms 7-COMe substitution.

NOE observed between: 8.24 and aliphatic protons, <u>HMBC link from:</u> 8.99 only to 147.01, 138.68, 133.17, and 121.95, confirms 5-NO₂, 7-SO₂CI substitution pattern.

<u>NOE observed between:</u> 8.63 and aliphatic protons 8.63 and 7.88 8.77 and 8.29, confirming 7,8-substitution pattern.

* Two signals at δ 143.58 and 143.53 could not be assigned.

X-ray Crystallographic Data for 133 and 105

Note: **133** is numbered as **60** (EWG = $8-SO_2Me$) in the accompanying paper.

133 was crystallized from CH_2Cl_2/i -Pr₂O followed by EtOAc and 105 was crystallized from benzene.

Intensity data ($\lambda_{Mo} = 0.71073$ Å) were collected on a Seimens SMART diffractometer. Absorption corrections were applied to the raw intensity data using the SADABS program.^{8,9} Structures were solved by direct methods using WINGX¹⁰ with SHELXS-97.⁹ Structures were refined using SHELXL-97.⁹ The crystal data and structural refinement details are given in the tables below. Figures were created using The Cambridge Crystallographic Database Mercury visualization software.¹¹

Crystal data and structure refinem	ent for 133.	
Empirical formula	C14 H13 Cl N2 O4 S	
Formula weight	340.77	
Temperature	203(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 8.428 Å	α= 90°.
	b = 14.8189(3) Å	$\beta = 97.472(1)^{\circ}$.
	c = 11.3830(2) Å	$\gamma = 90^{\circ}$.
Volume	1409.56(4) Å ³	
Z	4	
Density (calculated)	1.606 Mg/m ³	
Absorption coefficient	0.439 mm ⁻¹	
F(000)	704	
Crystal size	0.42 x 0.38 x 0.36 mm ³	
Theta range for data collection	2.27 to 25.40°.	
Index ranges	-7<=h<=10, -13<=k<=1	7, -13<=l<=13
Reflections collected	7607	
Independent reflections	2578 [R(int) = 0.0183]	
Completeness to theta = 25.40°	99.5 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.883036 and 0.818036	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	2578 / 0 / 200	
Goodness-of-fit on F^2	1.061	
Final R indices [I>2sigma(I)]	R1 = 0.0290, wR2 = 0.000)809
R indices (all data)	R1 = 0.0322, $wR2 = 0.0$	0825
Extinction coefficient	0.0076(14)	
Largest diff. peak and hole	0.476 and -0.516 e.Å ⁻³	

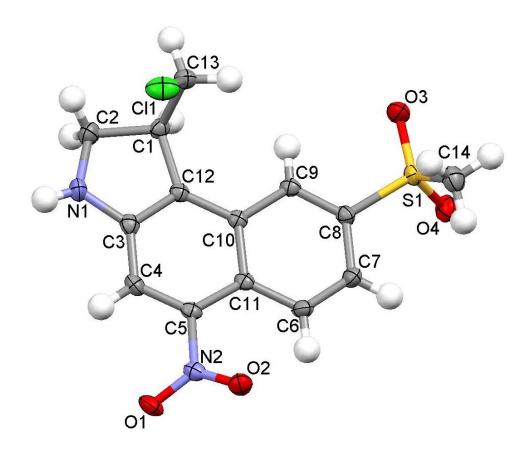
	X	У	Z	U(eq)
C(1)	1956(2)	-2019(1)	10906(1)	22(1)
C(2)	1100(2)	-2695(1)	11658(2)	29(1)
C(3)	-754(2)	-2201(1)	10118(1)	21(1)
C(4)	-2205(2)	-2053(1)	9387(1)	22(1)
C(5)	-2251(2)	-1389(1)	8550(1)	19(1)
C(6)	-998(2)	-85(1)	7586(2)	23(1)
C(7)	324(2)	422(1)	7477(2)	25(1)
C(8)	1788(2)	219(1)	8187(1)	21(1)
C(9)	1904(2)	-441(1)	9030(1)	19(1)
C(10)	535(2)	-980(1)	9174(1)	18(1)
C(11)	-934(2)	-812(1)	8405(1)	19(1)
C(12)	584(2)	-1679(1)	10015(1)	19(1)
C(13)	3333(2)	-2443(1)	10360(2)	25(1)
C(14)	3661(2)	529(1)	6412(2)	34(1)
S(1)	3501(1)	832(1)	7893(1)	23(1)
Cl(1)	2686(1)	-3415(1)	9469(1)	39(1)
O(1)	-5006(1)	-1529(1)	8089(1)	31(1)
O(2)	-3655(1)	-1150(1)	6676(1)	28(1)
O(3)	4890(2)	507(1)	8641(1)	35(1)
O(4)	3142(2)	1783(1)	7917(1)	32(1)
N(1)	-452(2)	-2876(1)	10943(1)	28(1)
N(2)	-3741(2)	-1340(1)	7723(1)	22(1)

Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 133. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

-	
$\overline{C(1)-C(13)}$ $C(1)-C(12)$ $C(1)-C(2)$ $C(1)-H(1)$ $C(2)-N(1)$ $C(2)-H(2)$ $C(2)-H(3)$ $C(3)-N(1)$ $C(3)-C(12)$ $C(3)-C(4)$ $C(4)-C(5)$ $C(4)-H(4)$ $C(5)-C(11)$ $C(5)-C(11)$ $C(5)-N(2)$ $C(6)-C(7)$ $C(6)-C(7)$ $C(6)-C(11)$ $C(6)-H(5)$ $C(7)-C(8)$ $C(7)-H(6)$ $C(8)-C(9)$ $C(8)-C(9)$ $C(8)-C(9)$ $C(8)-S(1)$ $C(9)-C(10)$ $C(9)-H(7)$ $C(10)-C(12)$ $C(10)-C(12)$ $C(10)-C(11)$ $C(13)-H(8)$ $C(13)-H(8)$ $C(13)-H(9)$ $C(14)-S(1)$ $C(14)-H(10)$ $C(14)-H(10)$ $C(14)-H(11)$ $C(14)-H(12)$ $S(1)-O(3)$ $S(1)-O(4)$ $O(1)-N(2)$ $O(2)-N(2)$	$\begin{array}{c} 1.521(2)\\ 1.521(2)\\ 1.555(2)\\ 0.9800\\ 1.472(2)\\ 0.9700\\ 0.9700\\ 0.9700\\ 1.372(2)\\ 1.384(2)\\ 1.405(2)\\ 1.367(2)\\ 0.9300\\ 1.427(2)\\ 1.367(2)\\ 0.9300\\ 1.427(2)\\ 1.363(2)\\ 1.421(2)\\ 0.9300\\ 1.416(2)\\ 0.9300\\ 1.416(2)\\ 0.9300\\ 1.46(2)\\ 1.7736(16)\\ 1.430(2)\\ 0.9300\\ 1.408(2)\\ 1.441(2)\\ 1.8048(18)\\ 0.9700\\ 0.9700\\ 0.9700\\ 1.7669(19)\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 1.4383(13)\\ 1.4417(13)\\ 1.2271(18)\\ 1.2360(19)\\ \end{array}$
$\begin{split} & \text{N}(1)\text{-H}(13) \\ & \text{C}(13)\text{-C}(1)\text{-C}(2) \\ & \text{C}(13)\text{-C}(1)\text{-C}(2) \\ & \text{C}(12)\text{-C}(1)\text{-C}(2) \\ & \text{C}(13)\text{-C}(1)\text{-H}(1) \\ & \text{C}(12)\text{-C}(1)\text{-H}(1) \\ & \text{C}(12)\text{-C}(1)\text{-H}(1) \\ & \text{N}(1)\text{-C}(2)\text{-C}(1) \\ & \text{N}(1)\text{-C}(2)\text{-H}(2) \\ & \text{C}(1)\text{-C}(2)\text{-H}(2) \\ & \text{C}(1)\text{-C}(2)\text{-H}(3) \\ & \text{C}(1)\text{-C}(2)\text{-H}(3) \\ & \text{C}(1)\text{-C}(2)\text{-H}(3) \\ & \text{C}(1)\text{-C}(2)\text{-H}(3) \\ & \text{H}(2)\text{-C}(2)\text{-H}(3) \\ & \text{H}(2)\text{-C}(2)\text{-H}(3) \\ & \text{H}(2)\text{-C}(2)\text{-H}(3) \\ & \text{N}(1)\text{-C}(3)\text{-C}(12) \\ & \text{N}(1)\text{-C}(3)\text{-C}(12) \\ & \text{N}(1)\text{-C}(3)\text{-C}(4) \\ & \text{C}(12)\text{-C}(3)\text{-C}(4) \\ & \text{C}(5)\text{-C}(4)\text{-H}(4) \\ & \text{C}(3)\text{-C}(4)\text{-H}(4) \\ & \text{C}(4)\text{-C}(5)\text{-C}(11) \\ & \text{C}(4)\text{-C}(5)\text{-N}(2) \\ \end{split}$	0.8600 114.77(13) 113.09(14) 102.31(13) 108.8 108.8 108.8 104.77(13) 110.8 110.8 110.8 110.8 110.8 110.8 110.8 112.59(14) 126.11(15) 121.21(15) 118.01(15) 121.0 124.02(15) 115.24(14)

Bond lengths [Å] and angles [°] for 133.

C(11)-C(5)-N(2)	120.59(14)
C(7)-C(6)-C(11)	121.02(15)
C(7)-C(6)-H(5)	119.5
C(11)-C(6)-H(5)	119.5
C(6)-C(7)-C(8)	119.57(15)
C(6)-C(7)-H(6)	120.2
C(8)-C(7)-H(6)	120.2
C(9)-C(8)-C(7)	122.00(15)
C(9)-C(8)-S(1)	120.94(13)
C(7)-C(8)-S(1)	117.01(12)
C(8)-C(9)-C(10)	119.72(15)
C(8)-C(9)-H(7)	120.1
C(10)-C(9)-H(7)	120.1
C(10) - C(10) - C(9)	120.1 122.40(14)
C(12)- $C(10)$ - $C(11)$	119.15(14)
C(9)-C(10)-C(11)	118.43(14)
C(6)-C(11)-C(5)	124.43(15)
C(6)-C(11)-C(10)	119.07(14)
C(5)-C(11)-C(10) C(2)-C(12)-C(10)	116.47(14)
C(3)-C(12)-C(10) C(2)-C(12)-C(1)	121.09(15)
C(3)-C(12)-C(1)	108.38(14)
C(10)-C(12)-C(1)	130.51(14)
C(1)-C(13)-Cl(1)	111.62(11)
C(1)-C(13)-H(8)	109.3
Cl(1)-C(13)-H(8)	109.3
C(1)-C(13)-H(9)	109.3
Cl(1)-C(13)-H(9)	109.3
H(8)-C(13)-H(9)	108.0
S(1)-C(14)-H(10)	109.5
S(1)-C(14)-H(11)	109.5
H(10)-C(14)-H(11)	109.5
S(1)-C(14)-H(12)	109.5
H(10)-C(14)-H(12)	109.5
H(11)-C(14)-H(12)	109.5
O(3)-S(1)-O(4)	118.24(8)
O(3)-S(1)-C(14)	108.80(9)
O(4)-S(1)-C(14)	107.98(9)
O(3)-S(1)-C(8)	109.66(8)
O(4)-S(1)-C(8)	108.59(8)
C(14)-S(1)-C(8)	102.40(8)
C(3)-N(1)-C(2)	108.57(13)
C(3)-N(1)-H(13)	125.7
C(2)-N(1)-H(13)	125.7
O(1)-N(2)-O(2)	122.82(14)
O(1)-N(2)-C(5)	118.63(14)
O(2)-N(2)-C(5)	118.46(13)
	× /


- F						
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	23(1)	23(1)	18(1)	2(1)	1(1)	-1(1)
C(2)	29(1)	35(1)	22(1)	7(1)	3(1)	-1(1)
C(3)	23(1)	22(1)	21(1)	0(1)	7(1)	1(1)
C(4)	18(1)	24(1)	25(1)	-2(1)	7(1)	-3(1)
C(5)	16(1)	22(1)	20(1)	-5(1)	3(1)	1(1)
C(6)	18(1)	24(1)	26(1)	3(1)	-2(1)	2(1)
C(7)	24(1)	22(1)	28(1)	7(1)	0(1)	1(1)
C(8)	18(1)	19(1)	26(1)	0(1)	2(1)	-3(1)
C(9)	18(1)	19(1)	21(1)	-2(1)	1(1)	0(1)
C(10)	18(1)	18(1)	17(1)	-3(1)	3(1)	1(1)
C(11)	17(1)	18(1)	20(1)	-3(1)	4(1)	2(1)
C(12)	19(1)	21(1)	18(1)	-2(1)	4(1)	1(1)
C(13)	21(1)	27(1)	27(1)	3(1)	0(1)	1(1)
C(14)	32(1)	37(1)	34(1)	2(1)	11(1)	-2(1)
S(1)	20(1)	21(1)	28(1)	4(1)	2(1)	-5(1)
Cl(1)	35(1)	39(1)	40(1)	-13(1)	-2(1)	10(1)
O(1)	16(1)	42(1)	38(1)	-1(1)	6(1)	-2(1)
O(2)	26(1)	35(1)	23(1)	1(1)	-2(1)	-3(1)
O(3)	22(1)	36(1)	44(1)	11(1)	-5(1)	-7(1)
O(4)	36(1)	21(1)	39(1)	3(1)	7(1)	-5(1)
N(1)	24(1)	31(1)	31(1)	12(1)	5(1)	-5(1)
N(2)	17(1)	21(1)	28(1)	-3(1)	2(1)	-1(1)

Anisotropic displacement parameters (Å²x 10³)for 133. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for 133.

	Х	У	Z	U(eq)
	2371	-1515	11413	26
H(1) H(2)	1716	-3247	11796	20 35
H(3)	949	-2432	12416	35
H(4)	-3107	-2396	9469	26
H(5)	-1958	47	7118	28
H(6)	265	898	6941	30
H(7)	2868	-540	9510	23
H(8)	4165	-2623	10986	30
H(9)	3783	-1999	9871	30
H(10)	2738	742	5905	50
H(11)	3726	-116	6352	50
H(12)	4607	796	6175	50
H(13)	-1066	-3328	11027	34

Structure of 133 showing 50% probability displacement ellipsoids for non-hydrogen atoms and hydrogen atoms as arbitrary spheres.

Crystal data and structure refinement for 105.

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	C13 H10 Cl N3 O4 307.69 87(2) K 0.71073 Å Monoclinic C2/c a = 16.7427(4) Å b = 8.8730(2) Å c = 17.28940(10) Å	$\alpha = 90^{\circ}.$ $\beta = 93.8820(10)^{\circ}.$ $\gamma = 90^{\circ}.$
Volume Z	2562.59(9) Å ³ 8	
Density (calculated)	1.595 Mg/m ³	
Absorption coefficient F(000)	0.319 mm ⁻¹ 1264	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 26.38° Absorption correction Max. and min. transmission	0.36 x 0.22 x 0.1 mm ³ 2.36 to 26.38°. -20<=h<=14, -10<=k<= 7407 2602 [R(int) = 0.0416] 99.5 % Semi-empirical from eq 0.9488 and 0.6825	uivalents
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole	Full-matrix least-square 2602 / 0 / 194 1.070 R1 = 0.0416, wR2 = 0.0 R1 = 0.0569, wR2 = 0.1 0.349 and -0.401 e.Å ⁻³)988

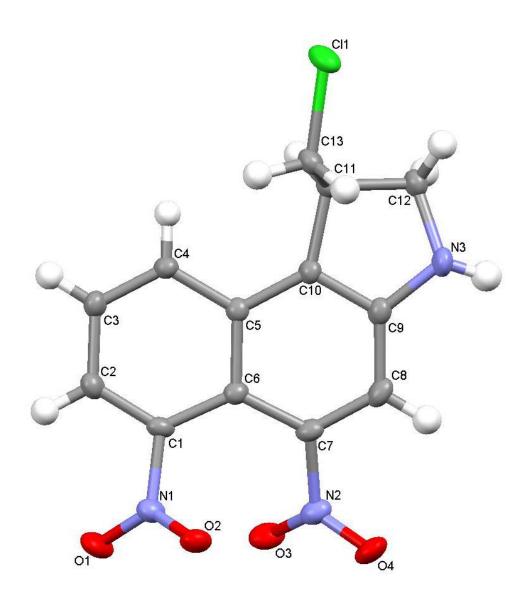
Atomic coordinates ($x\;10^4)$ and equivalent isotropic displacement parameters (Å $^2x\;10^3)$

for 105. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
Cl(1)	9577(1)	6950(1)	3379(1)	31(1)
O(2)	9224(1)	123(2)	6898(1)	25(1)
O(4)	9144(1)	-2062(2)	5373(1)	31(1)
O(3)	8078(1)	-1238(2)	5892(1)	30(1)
O(1)	8123(1)	556(2)	7455(1)	34(1)
N(3)	9302(1)	2062(2)	3302(1)	25(1)
N(2)	8677(1)	-1052(2)	5518(1)	25(1)
N(1)	8578(1)	779(2)	6940(1)	23(1)
C(5)	8516(1)	3138(2)	5117(1)	17(1)
C(1)	8367(1)	1950(2)	6360(1)	19(1)
C(6)	8562(1)	1784(2)	5575(1)	18(1)
C(7)	8805(1)	458(2)	5189(1)	20(1)
C(11)	8798(1)	4362(2)	3767(1)	19(1)
C(4)	8222(1)	4488(2)	5440(1)	18(1)
C(2)	8079(1)	3256(2)	6656(1)	21(1)
C(3)	7991(1)	4544(2)	6183(1)	21(1)
C(10)	8756(1)	3095(2)	4353(1)	18(1)
C(8)	9069(1)	444(2)	4453(1)	23(1)
C(9)	9057(1)	1803(2)	4036(1)	20(1)
C(12)	8926(1)	3473(2)	3016(1)	23(1)
C(13)	9516(1)	5355(2)	4013(1)	22(1)

Cl(1)-C(13)	1.797(2)
O(2)-N(1)	1.234(2)
O(4)-N(2)	1.227(2)
O(3)-N(2)	1.240(2)
O(1)-N(1)	1.227(2)
N(3)-C(9)	1.380(3)
N(3)-C(12)	1.471(3)
N(3)-HN1	0.83(3)
N(2)-C(7)	1.477(3)
N(1)-C(1)	1.471(3)
C(5)-C(10)	1.407(3)
C(5)-C(4)	1.424(3)
C(5)-C(6)	1.438(3)
C(1)-C(2)	1.369(3)
C(1)-C(2) C(1)-C(6)	1.425(3)
C(6)-C(7)	1.425(3)
C(0)-C(7) C(7)-C(8)	1.374(3)
C(11)-C(10)	1.518(3)
C(11)-C(13)	1.527(3)
C(11)-C(12)	1.547(3)
C(11)-H(11)	0.9800
C(4)-C(3)	1.367(3)
C(4)-H(4)	0.9300
C(2)-C(3)	1.407(3)
C(2)-H(2)	0.9300
C(3)-H(3)	0.9300
C(10)-C(9)	1.381(3)
C(8)-C(9)	1.405(3)
C(8)-H(8)	0.9300
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
C(9)-N(3)-C(12)	107.68(17)
C(9)-N(3)-HN1	119.8(18)
C(12)-N(3)-HN1	119.3(17)
O(4)-N(2)-O(3)	123.99(18)
O(4)-N(2)-C(7)	118.20(18)
O(3)-N(2)-C(7)	117.71(17)
O(1)-N(1)-O(2)	123.78(17)
O(1)-N(1)-C(1)	118.48(17)
O(2)-N(1)-C(1)	117.66(16)
C(10)-C(5)-C(4)	121.31(18)
C(10)-C(5)-C(6)	119.10(17)
C(4)-C(5)-C(6)	119.59(17)
C(2)-C(1)-C(6)	123.65(18)
C(2)-C(1)-N(1)	114.65(17)
C(6)-C(1)-N(1)	121.11(18)
C(7)-C(6)-C(1)	128.45(18)
C(7)-C(6)-C(5)	116.03(17)
C(1)-C(6)-C(5)	115.52(17)
C(8)-C(7)-C(6)	124.05(18)
C(8)-C(7)-N(2)	114.36(18)
C(6)-C(7)-N(2)	121.02(18)
C(10)-C(11)-C(13)	108.25(16)
C(10)-C(11)-C(12)	101.41(16)
C(10)-C(11)-C(12) C(13)-C(11)-C(12)	112.14(17)
(13) ((11) - 0(12))	112.17(17)

Bond lengths [Å] and angles [°] for 105.


C(10)-C(11)-H(11) C(13)-C(11)-H(11) C(12)-C(11)-H(11) C(3)-C(4)-C(5) C(3)-C(4)-H(4) C(5)-C(4)-H(4) C(1)-C(2)-C(3) C(1)-C(2)-H(2) C(3)-C(2)-H(2) C(4)-C(3)-H(2) C(4)-C(3)-H(3) C(2)-C(3)-H(3) C(9)-C(10)-C(11) C(5)-C(10)-C(11) C(7)-C(8)-C(9) C(7)-C(8)-H(8) C(9)-C(8)-H(8) N(3)-C(9)-C(10) N(3)-C(9)-C(8) C(10)-C(8)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(9)-C(8) C(10)-C(10)-C(10)-C(10) C(10)-C(10)-C(10)-C(10) C(10)-C(10	$ \begin{array}{c} 111.5\\ 111.5\\ 111.5\\ 111.5\\ 121.81(18)\\ 119.1\\ 119.1\\ 119.70(18)\\ 120.1\\ 120.1\\ 120.1\\ 120.3\\ 120.3\\ 122.01(18)\\ 108.36(17)\\ 129.49(18)\\ 118.30(19)\\ 120.9\\ 120.9\\ 120.9\\ 111.48(18)\\ 128.42(19)\\ 120.08(18) \end{array} $
C(4)-C(3)-H(3)	120.3
C(2)-C(3)-H(3)	120.3
C(9)-C(10)-C(5)	122.01(18)
C(10)-C(9)-C(8)	120.08(18)
N(3)-C(12)-C(11)	103.44(16)
N(3)-C(12)-H(12A)	111.1
C(11)-C(12)-H(12A)	111.1
N(3)-C(12)-H(12B)	111.1
C(11)-C(12)-H(12B)	111.1
H(12A)-C(12)-H(12B)	109.0
C(11)-C(13)-Cl(1)	111.14(14)
C(11)-C(13)-H(13A)	109.4
Cl(1)-C(13)-H(13A)	109.4
C(11)-C(13)-H(13B)	109.4
Cl(1)-C(13)-H(13B)	109.4
H(13A)-C(13)-H(13B)	108.0

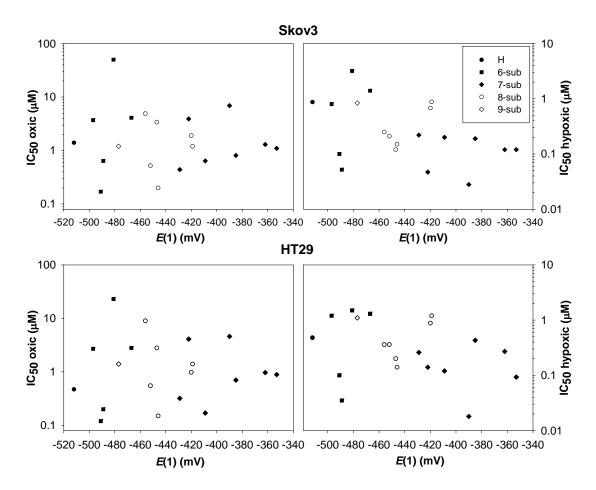
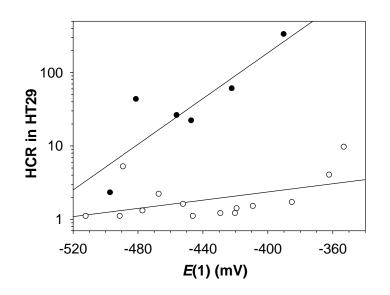
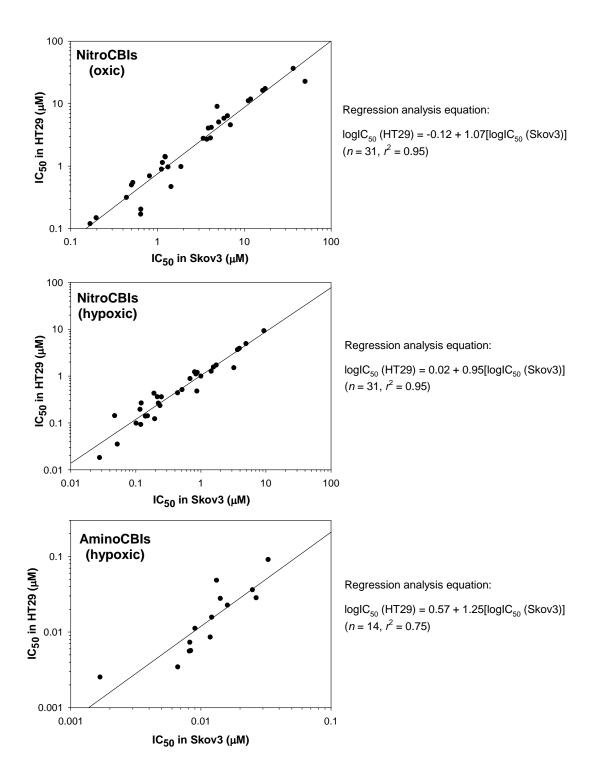
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	41(1)	30(1)	22(1)	5(1)	4(1)	-12(1)
O(2)	21(1)	25(1)	29(1)	8(1)	1(1)	4(1)
O(4)	34(1)	17(1)	40(1)	-1(1)	-1(1)	6(1)
O(3)	25(1)	23(1)	43(1)	7(1)	2(1)	-4(1)
O(1)	33(1)	39(1)	32(1)	16(1)	16(1)	5(1)
N(3)	31(1)	24(1)	20(1)	-7(1)	4(1)	2(1)
N(2)	24(1)	18(1)	31(1)	0(1)	-4(1)	-1(1)
N(1)	23(1)	23(1)	24(1)	6(1)	4(1)	0(1)
C(5)	14(1)	18(1)	19(1)	-1(1)	0(1)	-2(1)
C(1)	16(1)	20(1)	21(1)	7(1)	1(1)	0(1)
C(6)	14(1)	17(1)	22(1)	1(1)	1(1)	-1(1)
C(7)	19(1)	15(1)	26(1)	1(1)	-2(1)	-2(1)
C(11)	21(1)	20(1)	17(1)	0(1)	4(1)	0(1)
C(4)	20(1)	16(1)	19(1)	1(1)	1(1)	-1(1)
C(2)	19(1)	26(1)	19(1)	1(1)	4(1)	1(1)
C(3)	19(1)	22(1)	22(1)	-2(1)	4(1)	2(1)
C(10)	17(1)	18(1)	18(1)	-2(1)	0(1)	-2(1)
C(8)	20(1)	18(1)	29(1)	-7(1)	-1(1)	0(1)
C(9)	17(1)	22(1)	21(1)	-5(1)	-1(1)	0(1)
C(12)	26(1)	25(1)	17(1)	-2(1)	2(1)	-1(1)
C(13)	26(1)	24(1)	17(1)	1(1)	3(1)	-3(1)

Anisotropic displacement parameters (Å²x 10³) for 105. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Hydrogen coordinates (x 10⁴) and isotropic displacement parameters ($Å^2x$ 10³) for 105.

	Х	У	Z	U(eq)
 II(11)	8200	4046	2721	22
H(11) H(4)	8300 8185	4946 5355	3721 5138	23 22
H(2)	7941	3292	7168	25
H(3)	7778	5426	6375	25
H(8)	9250	-442	4237	27
H(12A)	8420	3276	2726	27
H(12B)	9274	4017	2687	27
H(13A)	10004	4766	4004	27
H(13B)	9469	5704	4539	27
HN1	9341(15)	1350(30)	2998(15)	30(7)

Structure of 105 showing 50% probability displacement ellipsoids for non-hydrogen atoms and hydrogen atoms as arbitrary spheres.

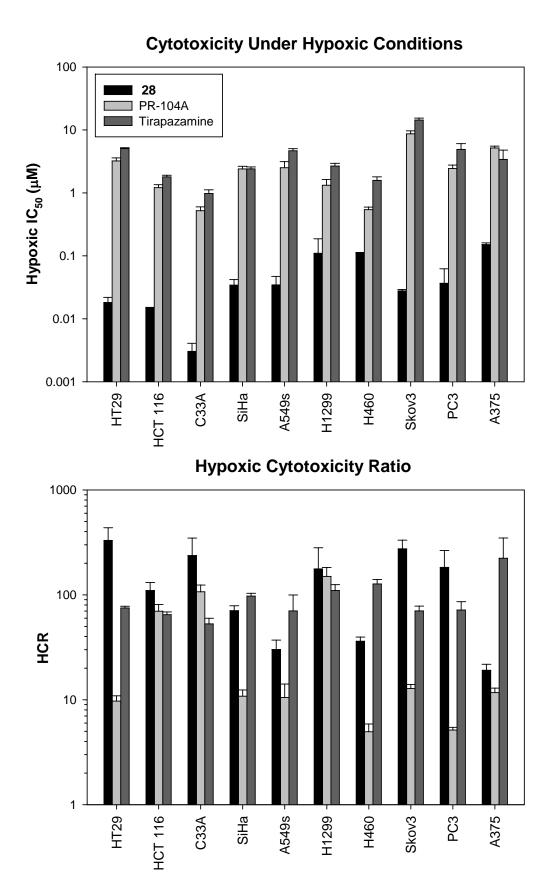
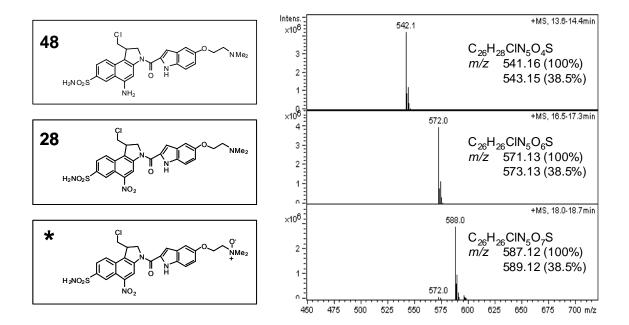

Figure S1. Relationship between one-electron reduction potential [E(1)] and cytotoxicity (IC₅₀) for the nitroCBIs of Table 2.

Figure S2. Relationship between hypoxic cytotoxicity ratio (HCR) in HT29 and one-electron reduction potential [E(1)] for the compounds of Table 2. The A-ring substituents are divided into two groups: (•) 6,7,8-SO₂NH₂ and 6,7,8-CONH₂ (linear regression gives $r^2 = 0.75$), and (\circ) all other substituents (linear regression $r^2 = 0.22$).


Figure S3. Correlation between cytotoxicity in HT29 and Skov3. Correlations are shown for the nitroCBIs of Tables 1 and 2 under oxic and hypoxic conditions, and for the aminoCBIs of Table 3 under hypoxic conditions.

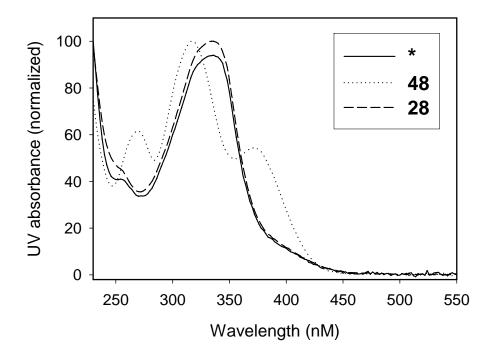


Figure S4. Comparison of hypoxic cytotoxicity and hypoxic selectivity of 28, PR-104A (3), and tirapazamine (1) across a cell line panel. Data for PR-104A and tirapazamine taken from ref¹²

Figure S5. MS and UV-visible spectroscopy characterisation of 28 and its major S9 metabolites under oxic and hypoxic incubation conditions. The data shown correspond to the labelled peaks in the HPLC traces of Figure 8B,D. The compound labelled with an asterisk is tentatively identified as the N-oxide structure shown.

References

- Atwell, G. J.; Milbank, J. J.; Wilson, W. R.; Hogg, A.; Denny, W. A. 5-Amino-1-(chloromethyl)-1,2-dihydro-3H-benz[e]indoles: relationships between structure and cytotoxicity for analogues bearing different DNA minor groove binding subunits. *J. Med. Chem.* 1999, 42, 3400-3411.
- (2) Gao, Y.; Voigt, J.; Zhao, H.; Pais, G. C.; Zhang, X.; Wu, L.; Zhang, Z. Y.; Burke, T. R., Jr. Utilization of a peptide lead for the discovery of a novel PTP1B-binding motif. *J. Med. Chem.* 2001, 44, 2869-2878.
- (3) Wendt, M. D.; Rockway, T. W.; Geyer, A.; McClellan, W.; Weitzberg, M.; Zhao, X.; Mantei, R.; Nienaber, V. L.; Stewart, K.; Klinghofer, V.; Giranda, V. L. Identification of novel binding interactions in the development of potent, selective 2-naphthamidine inhibitors of urokinase. Synthesis, structural analysis, and SAR of N-phenyl amide 6-substitution. *J. Med. Chem.* 2004, 47, 303-324.
- (4) Adcock, W.; Wells, P. R. Substituent effects in naphthalene. I. Syntheses of 4, 5, 6, 7, and 8-substituted 2-naphthoic acids. *Aust. J. Chem.* **1965**, *18*, 1351-1364.
- (5) Katz, T. J.; Sudhakar, A.; Teasley, M. F.; Gilbert, A. M.; Geiger, W. E.; Robben, M. P.; Wuensch, M.; Ward, M. D. Synthesis and properties of optically active helical metallocene oligomers. *J. Am. Chem. Soc.* **1993**, *115*, 3182-3198.
- (6) Yuho, T.; Masami, S.; Takahiro, F.; Yasuhide, Y. The substituent effect. 14. The solvolysis of 6and 7-substituted 1-(2-naphthyl)ethyl chlorides. *Bull. Chem. Soc. Japan* **1979**, *52*, 3033-3042.
- (7) Yao, Z. J.; Ye, B.; Wu, X. W.; Wang, S.; Wu, L.; Zhang, Z. Y.; Burke, T. R., Jr. Structure-based design and synthesis of small molecule protein-tyrosine phosphatase 1B inhibitors. *Bioorg. Med. Chem.* 1998, 6, 1799-1810.
- (8) Sheldrick, G. M. SADABS: Program for semi-empirical absorption correction, **1997**. Institüt für Anorganische Chemie der Universität Göttingen, Germany.
- (9) Sheldrick, G. M. SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB] Programs for Crystal Structure Analysis, 1997. Institut f
 ür Anorganische Chemie der Universit
 ät G
 öttingen, Germany.
- (10) Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallog. 1999, 32, 837-838.
- (11) Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge Structural Database and visualizing crystal structures. *Acta Crystallog., Section B: Structural Science* **2002**, *B58*, 389-397.
- (12) Patterson, A. V.; Ferry, D. M.; Edmunds, S. J.; Gu, Y.; Singleton, R. S.; Patel, K.; Pullen, S. M.; Syddall, S. P.; Atwell, G. J.; Yang, S.; Denny, W. A.; Wilson, W. R. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA crosslinking agent PR-104. *Clin. Cancer Res.* 2007, *13*, 3922-3932.