Supporting Information

Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes.

Pavlína Řezáčovál, ${ }^{1,2 *}$, Jana Pokornál ${ }^{1,3}$, Jiří Brynda ${ }^{1,2}$, Milan Kožišsek ${ }^{l, 3}$, Petr Cígler ${ }^{1,4}$, Martin Lepšík ${ }^{1}$, Jindřich Fanfrlík ${ }^{1}$, Jan Řezáčč ${ }^{1}$, Klára Grantz Šašková ${ }^{1,3}$, Irena Sieglová ${ }^{1,2}$, Jaromír Plešek ${ }^{5}$, Václav Šícha ${ }^{5}$, Bohumír Grüner ${ }^{5}$, Heike Oberwinkler ${ }^{6}$, Juraj Sedláček, Hans-Georg Kräusslich ${ }^{6}$, Pavel Hobza ${ }^{1}$, Vladimír Král ${ }^{4}$ and Jan Konvalinka ${ }^{1,2,3}$

${ }^{1}$ Gilead Sciences and IOCB Research Center Prague, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 16610 Praha 6, Czech Republic; ${ }^{2}$ Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 16610 Praha 6, Czech Republic; ${ }^{3}$ Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic; ${ }^{4}$ Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 16628 Praha 6, Czech Republic; ${ }^{5}$ Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, Area of Research Institutes 1001, 25068 Husinec-Rez u Prahy, Czech Republic; ${ }^{6}$ Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.

* Corresponding author. Tel. +420220183135 ; fax. +420220183280

AUTHOR EMAIL ADDRESS: rezacova@uochb.cas.cz

Supporting Information contents:

1. Table S1: List of mutations and enzyme characteristics ($K_{\mathrm{m}}, k_{\text {cat }}$ and catalytic efficiencies ($k_{\text {cat }} / K_{\mathrm{m}}$)) of PR variants analyzed in this study.
2. Table S2: K_{i} values [nM] for the inhibition of PR mutants by 7 clinically available inhibitors and by metallacarboranes $\mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{5}$. The inhibition constants were determined by spectrophotometric assay at the pH optimum of the protease (pH 4.7).
3. Figure S1: The examples of plots used for determination of inhibition mechanisms using double reciprocal Lineweaver-Burk plot ${ }^{1}$. A. competitive inhibition of 7, B. noncompetitive inhibition 8, C. inhibitor concentration dependent inhibition 12.
4. Experimental procedure on Chemical Syntheses and Molecular Modeling

Table S1.

List of mutations and enzyme characteristics [$K_{\mathrm{m}}, k_{\mathrm{cat}}$ and catalytic efficiencies $\left(k_{\mathrm{cat}} / K_{\mathrm{m}}\right)$] of PR variants analyzed in this study.

HIV-1 protease	Mutations	$\boldsymbol{K}_{\boldsymbol{m}}$ $[\boldsymbol{\mu M}]$	$\boldsymbol{k}_{\text {cat }}$ $\left[\mathbf{s}^{-1}\right]$	$\boldsymbol{k}_{\text {cat }} / \boldsymbol{K}_{\mathbf{m}}$ $\left[\mathbf{m M}^{-1} \cdot \mathbf{s}^{-1}\right]$
PR	---	15	30	1990
PR 1	D30N, N88D	18	24	1320
PR 2	M46I, A71V, V82T, I84V	48	14	300
PR 3	A71V, V82T, I84V	36	11	300
PR 4	V32I, I47A	35	7.5	220
PR 5	L10I, I15V, E35D, N37S, R41K, I62V, L63P, A71V, G73S, L90M	8.3	12	1450
PR 6	L10I, L24I, L33F, M46L, I54V, L63P, A71V, V82A, I84V	14	6.4	460
PR 7	L10F, L19I, K20R, L33F, E35D, M36I, R41K, F53L, I54V, L63P, H69K, A71V, T74P, I84V, L89M, L90M, I93L	13	10	800

Table S2.

Ki values [nM] for the inhibition of PR mutants by 7 clinically used inhibitors and by selected metallacarborane inhibitors. The inhibition constants were determined using spectrophotometric assay at the pH optimum of the protease (pH 4.7).

	Ki [nM]											
HIV-1 PR	SQV ${ }^{\text {a }}$	IDV ${ }^{\text {a }}$	NFV ${ }^{\text {a }}$	LPV ${ }^{\text {a }}$	APV ${ }^{\text {a }}$	AZV ${ }^{\text {a }}$	DRV ${ }^{\text {a }}$	$1^{\text {a }}$	$2^{\text {a }}$	4	5	13
PR	$\begin{gathered} 0.04 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 0.12 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 0.07 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 0.018 \pm \\ 0.009 \end{gathered}$	$\begin{gathered} 0.18 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 0.024 \pm \\ 0.005 \end{gathered}$	$\begin{array}{\|c} 0.0053 \pm \\ 0.0036 \end{array}$	4.9 ± 2.1	$\begin{gathered} 2.2 \pm \\ 1.2 \end{gathered}$	4.7 ± 1.2	2.7 ± 1.1	$\begin{gathered} 0.27 \pm \\ 0.33 \end{gathered}$
PR 1	$\begin{gathered} 0.51 \pm \\ 0.07 \end{gathered}$	$\begin{gathered} 0.88 \pm \\ 0.07 \end{gathered}$	18 ± 1	$\begin{gathered} 0.026 \pm \\ 0.006 \end{gathered}$	$\begin{gathered} 0.13 \pm \\ 0.04 \end{gathered}$	$\begin{gathered} 0.055 \pm \\ 0.006 \end{gathered}$	$\begin{gathered} 0.011 \pm \\ 0.001 \end{gathered}$	8.1 ± 1.5	$\begin{gathered} 3.7 \pm \\ 2.2 \end{gathered}$	4.0 ± 1.2	4.2 ± 0.5	1.4 ± 0.6
PR 2	13 ± 2	21 ± 4	3.8 ± 1.1	$\begin{gathered} 0.029 \pm \\ 0.007 \end{gathered}$	$\begin{gathered} 0.90 \pm \\ 0.10 \end{gathered}$	$\begin{gathered} 0.76 \pm \\ 0.04 \end{gathered}$	$\begin{gathered} 0.032 \pm \\ 0.011 \end{gathered}$	22 ± 5	$\begin{gathered} 9.0 \pm \\ 3.4 \end{gathered}$	4.3 ± 1.5	12 ± 4	30 ± 11
PR 3	12 ± 1	13 ± 1	3.2 ± 0.2	$\begin{gathered} 0.060 \pm \\ 0.004 \end{gathered}$	$\begin{gathered} 0.82 \pm \\ 0.13 \end{gathered}$	$\begin{gathered} 0.23 \pm \\ 0.01 \end{gathered}$	$\begin{gathered} 0.0043 \pm \\ 0.0007 \end{gathered}$	21 ± 8	11 ± 4	4.5 ± 0.5	6.1 ± 1.3	6.7 ± 2.1
PR 4	$\begin{gathered} 0.22 \pm \\ 0.01 \end{gathered}$	56 ± 6	10 ± 1	2.4 ± 0.5	15 ± 3	$\begin{gathered} 0.17 \pm \\ 0.02 \end{gathered}$	$\begin{gathered} 0.31 \pm \\ 0.04 \end{gathered}$	5.0 ± 1.1	$\begin{gathered} 2.7 \pm \\ 1.3 \end{gathered}$	5.1 ± 1.5	1.6 ± 0.1	1.9 ± 1.9
PR 5	2.9 ± 0.3	5.5 ± 0.3	2.1 ± 0.3	$\begin{gathered} 0.029 \pm \\ 0.006 \end{gathered}$	$\begin{gathered} 0.15 \pm \\ 0.05 \end{gathered}$	$\begin{gathered} 0.076 \pm \\ 0.004 \end{gathered}$	$\begin{gathered} 0.015 \pm \\ 0.004 \end{gathered}$	40 ± 17	$\begin{gathered} 4.6 \pm \\ 2.7 \end{gathered}$	2.5 ± 1.5	2.7 ± 0.7	16 ± 1
PR 6	180 ± 20	47 ± 3	130 ± 9	$\begin{gathered} 0.44 \pm \\ 0.09 \end{gathered}$	4.1 ± 0.3	1.2 ± 0.4	$\begin{gathered} 0.02 \pm \\ 0.06 \end{gathered}$	13 ± 3	24 ± 5	14 ± 4	18 ± 4	n.d.
PR 7	71 ± 6	33 ± 1	32 ± 2	$\begin{gathered} 0.50 \pm \\ 0.03 \end{gathered}$	$\begin{gathered} 0.13 \pm \\ 0.05 \end{gathered}$	$\begin{gathered} 0.054 \pm \\ 0.003 \end{gathered}$	<0.001	14 ± 1	39 ± 6	31 ± 7	25 ± 3	n.d.

Abbreviations: SQV, saquinavir; IDV, indinavir; NFV, nelfinavir; LPV, lopinavir; APV, amprenavir; AZV, atazanavir; DRV, darunavir.
${ }^{\text {a }}$ data published in our previous work ${ }^{1}$

Figure S1. The examples of plots used for determination of inhibition mechanisms using double reciprocal Lineweaver-Burk plot ${ }^{2}$. A. competitive inhibition by compound 7, B. noncompetitive inhibition by 8, C. inhibitor concentration dependent inhibition by $\mathbf{1 2}$.

Experimental Methods of Chemical Syntheses

Genaral Method of Chemical Syntheses. Cesium cobalt bis(dicarbollide), o-carborane, nido-[7- $\mathrm{NH}_{3}-$ 7- $\mathrm{CB}_{10} \mathrm{H}_{12}$] and closo-[1- $\mathrm{NH}_{3}-1-\mathrm{CB}_{11} \mathrm{H}_{11}$] derivatives ${ }^{3,4}$, were purchased from Katchem, Ltd., Prague, Czech Rep. [8-O $\left.\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\left(1^{\prime}, 2^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)-3,3^{\prime}-\mathrm{Co}\right]^{0}(8 \text {-dioxane-1 })^{5},\left[8,8^{\prime}-\mu-\mathrm{H}_{2} \mathrm{~N}<(1,2-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)-3,3^{\prime}-\mathrm{Co}\right]^{0}$ zwitterion ${ }^{6}, \mathrm{Et}_{3} \mathrm{NH}\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]^{7},\left[\left(8-\mathrm{H}_{3} \mathrm{~N}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\left(1^{\prime}, 2^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)-3,3^{\prime}-\mathrm{Co}\right]^{8}$, $\left[\left(8-n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\left(1^{\prime}, 2^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)-3,3^{\prime}-\mathrm{Co}\right]^{0}$ derivative ${ }^{9}$ were prepared according published procedures. All boron chemicals were carefully dried (12 h at $60{ }^{\circ} \mathrm{C}$ on vacuum line) prior the use. Dry, high surface sodium hydride (Institute of Inorg. Chemistry, Rez near Prague) with a surface area of about $2 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ was used. Organic amines were purchased from Aldrich. Liquid amines were dried over $4 \AA$ molecular sieves (Sigma-Aldrich), other amines in vacuum (12h). Other chemicals were reagent or analytical grade (Lachema or Penta, Czech Rep.) and were used as purchased. Toluene was freshly distilled from sodium, diethyleneglycol dimethyl ether was distilled from sodium phenyl ketyl. Column chromatography was carried out on high purity silica gel (Merck Grade, Type 7754, 70-230 mesh, 60 Å), and analytical TLC on Silufol ${ }^{\mathrm{TM}}$ sheets (Kavalier, Czech. Rep. (starch as the binder), yellow - orange spots, eventually detected by diiodine vapors followed by 2% aqueous AgNO_{3} spray).

All reactions were performed with the use of standard vacuum or inert-atmosphere (nitrogen, purity 99.999, Messer, Czech Rep.) techniques as described by Shriver ${ }^{10}$, although some operations, such as column chromatography and crystallizations were carried out in air. Melting points were determined in sealed capillaries on BÜCHI Melting Point B-545 apparatus and are uncorrected.

Instrumental Techniques. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopy were performed on Varian Mercury 400 Plus Instrument at 400,128 and 100 MHz , respectively. NMR chemical shifts are given in ppm to high-frequency (low field) to $\mathrm{F}_{3} \mathrm{~B} \cdot \mathrm{OEt}_{2}$ as the external reference. Residual solvent ${ }^{1} \mathrm{H}$ resonances were used as internal secondary standards. Coupling constants ${ }^{1} J\left({ }^{11} B-{ }^{1} \mathrm{H}\right)$ are taken from resolutionenhanced ${ }^{11}$ B spectra with a digital resolution of 2 Hz and are given in Hz . The NMR data are presented
in the text below in the following format: ${ }^{11} \mathrm{~B}$ NMR: ${ }^{11} \mathrm{~B}$ chemical shifts $\delta\left({ }^{11} \mathrm{~B}\right)(\mathrm{ppm})$, multiplicity, coupling $J\left({ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H}\right)$ constants are given in Hz . Peak assignment is based on previously published data for substituted cage with simpler substitutions ${ }^{8,11} .{ }^{1} \mathrm{H}$ NMR: chemical shifts $\delta\left({ }^{1} \mathrm{H}\right)$ are given in ppm, coupling constants $\mathrm{J}(H, H)$ in $\mathrm{Hz}, \delta\left({ }^{11} \mathrm{~B}\left\{{ }^{11} \mathrm{~B}\right\}\right)$ data are presented in square brackets, assignment is based on selectively decoupled $\delta\left({ }^{1} \mathrm{H}\right)-\left\{{ }^{11} \mathrm{~B}\right.$ selective $\}$ NMR experiments and analogies with similar published compounds.

Mass spectrometry measurements were performed on a Thermo-Finnigan LCQ-Fleet Ion Trap instrument using Electrospray Ionization (ESI). Negative ions were detected. Samples dissolved in acetonitrile (concentrations approx. $100 \mathrm{ng} \cdot \mathrm{ml}^{-1}$) were introduced to the ion source by infusion of 0.25 $\mathrm{mL} . \mathrm{h}^{-1}$, source voltage 5.57 kV , tube lens voltage 49.8 V , capillary voltage 10.0 V , drying temperature was $188^{\circ} \mathrm{C}$, drying gas flow $8 \mathrm{~L} \mathrm{~min}^{-1}$, auxiliary gas pressure 6 Bar .- The data are presented for the most abundant mass in the boron distribution plot (100%) and for the peak corresponding to the m / z value.

Analytical HPLC: . A Merck-Hitachi HPLC system LaChrom 7000 series equipped with DAD 7450 detector and an intelligent injector was used. Chromatographic procedure was basen on published methods ${ }^{12}$: Column: RP Separon ${ }^{\text {TM }}$ SGX C8, $7 \mu \mathrm{~m}$ (silica with chemically bonded octyl groups) Tessek Prague, Czech Rep. Chromatographic conditions: Solvent $3 \mathrm{mmol} / \mathrm{L}$ hexylamine acetate in 65% aqueous acetonitrile, detection DAD, fixed wavelengths 254 , 290 and 312 nm ; sensitivity range 0.2 A.U.F.S; samples of concentration approx. $0.5 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ in the mobile phase or $\mathrm{CH}_{3} \mathrm{CN}$ were injected (1$5 \mu \mathrm{~L}$); the method allowed the resolution of most of the compounds from the real reaction mixtures and for the purity assay and control. Capacity factors $\mathrm{k}^{\prime}=\left(\mathrm{t}_{\mathrm{R}}-\mathrm{t}_{0}\right) / \mathrm{t}_{0}$ (where t_{R} is retention time, t_{0} is the void retention time of an non retained peak) are given for individual compounds. The purity of all compounds, as determined by HPLC, was better than 98%.

Sodium hydrogen t-butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate (1-),
 the respective reagent. Yield $285 \mathrm{mg}(77 \%)$; M. P. $279^{\circ} \mathrm{C}$ (decomp.); TLC (acetonitrile/chloroform 1:2 $\mathrm{v} / \mathrm{v}) \mathrm{R}_{\mathrm{F}}=0.27$; HPLC k'= 5.39; M.S. 894.72 (100\%) (calcd. 899.72), $\mathrm{m} / \mathrm{z}=899.66$ (1%) [M] (calcd. 899.72); ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (400 MHz , Acetone- d_{6}), $\left[{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}\right.$ in square brackets $]: \delta 7.08 \mathrm{~s}(1 \mathrm{H}, \mathrm{NH})$, $4.186 \mathrm{~s}\left(4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 4.133 \mathrm{~s}\left(4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 3.971\left(\mathrm{t}, 4 \mathrm{H}, J=7.9, \mathrm{O}_{\left.-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.646\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{OCH}_{2}-\right.}\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.053 \mathrm{~m}\left(\mathrm{~m}, J=6.0,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 1.613(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuN})$, [2.92] (H10'), [2.73] (H8') [2.71] (H4', 7’), [2.68] (H10), [2.85 s, $2.02 \mathrm{~s}, 1.81 \mathrm{~s}]\left(\mathrm{H} 4,7,9,12,9^{\prime}, 12^{\prime}\right)$, [1.67] (H6'), [1.62] (H5', 11'), [1.53] (H5, 11), [1.43] (H6); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR},\left(100 \mathrm{MHz}\right.$, Acetone- $\left.\mathrm{d}_{6}\right): \delta 73.19\left(\mathrm{CH}_{2}-\mathrm{O}\right), 69.48$ $\left(\mathrm{CH}_{2}-\mathrm{O}\right), 67.41\left(\mathrm{CH}_{2}-\mathrm{O}\right) 66.22\left(\mathrm{CH}_{2}-\mathrm{N}\right), 54.16\left(\mathrm{CH}_{\text {carb }}\right), 47.36\left(\mathrm{CH}_{\text {carb }}\right), 25.39(t-\mathrm{BuN}) ;{ }^{11} \mathrm{~B}$ NMR (128 MHz, Acetone $-\mathrm{d}_{6}$): $\delta 23.75$ (s, 2B, B8), 5.17 (d, $\left.J=143,2 \mathrm{~B}, \mathrm{~B} 8^{\prime}\right), 0.39$ (d, $\left.J=140,2 \mathrm{~B}, \mathrm{~B} 10^{\prime}\right)$, $2.53(\mathrm{~d}, J=150,2 \mathrm{~B}, \mathrm{~B} 10),-4.6\left(\mathrm{~d}, J=142, \mathrm{~B} 4^{\prime}, 7^{\prime}\right),-7.08 \mathrm{~d},-7.81 \mathrm{~d} \quad(3 \mathrm{~d}$, overlap,12B, B4, 7, 9, 12, $\left.9^{\prime}, 12^{\prime}\right),-17.3\left(\mathrm{~d}, J=156,4 \mathrm{~B}, \mathrm{~B} 5^{\prime}, 11^{\prime}\right),-20.13(\mathrm{~d}, J=152,4 \mathrm{~B}, \mathrm{~B} 5,11),-22.17(\mathrm{~d}, J=164,2 \mathrm{~B}, \mathrm{~B} 6$ ' $),-$ 28.69 (d, $J=\mathrm{Hz}, 2 \mathrm{~B}, \mathrm{~B} 6)$.

Sodium hydrogen 1,1-(dihydroxymethyl)-2-n-ethanolimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate (1-), $\quad\left[\left(\mathbf{H O C H}_{2}\right)_{3} \mathrm{C}-\mathrm{NH}-\left(\mathbf{8}-\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{\mathbf{2}} \mathbf{- 1 , 2}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\left(\mathbf{1}^{\prime}, \mathbf{2}^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)-\mathbf{3}, \mathbf{3}^{\prime}-\right.$

 $\mathbf{C o})_{2}$] Na (6). 1,1-(dihydroxymethyl)-2-hydroxyethylamine was used as the respective reagent. Yield mg $344 \mathrm{mg}(89 \%) ;$ M. p. $278{ }^{\circ} \mathrm{C}$; TLC (acetonitrile/chloroform $1: 2 \mathrm{v} / \mathrm{v}$), $\mathrm{R}_{\mathrm{F}}=0.23$; HPLC k'= 0.7 ; MS-ESI $(\mathrm{m} / \mathrm{z}): 942.58$ (100%) 947.58 (2%) [M$]$ calcd. $947.70 ;{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (400MHz, Acetone $-\mathrm{d}_{6}$), $\left[{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}\right.$ in square brackets $]: \delta 4.20\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 4.174\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 3.673(\mathrm{~m}, J=5.2,8 \mathrm{H}$, $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 3.558\left(\mathrm{t}, \mathrm{J}=4.6,8 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}\right), 2.992\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{C}\right)$;[2.86] (H10'), [2.72] (H4',7'), [2.68] (H10), [2.67] (H8'), [2.89 s, $2.02 \mathrm{~s}, 1.81 \mathrm{~s}]\left(\mathrm{H} 4,7,9,12,9^{\prime}, 12^{\prime}\right)$, [1.68] (H6'), [1.63] (H5', 11'), [1.54] (H5, 11), [1.45] (H6); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100MHz, Acetone- d_{6}): δ $72.91\left(\mathrm{CH}_{2}-\mathrm{O}\right), 72.87\left(\mathrm{CH}_{2}-\mathrm{O}\right), 69.66\left(\mathrm{CH}_{2}-\mathrm{O}\right), 65.49\left(\mathrm{CH}_{2}-\mathrm{O}\right), 59.21\left(\mathrm{CH}_{2}-\mathrm{N}\right), 56.12\left(\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}\right)$,
$53.91\left(\mathrm{CH}_{\text {carb }}\right), 47.35\left(\mathrm{CH}_{\text {carb }}\right), 31.5\left(\mathrm{NCCH}_{2}\right) ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}\right.$, Acetone- $\left.\mathrm{d}_{6}\right): \delta 23.53(\mathrm{~s}, 2 \mathrm{~B}, \mathrm{~B} 8)$, $4.84(\mathrm{~d}, J=150,2 \mathrm{~B}, \mathrm{~B} 8 '), 0.44\left(\mathrm{~d}, J=140,2 \mathrm{~B}, \mathrm{~B} 10^{\prime}\right),-2.44(\mathrm{~d}, J=143,2 \mathrm{~B}, \mathrm{~B} 10),-4.58(\mathrm{~d}, J=149$, B4' 7^{\prime}), $-7.25 \mathrm{~d},-7.60,-8.45$ (3d, overlap, 12B, B4, 7, 9, 12, $9^{\prime}, 12^{\prime}$), $-17.30\left(\mathrm{~d}, J=153,4 \mathrm{~B}, \mathrm{~B} 5^{\prime}, 11^{\prime}\right)$, $-20.39(\mathrm{~d}, J=161,4 \mathrm{~B}, \mathrm{~B} 5,11),-22.13\left(\mathrm{~d}, J=158,2 \mathrm{~B}, \mathrm{~B} 6^{\prime}\right),-28.52(\mathrm{~d}, J(\mathrm{~B}, \mathrm{H})=170,2 \mathrm{~B}, \mathrm{~B} 6)$.

Sodium hydrogen (1-carboxy)-propyl-3-imino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2dicarbollide $)]$ di-ate (1-), $\left.\left[\mathrm{OOCC}_{3} \mathrm{H}_{6} \mathrm{NH}-\left(8-\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\left(\mathbf{1}^{\prime}, \mathbf{2}^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)-\mathbf{3 , 3} \mathbf{3}^{\prime}-\mathrm{Co}\right)_{2}\right] \mathrm{Na}_{2}$

 (7,). γ-aminobutanoic acid was used for the ring cleavage. Yield 140 mg (37\%); M. p. $147{ }^{\circ} \mathrm{C}$; TLC (acetonitrile/ chloroform 1:2 v/v) $\mathrm{R}_{\mathrm{F}}=0.35$; HPLC $\mathrm{k}^{\prime}=0.72$; MS-ESI $(\mathrm{m} / \mathrm{z}): 461.58$ (15%), 464.894 $(0.5 \%)[\mathrm{M}]^{2-}$ calcd. 464.84; $924.76(100 \%), 929.66(2 \%)[\mathrm{M}+\mathrm{H}]^{-}$calcd. $929.69 ;{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$), $\left[^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}\right.$ in square brackets $]: \delta 4.105\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 4.026\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right)$, $3.660\left(\mathrm{t}, J=4.4,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.576\left(\mathrm{~m}, J=4.0,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{~N}\right), 3.496(\mathrm{t}, J=5.2,4 \mathrm{H}, \mathrm{O}-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.467\left(\mathrm{t}, J=4.8,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.066\left(\mathrm{t}, J=7.6,2 \mathrm{H}, C H_{2}-\mathrm{N}\right), 2.174$ (br. t, $2 \mathrm{H}, \mathrm{OOC}-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.901\left(\mathrm{p}, J=3.2,2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{~N}\right)$; [2.81] (H10'), [2.74] (H8'), [2.59] (H4', $\left.7^{\prime}\right)$, [2.58] (H10), [1.96, 1.70] (H 9, 12, 9', 12'), 2.79 [4, 7], [1.64] (H6'), [1.54] (H5', 11'), [1.46] (H5, 11), [1.39] (H6); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 207.66(\mathrm{COO}), 72.21\left(4 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{O}\right), 69.29\left(2 \mathrm{C}, \mathrm{CH}_{2^{-}}\right.$ O), $61.19\left(2 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{O}\right), 54.4\left(1 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{N}\right), 53.91\left(4 \mathrm{C}, \mathrm{CH}_{\text {carb }}\right), 47.35\left(4 \mathrm{C}, \mathrm{CH}_{\text {carb }}\right), 32.13(1 \mathrm{C}$, OOCCH_{2}), $23.4\left(1 \mathrm{C},-\mathrm{CH}_{2}-\right) ;{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 23.91(\mathrm{~s}, 2 \mathrm{~B}, \mathrm{~B} 8), 5.15(\mathrm{~d}, J=137,2 \mathrm{~B}$, B8'), $0.01\left(\mathrm{~d}, J=140,2 \mathrm{~B}, \mathrm{~B} 10^{\prime}\right),-2.79(\mathrm{~d}, J=143,2 \mathrm{~B}, \mathrm{~B} 10),-5.12\left(\mathrm{~d}, J=149, \mathrm{~B} 4^{\prime}, 7^{\prime}\right),-7.33(2 \mathrm{~d}, J=$ $\left.140,8 B, B 9,12,9^{\prime}, 12^{\prime}\right),-9.14(\mathrm{~d}, J=140, \mathrm{~B} 4,7,4 \mathrm{~B}),,-17.44\left(\mathrm{~d}, J=156,4 \mathrm{~B}, \mathrm{~B} 5^{\prime}, 11^{\prime}\right),-20.46(\mathrm{~d}, J=$ $159,4 \mathrm{~B}, \mathrm{~B} 5,11),-22.34\left(\mathrm{~d}, J=158,2 \mathrm{~B}, \mathrm{~B}^{\prime}\right),-28.59(\mathrm{~d}, J(\mathrm{~B}, \mathrm{H})=170,2 \mathrm{~B}, \mathrm{~B} 6)$.Sodium hydrogen (1-sulfoxy)-ethyl-2-imino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2dicarbollide) $]$ di-ate (2-), $\left.\left[\mathrm{O}_{3} \mathrm{SC}_{2} \mathrm{H}_{4} \mathrm{NH}-\left(8-\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\left(\mathbf{1}^{\prime}, 2 \mathbf{2}^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)-3,3 \mathbf{3}^{\prime}-\mathrm{Co}\right)_{2}\right] \mathrm{Na}_{2}(8)$. 1-sulfoxy-ethyl-2- amine was used for the ring cleavage. Yield 99 mg (25%); M. p. $198{ }^{\circ} \mathrm{C}$; TLC (acetonitrile/ chloroform 1:2 v/v) $\mathrm{R}_{\mathrm{F}}=0.49 ;$ HPLC $\mathrm{k}^{\prime}=1.12$; MS-ESI $(\mathrm{m} / \mathrm{z}): 473.42(100 \%), 475.88$
$(1 \%)[\mathrm{M}]^{2-}$ calcd. $475.81 ; 968.76(15 \%), 974.68(1 \%)[\mathrm{M}+\mathrm{Na}]^{-}$calcd. $974.62 ;{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right),\left[{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}\right.$ in square brackets $]: \delta 4.176\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 4.155\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 3.676$ (br. t, $\left.J=4.4,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.619\left(\mathrm{t}, J=4.8,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{~N}\right), 3.566\left(\mathrm{~m}, J=4.4,8 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{~N}\right)$, 3.328 (br. s., 4H, S-CH2-CH2-N), [2.92] (H10'), [2.71] (H4', 7^{\prime}), [2.69] (H8'), [2.68] (H10), [2.02, 1.82] (H 4, 7, 9, 9' 12,12'), $2.89[4,7],[1.68]\left(H 6\right.$ '), [1.62] (H5', 11'), [1.53] (H5, 11), [1.45] (H6); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 72.52\left(\mathrm{CH}_{2}-\mathrm{O}\right), 69.528\left(\mathrm{CH}_{2}-\mathrm{O}\right), 67.32\left(\mathrm{CH}_{2}-\mathrm{N}\right), 53.97\left(\mathrm{CH}_{2}\right), 53.44$ $\left(\mathrm{CH}_{\text {carb }}\right), 51.78\left(\mathrm{CH}_{2}\right), 47.65\left(\mathrm{CH}_{\text {carb }}\right) ;{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetone- $\left.\mathrm{d}_{6}\right): \delta 23.63(\mathrm{~s}, 2 \mathrm{~B}, \mathrm{~B} 8), 5.01(\mathrm{~d}$, $\left.J=140,2 \mathrm{~B}, \mathrm{~B}^{\prime}\right), 0.49\left(\mathrm{~d}, J=140,2 \mathrm{~B}, \mathrm{~B} 10^{\prime}\right),-2.41(\mathrm{~d}, J=143,2 \mathrm{~B}, \mathrm{~B} 10),-4.61\left(\mathrm{~d}, J=149, \mathrm{~B}^{\prime}, 7^{\prime}\right),-$ 7.15 (2d, overlap, 8B, B4, 7, 9, 12), -8.52 (d, $\left.J=150,4 \mathrm{~B}, \mathrm{~B}^{\prime}, 12^{\prime}\right),-17.20\left(\mathrm{~d}, J=156,4 \mathrm{~B}, \mathrm{~B} 5^{\prime}, 11^{\prime}\right)$, $20.37(\mathrm{~d}, J=159,4 \mathrm{~B}, \mathrm{~B} 5,11),-22.06\left(\mathrm{~d}, J=159,2 \mathrm{~B}, \mathrm{~B} 6{ }^{\prime}\right),-28.43(\mathrm{~d}, J(\mathrm{~B}, \mathrm{H})=168,2 \mathrm{~B}, \mathrm{~B} 6)$.

Sodium hydrogen benzylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate (1-)

 $\left.\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}-\left(\mathbf{8}-\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{\mathbf{2}} \mathbf{- 1 , 2}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\left(\mathbf{1}^{\prime}, \mathbf{2}^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)-\mathbf{3 , 3} \text { '-Co}\right)_{2}\right] \mathbf{N a}(9)$. Benzylamine was used for the ring cleavage. Yield 339 mg (89%); M. p. $263{ }^{\circ} \mathrm{C}$ (decomp.); TLC (acetonitrile/chloroform $1: 2 \mathrm{v} / \mathrm{v}$) $\mathrm{R}_{\mathrm{F}}=0.33$; HPLC $\mathrm{k}^{\prime}=6.84$; M. S. $(\mathrm{m} / \mathrm{z}): 928.76$ (100%) (calcd. 928.73), 834.66 (1%) $[\mathrm{M}]^{-}$(calcd. 934.70). ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (400MHz, Acetone- $\left.\mathrm{d}_{6}\right),\left[{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}\right.$ in square brackets $]: \delta 7.602(\mathrm{~m}, 2 \mathrm{H}$, Ar), 7.461 (m, 3H, Ar), 4.58 (br. s, 1H, NH), 4.156 (s, 4H, $\mathrm{CH}_{\text {carb }}$), 4.094 (s, 4H, CH carb), 3.933 (br. t, $\left.4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.695\left(\mathrm{t}, J=4.0,4 \mathrm{H}, \mathrm{OCH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.627\left(\mathrm{t}, J=4.9,4 \mathrm{H}, \mathrm{OCH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.437(\mathrm{~m}$, 4H, O-CH2 $\mathrm{CH}_{2}-\mathrm{N}$), 2.073 (m, 2H, $\mathrm{CH}_{2} \mathrm{~N}$); [2.92] (H10'), [2.83] (H8'), [2.71] (H4', 7'), [2.68] (H10), [2.85 s, $2.05 \mathrm{~s}, 1.84 \mathrm{~s}]\left(\mathrm{H} 4,7,9,12,9^{\prime}, 12^{\prime}\right)$, [1.62] (H6'), [1.61] (H5', 11'), [1.54] (H5, 11), [1.45] (H6); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100MHz, Acetone- d_{6}): $\delta 132.07$ (Ar), 130.85 (Ar), 129.82 (Ar), $72.92\left(\mathrm{CH}_{2}-\mathrm{O}\right)$, $69.63\left(\mathrm{CH}_{2}-\mathrm{O}\right), 65.97\left(\mathrm{CH}_{2}-\mathrm{O}\right), 58.70\left(\mathrm{CH}_{2}-\mathrm{N}\right), \quad 53.82\left(\mathrm{CH}_{\mathrm{carb}}\right), 53.30\left(\mathrm{CH}_{2}-\mathrm{N}\right), 47.43\left(\mathrm{CH}_{\mathrm{carb}}\right){ }^{11} \mathrm{~B}$ NMR (128 MHz, Acetone- d_{6}): $\delta 23.98$ ($\mathrm{s}, 2 \mathrm{~B}, \mathrm{~B} 8$), 5.53 (d, $J=137,2 \mathrm{~B}, \mathrm{~B} 8$ '), 0.44 (d, $J=142,2 \mathrm{~B}$, B10'), $-2.51(\mathrm{~d}, J=147,2 \mathrm{~B}, \mathrm{~B} 10),-4.65\left(\mathrm{~d}, J=140, \mathrm{~B} 4^{\prime}, 7\right.$ ') , $-7.05 \mathrm{~d},-7.81$ (2d, overlap B9, 12, $\left.9^{\prime}, 12^{\prime}\right),-17.24\left(\mathrm{~d}, J=153,4 \mathrm{~B}, \mathrm{~B} 5^{\prime}, 11^{\prime}\right),-20.20(\mathrm{~d}, J=155,4 \mathrm{~B}, \mathrm{~B} 5,11),-21.85\left(\mathrm{~d}, J=158,2 \mathrm{~B}, \mathrm{~B}^{\prime}\right)$, $-28.48(\mathrm{~d}, J(\mathrm{~B}, \mathrm{H})=137,2 \mathrm{~B}, \mathrm{~B} 6)$.Sodium hydrogen (4-methyl-phenyl-1-sulfonamido) bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2dicarbollide) $]$ di-ate (2-) $\left[\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}(\mathrm{O})_{2}-\mathrm{N}-\left(8-\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\left(\mathbf{1}^{\prime}, \mathbf{2}^{\prime}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)-3,3 \mathbf{3}^{\prime}-\mathrm{Co}\right)_{2}\right] \mathrm{Na}_{2}$ (10). Yield $345 \mathrm{mg}(83 \%)$; M. p. $263{ }^{\circ} \mathrm{C}$; TLC (acetonitrile/ chloroform $1: 2 \mathrm{v} / \mathrm{v}$) $\mathrm{R}_{\mathrm{F}}=0.28$; HPLC k'= 1.05; MS-ESI $(\mathrm{m} / \mathrm{z}): 495.98(100 \%), 498.88(1 \%)[\mathrm{M}]^{2-}$ calcd. 498.83; $1014.74(69 \%), 1019.62(1 \%)$ $[\mathrm{M}+\mathrm{Na}]{ }^{-}$calcd. $1019.64 ;{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (400 MHz , Acetone- d_{6}), $\left[{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}\right.$ in square brackets $]: \delta$ 7.786 (d, $J=8.0,2 \mathrm{H}, \mathrm{Ar}), 7.418(\mathrm{~d}, J=7.9,2 \mathrm{H}, \mathrm{Ar}), 4.261\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 4.155\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 3.588$ $\left(2 \mathrm{t}, J=6.1,8 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.475\left(\mathrm{t}, J=5.1,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 3.387\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{~N}\right)$, $2.440\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, [2.95] (H10'), [2.94] (H8'), [2.76] (H4', 7’), [2.70] (H10), [2.43, 2.04, 1.79] (H 4, 7, 9, 12, $9^{\prime}, 12^{\prime}$), [1.66] (H5', 11'), [1.60] (H6'), [1.56] (H5, 11), [1.43] (H6); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100MHz, Acetone- $\left.\mathrm{d}_{6}\right): \delta 144.06(\mathrm{Ar}), 138.09(\mathrm{Ar}), 72.64\left(\mathrm{CH}_{2}-\mathrm{O}\right), 70.27\left(\mathrm{CH}_{2}-\mathrm{O}\right), 69.15\left(\mathrm{CH}_{2}-\mathrm{O}\right), 55.17(4 \mathrm{C}$, $\left.\mathrm{CH}_{\text {carb }}\right), 49.23\left(\mathrm{CH}_{2}-\mathrm{N}\right), 47.30\left(4 \mathrm{C}, \mathrm{CH}_{\text {carb }}\right), 21.48\left(\mathrm{CH}_{3}\right) ;{ }^{11} \mathrm{~B}$ NMR (128 MHz, Acetone- $\left.\mathrm{d}_{6}\right): \delta 22.94(\mathrm{~s}$, 2B, B8), 3.96 (d, $\left.J=137,2 \mathrm{~B}, \mathrm{~B}^{\prime}\right), 0.51\left(\mathrm{~d}, J=140,2 \mathrm{~B}, \mathrm{~B} 10^{\prime}\right),-2.37(\mathrm{~d}, J=146,2 \mathrm{~B}, \mathrm{~B} 10),-4.22(\mathrm{~d}, J$
 $20.34(\mathrm{~d}, J=159,4 \mathrm{~B}, \mathrm{~B} 5,11),-22.16\left(\mathrm{~d}, J=159,2 \mathrm{~B}, \mathrm{~B} 6{ }^{\prime}\right),-28.43(\mathrm{~d}, J(\mathrm{~B}, \mathrm{H})=168,2 \mathrm{~B}, \mathrm{~B} 6)$.

Sodium hydrogen (7-carba undecabora)-yl-7-imino) bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-
 3,3'-Co) $\mathbf{2}_{2}$ [$\mathbf{N a}_{2}$ (11). Nido-[7- $\left.\mathrm{NH}_{3}-7-\mathrm{CB}_{10} \mathrm{H}_{12}\right]^{0}(60 \mathrm{mg}, 40 \mathrm{mmol})$ in toluene-DME (3: $1,15 \mathrm{~mL}$) was stirred with $\mathrm{NaH}(22 \mathrm{mg}, 0.84 \mathrm{mmol})$ for 2 H , and then $\mathbf{8 - d i o x a n e - 1}(165 \mathrm{mg}, 41 \mathrm{mmol})$ in the same solvent (15 mL) was injected. After stirring for 16 h , additional portion of sodium hydride ($11 \mathrm{mg}, 0.42$ $\mathrm{mmol})$ was added followed by drop-wise addition of the second equivalent of $\mathbf{1}(165 \mathrm{mg}, 0.41 \mathrm{mmol})$ in 15 mL of toluene-DME (3: 1). The general synthetic method described above was used for product isolation. Yield $280 \mathrm{mg}(69 \%)$; M. p. $>410{ }^{\circ} \mathrm{C}$; TLC (acetonitrile/ chloroform $1: 2 \mathrm{v} / \mathrm{v}$) $\mathrm{R}_{\mathrm{F}}=0.16$; HPLC $\mathrm{k}^{\prime}=1.17 ;$ MS-ESI $(\mathrm{m} / \mathrm{z}): 485.48(100 \%), 487.88(1 \%)[\mathrm{M}]^{2-}$ calcd. 487.91; $991.83(28 \%), 997.70(1 \%)$ $[\mathrm{M}+\mathrm{Na}]{ }^{-}$calcd. $997.82 ;{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetone- $\left.\mathrm{d}_{6}\right),\left[{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}\right.$ in square brackets]: δ 7.12 (br. s, $1 \mathrm{H}, \mathrm{NH}$), $4.216\left(2 \mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 3.92\left(\mathrm{t}, J=4.4,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.638\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\right.$
$\left.\mathrm{CH}_{2} \mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{~N}\right), 2.91\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right)$, [2.93] (H10'), [2.90] (H, CB 10) [2.74] (H4', 7'), [2.68] (H10), [2.57] (H8'), [2.81, 2.01, 1.81] (H 4, 7, 9, 12,9',12'), [1.71] (H, CB ${ }_{10}$) [1.66] (H5', 11'), [1.64] (H, $\left.\mathrm{CB}_{10}\right)[1.60]\left(\mathrm{H} 6\right.$ '), $[1.56](\mathrm{H} 5,11),[1.46](\mathrm{H} 6),[0.55]\left(\mathrm{H}, \mathrm{CB}_{10}\right),[1.37]\left(\mathrm{H}, \mathrm{CB}_{10}\right),[-3.36]\left(\mu-\mathrm{H}, \mathrm{CB}_{10}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}\right.$, Acetone $\left.-\mathrm{d}_{6}\right): \delta 73.19\left(\mathrm{CH}_{2}-\mathrm{O}\right), 69.56\left(\mathrm{CH}_{2}-\mathrm{O}\right), 65.82\left(\mathrm{CH}_{2}-\mathrm{O}\right), 58.96\left(\mathrm{CH}_{2}-\right.$ N), $56.1\left(\mathrm{CH}_{\text {carb }}\right), 54.94\left(\mathrm{CH}_{\text {carb }}\right), 47.35\left(\mathrm{C}, \mathrm{CH}_{\text {carb }}\right) ;{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetone- $\left.\mathrm{d}_{6}\right): \delta 23.27(\mathrm{~s}, 2 \mathrm{~B}$, B8), 4.51 (d, $J=137,2 \mathrm{~B}, \mathrm{~B} 8$ '), 0.39 ($\left.2 \mathrm{~d}, J=140,3 \mathrm{~B}, \mathrm{~B} 10^{\prime}, \mathrm{B} 5{ }^{\prime \prime}\right),-2.58(\mathrm{~d}, J=146,2 \mathrm{~B}, \mathrm{~B} 10),-4.34$ $\left(\mathrm{d}, J=146, \mathrm{~B} 4^{\prime}, 7{ }^{\prime}\right),-7.29,-8.17$ (3d, overlap, 8B, B4, 7, 9, 12, $\left.9^{\prime}, 12^{\prime}\right),-9.87\left(\mathrm{~d}, 2 \mathrm{~B}, \mathrm{CB}_{10}\right)-13.38(\mathrm{~d}, J$ $\left.=131,2 \mathrm{~B}, \mathrm{CB}_{10}\right),-17.20\left(\mathrm{~d}, J=156,4 \mathrm{~B}, \mathrm{~B} 5^{\prime}, 11^{\prime}\right),-20.32(\mathrm{~d}, J=159,4 \mathrm{~B}, \mathrm{~B} 5,11),-22.08(\mathrm{~d}, J=159$, 2B, B6', 2B CB 10), $-25.34\left(\mathrm{~d}, J=131,1 \mathrm{~B}, \mathrm{~B} 1{ }^{\prime \prime}\right)-28.55(\mathrm{~d}, J(\mathrm{~B}, \mathrm{H})=168,2 \mathrm{~B}, \mathrm{~B} 6),-32.78(\mathrm{~d}, J=143,2 \mathrm{~B}$, CB_{10}).

Sodium hydrogen closo-1-carba-dodecaboryl-1-imino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-
 (12). The $\left[1-\mathrm{NH}_{3}-\mathrm{CB}_{11} \mathrm{H}_{11}\right]^{1}(64 \mathrm{mg}, 0.40 \mathrm{mmol})$ derivative was dissolved in toluene- DME (3: 1, 15 ml) and deprotonated with sodium hydride ($22 \mathrm{mg}, 0.84 \mathrm{mmol}$). Then the 8-dioxane-1 ($170 \mathrm{mg}, 0.41$ mmol) dissolved in toluene- DME (3: $1,15 \mathrm{ml}$) was injected from a syringe. After stirring for 12 h , additional portion of sodium hydride ($11 \mathrm{mg}, 0.42 \mathrm{mmol}$) was added followed by drop-wise addition of the second equivalent of 8-dioxane-1 ($170 \mathrm{mg}, 0.41 \mathrm{mmol}$ in toluent-DME, $3: 1,15 \mathrm{~mL}$). The general synthetic method (see above) was used for isolation. Yield 84 mg (21%); M. P. $156{ }^{\circ} \mathrm{C}$; TLC (acetonitrile/chloroform 1:2 v/v) $\mathrm{R}_{\mathrm{F}}=0.11$; HPLC $\mathrm{k}^{\prime}=0.11$; M.S. 489.67 (35) (calcd. 489.58), $\mathrm{m} / \mathrm{z}=$ 492.58 (2) calcd. $492.58[\mathrm{M}]^{2-}, 979.92$ (100) calcd. $979.84, \mathrm{~m} / \mathrm{z}=987.67(1 \%)[\mathrm{M}+\mathrm{H}]^{-}$calcd. $987.84 ;{ }^{1} \mathrm{H}$ $\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (400 MHz , Acetone- d_{6}), ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}$ in square brackets $]: \delta 4.24$ (s, $8 \mathrm{H}, \mathrm{CH}_{\text {carb }}$), 4.18 (br. $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 3.620\left(\mathrm{br} . \mathrm{t}, J=5.2,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 3.501\left(\mathrm{t} J=5.2,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.427(\mathrm{t}, J=$ 6.8, $4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}$), $2.974\left(\mathrm{~m}, J=6.8,4 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right)$, [3.08] (H 8 '), [2.94] (H10'), [2.73] (H4', 7'), [2.68] (H10), [2.90 s, $2.00 \mathrm{~s}, 1.78 \mathrm{~s}]\left(\mathrm{H} 4,7,9,12,9^{\prime}, 12\right.$ '), $1.66\left(\mathrm{H}^{\prime} 2^{\prime}\right.$ ', $\left.\mathrm{NHCB}_{11} \mathrm{H}_{11}\right)$, [1.65] (H5', 11'), [1.60] (H6'), [1.53] (H5, 11), [3.11, 1.47] (H2' '-10', $\mathrm{NHCB}_{11} \mathrm{H}_{11}$), [1.41] (H6); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$

NMR, (100 MHz, Acetone- $\left.\mathrm{d}_{6}\right): \delta 72.53\left(\mathrm{CH}_{2}-\mathrm{N}\right), 71.48\left(\mathrm{CH}_{2}-\mathrm{O}\right), 69.29\left(\mathrm{CH}_{2}-\mathrm{O}\right), 56.02\left(\mathrm{CH}_{2}-\mathrm{O}\right), 55.12$ $\left(\mathrm{CH}_{\text {carb }}\right), 54.37\left(\mathrm{CH}_{\mathrm{cB11}}\right), 47.29\left(\mathrm{CH}_{\text {carb }}\right) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Acetone- $\left.\mathrm{d}_{6}\right): \delta 23.10 \mathrm{~s}(2 \mathrm{~B}, \mathrm{~B} 8), 4.08 \mathrm{~d}$ $\left({ }^{1} J(\mathrm{~B}, \mathrm{H})=130 \mathrm{~Hz}, 2 \mathrm{~B}, \mathrm{~B} 8^{\prime}\right), 0.49 \mathrm{~d}\left({ }^{1} J(\mathrm{~B}, \mathrm{H})=142 \mathrm{~Hz}, 2 \mathrm{~B}, \mathrm{~B} 10^{\prime}\right),-2.41\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=149 \mathrm{~Hz}, 2 \mathrm{~B}\right.$, B10), $-4.36\left({ }^{1} J(\mathrm{~B}, \mathrm{H})=147 \mathrm{~Hz}, 4 \mathrm{~B}, \mathrm{~B} 4^{\prime}, 7^{\prime}\right),-7.36 \mathrm{~d},-7.91 \mathrm{~d}$ (overlap, 8B, B9, 12, $\left.9^{\prime}, 12^{\prime}\right),-11.73(\mathrm{~d}$, overlap, 1B, $\mathrm{NHCB}_{11} \mathrm{H}_{11}$, B12"), -13.95, -14.76 2d (overlap, 10B, $\mathrm{NHCB}_{11} \mathrm{H}_{11}, \mathrm{~B} 2 "-\mathrm{B} 11$ "), -17.18 (d, $\left.{ }^{1} J(\mathrm{~B}, \mathrm{H})=153 \mathrm{~Hz}, 4 \mathrm{~B}, \mathrm{~B} 5{ }^{\prime}, 11^{\prime}\right),-20.37\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=159 \mathrm{~Hz}, 4 \mathrm{~B}, \mathrm{~B} 5,11\right),-22.1\left(\mathrm{~d},{ }^{1} J(\mathrm{~B}, \mathrm{H})=164, \mathrm{~Hz}\right.$, 2B, B6'), $-28.48 \mathrm{~d},\left({ }^{1} J(\mathrm{~B}, \mathrm{H})=162 \mathrm{~Hz}, 2 \mathrm{~B}, \mathrm{~B} 6\right)$.

Double cluster compounds prepared by use of the eleven vertex $\mathbf{1 0 - O}\left(\mathbf{C H}_{2} \mathrm{CH}_{2}\right) \mathrm{O}-\mathbf{7 , 8}-\mathrm{C}_{\mathbf{2}} \mathrm{B}_{\mathbf{9}} \mathrm{H}_{\mathbf{1 2}}$

 building blockSynthesis of 10-dioxane-nido-7,8-dicarbaundecaborate zwitterion 15 The synthesis was carried out according to Scheme S 1 . The known neutral nido carborane ${ }^{13} \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{13}$ was generated by treatment of a slurry of $\mathrm{Et}_{3} \mathrm{NH}\left[\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]$ salt $(7.0 \mathrm{~g}, 29.7 \mathrm{mmol})$ in toluene $(50 \mathrm{ml})$ with concentrated sulfuric acid (12 ml) under vigorous stirring. After dissolution of the solid material (10 min .), the toluene layer was separated and filtered. To this solution stirred under nitrogen, dioxane ($5 \mathrm{ml}, 58.4 \mathrm{mmol}$) was injected and the reaction mixture was heated and stirred at $80^{\circ} \mathrm{C}$ for 8 h . After cooling down, the solvents were removed in vacuum and the resulting waxy solid was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$, injected onto a top of silica gel column ($150 \times 30 \mathrm{~mm}$) and the compound was eluted with chloroform. The combined fractions containing the products were evaporated in vacuum to dryness. Yield $4.98 \mathrm{~g}(75 \%)$, white crystalline solid. M.S., ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectra were identical with the literature data reported for this compound ${ }^{13}$.

Scheme S1: Simple synthetic route to the 10 -dioxane- $7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}$ derivative via the neutral carborane $7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{13}$

$\left[\boldsymbol{n}-\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{9}} \mathrm{NH}-\left(\mathbf{1 0}-\left(\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}} \mathrm{O}\right)_{\mathbf{2}}^{\mathbf{-}} \mathbf{- 7 , 8}-\mathbf{C}_{\mathbf{2}} \mathbf{B}_{\mathbf{9}} \mathbf{H}_{\mathbf{1 1}}\right)_{\mathbf{2}}\right] \mathbf{N a}, \mathbf{1 4}$. Compound $\mathbf{1 5}(88 \mathrm{mg}, 0.41 \mathrm{mmol})$ was reacted with n-butylamine ($88 \mathrm{mg}, 0.40 \mathrm{mmol}$) in toluene/DME ($4: 1,25 \mathrm{~mL}$) solution to which $\mathrm{NaH}(22 \mathrm{mg}, 0.82$ $\mathrm{mmol})$ was added. After stirring for 4 h at $60^{\circ} \mathrm{C}$, additional portions of $\mathrm{NaH}(11 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $\mathbf{1 5}$ ($88 \mathrm{mg}, 41 \mathrm{mmol}$ in toluene/DME $4: 1,15 \mathrm{~mL}$) were added and the reaction mixture was stirred for additional 6 h at $60{ }^{\circ} \mathrm{C}$. After cooling down, the product was isolated following the general method described above. Yield $110 \mathrm{mg}(51 \%)$; M. P. $69^{\circ} \mathrm{C}$; TLC (acetonitrile/ chloroform $1: 2 \mathrm{v} / \mathrm{v}$) $\mathrm{R}_{\mathrm{F}}=0.17$; HPLC $\mathrm{k}^{\prime}=0.82$; MS (m/z) 513.58 (100) (calc. 513.56), 516.44 (14) [M$]{ }^{-}$(calc. 516.53); ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ NMR (400 MHz,Acetone-d d_{6}, $\left[{ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}_{\text {selective }}\right\}\right.$ in square brackets $]: \delta 9.15 \mathrm{br}$. s $(1 \mathrm{H}, \mathrm{NH}), 3.943(\mathrm{t}, J=5.1,4 \mathrm{H}$, $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}\right), 3.652-3.540\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}\right), 3.387-3.340\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}\right)$, $1.546 \mathrm{~s}\left(4 \mathrm{H}, \mathrm{CH}_{\text {carb }}\right), 1.87 \mathrm{~m}\left(2 \mathrm{H}, C H_{2}-\mathrm{CH}_{2} \mathrm{~N}\right), 1.452\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 0.987\left(\mathrm{t}, 3 \mathrm{H},{ }^{1} J=7.7\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right),[2.16](\mathrm{H} 9,12),[1.43](\mathrm{H} 3),[1.38](\mathrm{H} 5,6)[1.18](\mathrm{H} 2,4),[0.47](\mathrm{H} 1)[-0.51]([1.43](\mu \mathrm{H} 10-$ 9,11); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\left(100 \mathrm{MHz}\right.$, Acetone- $\left.\mathrm{d}_{6}\right): \delta 73.67\left(\mathrm{CH}_{2}-\mathrm{O}\right), 70.38\left(\mathrm{CH}_{2}-\mathrm{O}\right), 64.58\left(\mathrm{CH}_{2}-\mathrm{O}\right), 54.55$
$\left(\mathrm{CH}_{2}-\mathrm{N}, \mathrm{C}_{4} \mathrm{H}_{9}\right), 52.93\left(\mathrm{CH}_{2}-\mathrm{N}\right), 39.96\left(\mathrm{CH}_{\text {carb }}\right)$, $26.42\left(\mathrm{CH}_{2}\right), 20.38\left(\mathrm{CH}_{2}\right), 13.75\left(\mathrm{CH}_{3}\right) ;{ }^{11} \mathrm{~B}$ NMR (128 MHz, Acetone- d_{6}): $\delta-9.74$ (s, 2B, B10), -12.47 (d, $J=131,4 \mathrm{~B}, \mathrm{~B} 9,11$), $-17.30(\mathrm{~d}, J=131,4 \mathrm{~B}, \mathrm{~B} 5,6),-$ $23.72(\mathrm{~d}, J=150,4 \mathrm{~B}, \mathrm{~B} 2,4),-24.89(\mathrm{~d}, J=155,2 \mathrm{~B}, \mathrm{~B} 3),-40.39(\mathrm{~d}, J=137,2 \mathrm{~B}, \mathrm{~B} 1)$.

Experimental Methods Molecular Modeling

Molecular dynamics/quenching (MD/Q) calculations AMBER8 package ${ }^{14}$ was used to scan the conformational space available to the linker of $\mathbf{1}$ in complex with PR. Force-field parameters used for PR were from ff99 force field ${ }^{15}$ while bond lengths of boron-containing bonds of $\mathbf{1}$ were calculated by use of quantum chemical (QM) calculations and force constants of these bonds were transferred from the all-atom Universal force field (UFF) ${ }^{16}$. Partial charges for atoms of 1 were obtained using restrained fit to the electrostatic potential (RESP) protocol at the B3LYP/cc-pVTZ level with a dielectric constant of $\varepsilon=4$ applied 15. Structures were collected every 100 ps and the total simulation time was 2 ns . We applied integration step of 0.5 fs and a generalized Born solvent model ${ }^{17}$ at a temperature of 500 K . The obtained structures were optimized using molecular mechanics (MM) by the conjugate gradient method.

QM/MM calculations All the structures obtained by the MD/Q procedure described above were further optimized by use of QM/MM. These calculations were carried out using our own QM/MM code which acts as an interface between the Turbomole package ${ }^{18}$ (QM calculations) and the AMBER8 package ${ }^{14}$ (MM calculations) (described in detail in ${ }^{19}$). The QM region comprised the molecule of $\mathbf{1}$ and its sodium counterions in positions 121 and 121' (119 atoms altogether) and was treated with the density functional theory (DFT) approach, augmented by empirically parameterized dispersion corrections (DFT-D) ${ }^{20}$. We applied the resolution of the identity (RI) approximation ${ }^{21}$ to the DFT method with the TPSS functional and SVP (3s2p1d/2s1p) basis set.

References

1. Kozisek, M.; Cigler, P.; Lepsik, M.; Fanfrlik, J.; Rezacova, P.; Brynda, J.; Pokorna, J.; Plesek, J.; Gruner, B.; Grantz Saskova, K.; Vaclavikova, J.; Kral, V.; Konvalinka, J. Inorganic polyhedral metallacarborane inhibitors of HIV protease: a new approach to overcoming antiviral resistance. J Med Chem 2008, 51, 4839-43.
2. Lineweaver, H. a. B. D. The determination of enzyme dissociation constants. JACS 1934, 56, 656666.
3. Jelinek, T.; Plesek, J.; Hermanek, S.; Stibr, B. Preparation of 7-Substituted 7-Carba-NidoUndecaboranes(12). Collection of Czechoslovak Chemical Communications 1985, 50, 1376-1382.
4. Plesek, J.; Jelinek, T.; Drdakova, E.; Hermanek, S.; Stibr, B. A Convenient Preparation of 1-Cb11h12- and Its C-Amino Derivatives. Collection of Czechoslovak Chemical Communications 1984, 49, 1559-1562.
5. Plesek, J.; Hermanek, S.; Franken, A.; Cisarova, I.; Nachtigal, C. Dimethyl sulfate induced nucleophilic substitution of the [bis(1,2-dicarbollido)-3-cobalt(1-)]ate ion. Syntheses, properties and structures of its 8,8'-mu-sulfato, 8-phenyl and 8-dioxane derivatives. Collection of Czechoslovak Chemical Communications 1997, 62, 47-56.
6. Plesek, J.; Hermanek, S.; Base, K.; Todd, L. J.; Wright, W. F. Zwitterionic Compounds of 8,8'X(C2b9h10)2co Series with Monoatomic O, S, Se, Te, N Bridges between Carborane Ligands. Collection of Czechoslovak Chemical Communications 1976, 41, 3509-3515.
7. Plesek, J.; Hermanek, S.; Stibr, B. 3-(Eth-5-Cyclopentadienyl)-1,2-Dicarba-3-Cobalta-ClosoDodecaborane(11), 3-(Eth-5-C5h5)-3-Co-1,2-C2b9h11. Inorganic Syntheses 1983, 22, 235-237.
8. Sivaev, I. B.; Starikova, Z. A.; Sjoberg, S.; Bregadze, V. I. Synthesis of functional derivatives of the [3,3 '-Co(1,2-C2B2H11)(2)](-) anion. Journal of Organometallic Chemistry 2002, 649, 1-8.
9. Gruner, B.; Plesek, J.; Baca, J.; Cisarova, I.; Dozol, J. F.; Rouquette, H.; Vinas, C.; Selucky, P.; Rais, J. Cobalt bis(dicarbollide) ions with covalently bonded CMPO groups as selective extraction agents for lanthanide and actinide cations from highly acidic nuclear waste solutions. New Journal of Chemistry 2002, 26, 1519-1527.
10. Shriver, D. F. D., M. A. Manipulation of Air Sensitive Compounds. 2nd. ed. ed.; Wiley: New York: 1986.
11. Gruner, B.; Mikulasek, L.; Baca, J.; Cisarova, I.; Bohmer, V.; Danila, C.; Reinoso-Garcia, M. M.; Verboom, W.; Reinhoudt, D. N.; Casnati, A.; Ungaro, R. Cobalt bis(dicarbollides)(1-) covalently attached to the calix[4]arene platform: The first combination of organic bowl-shaped matrices and inorganic metallaborane cluster anions. European Journal of Organic Chemistry 2005, 2022-2039.
12. Grűner, B.; Plzák, Z. High-performance liquid chromatographic separations of boroncluster compounds. J. Chromatogr. A 1997, 789, 497-517.
13. Stogniy, M. Y.; Abramova, E. N.; Lobanova, I. A.; Sivaev, I. B.; Bragin, V. I.; Petrovskii, P. V.; Tsupreva, V. N.; Sorokina, O. V.; Bregadze, V. I. Synthesis of functional derivatives of 7,8-dicarba-nido-undecaborate anion by ring-opening of its cyclic oxonium derivatives. Collection of Czechoslovak Chemical Communications 2007, 72, 1676-1688.
14. Case, D. A. D. T. A. C. T. E. S. I., C.L.; J. Wang; R.E. Duke; Luo R.; Merz K.M.; Wang B.; Pearlman D.A.; Crowley M.; Brozell S.; Tsui V.; Gohlke H.; Mongan J.; Hornak V.; Cui G.; Beroza P.; Schafmeister C.; J. Caldwell W.; Ross W.S.; Kollman P.A.. . AMBER 8, University of California, San Francisco: 2004.
15. Wang, J. M.; Cieplak, P.; Kollman, P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry 2000, 21, 1049-1074.
16. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. Uff, a Full PeriodicTable Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. Journal of the American Chemical Society 1992, 114, 10024-10035.
17. Chambers, C. C.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. Journal of Physical Chemistry 1996, 100, 16385-16398.
18. Ahlrichs, R.; Bar, M.; Haser, M.; Kolmel, C.; Sauer, J. Nonempirical Direct Scf Calculations on Sodalite and Double 6-Ring Models of Sio2 and Alpo4 Minerals - H24si24o60, H12si12o30, H12al6p6o30. Chemical Physics Letters 1989, 164, 199-204.
19. Fanfrlik, J.; Brynda, J.; Rezac, J.; Hobza, P.; Lepsik, M. Interpretation of Protein/Ligand Crystal Structure using QM/MM Calculations: Case of HIV-1 Protease/Metallacarborane Complex. Journal of Physical Chemistry B 2008, 112, 15094-15102.
20. Jurecka, P.; Cerny, J.; Hobza, P.; Salahub, D. R. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. Journal of Computational Chemistry 2007, 28, 555-569.
21. Feyereisen, M.; Fitzgerald, G.; Komornicki, A. Use of Approximate Integrals in Abinitio Theory an Application in Mp2 Energy Calculations. Chemical Physics Letters 1993, 208, 359-363.
