Supporting Information

$\alpha_{v} \beta_{3}$ Integrin-Targeting Arg-Gly-Asp (RGD)
 Peptidomimetics Containing Oligoethylene Glycol (OEG) Spacers

Vincent Rerat ${ }^{a}$, Georges Dive ${ }^{b}$, Alex A. Cordic ${ }^{c}$, Gordon C. Tucker ${ }^{c}$, Reine Bareille ${ }^{d}$, Joëlle Amédée ${ }^{d}$, Laurence Bordenave ${ }^{d}$, and Jacqueline Marchand-Brynaert** ${ }^{\text {. }}$

Table of contents:
I. Large-scale synthesis of the tyrosine scaffold $\mathbf{1}$ (see Scheme 1 of the main text)........................... S2
II. Synthesis of the various Arg-mimics (see Scheme 2 of the main text) ... S6
III. Synthesis of the OEG spacer-arms (see Scheme 1 of the main text)... S17
IV. Synthesis of compounds cited in Tables 1, 2, 3 and 4 (see Scheme 1 of the main text) S22
V. Modelisation of the cyclic peptide.. S39

I. Large-scale synthesis of (S)-t-butyl 3-(4-hydroxy-3-nitrophenyl)-2-(3-trifluoromethyl-benzenesulfonylamino)-propionate (1).

Synthesis of \boldsymbol{t}-butyl (L)-tyrosinate.

t-Butyl ester of tyrosine was prepared by transesterification with t-butyl acetate in the presence of an acid catalyst. Reaction of (L)-Tyr (1 equiv.) with a $1: 1$ mixture of t-BuOAc and t - $\mathrm{BuOH}(10-15$ equiv.) and $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, at $0^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$, gave modest yields of t-butyl tyrosinate (between 20% to 40%). Using t-BuOAc as reagent and solvent, and HClO_{4} as catalyst, we could improve the yields (about 70%), but a side-product ($10-15 \%$ yield) was also formed corresponding to aromaticOH alkylation (t-butyl 3-(4-t-butyloxy-phenyl)-2-aminopropionate).

Protocol.

In a 500 mL reactor (equipped with a dropping funnel, a mechanical stirrer and a cooling system with temperature control), (L)-tyrosine ($18.1 \mathrm{~g}, 0.1 \mathrm{~mol}, 1$ equiv.) was suspended in t-butyl acetate ($335 \mathrm{~mL}, 2.5 \mathrm{~mol}, 25$ equiv.) and the mixture was cooled at $14^{\circ} \mathrm{C} . \mathrm{HClO}_{4}(13 \mathrm{~mL}, 0.2 \mathrm{~mol}, 2$ equiv.) was added dropwise over 15 min . The mixture was stirred for 18 h at $14{ }^{\circ} \mathrm{C}$. The organic phase was successively extracted with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \times 50$ $\mathrm{mL})$. The aqueous phases were gathered, diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and brought to pH 9 by careful addition of solid potassium carbonate, in small portions (formation of a white precipitate). Extraction with EtOAc ($3 \times 100 \mathrm{~mL}$), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration and concentration under vacuum afforded crude ester as a white solid. This was washed with cold cyclohexane (for removing the side-product) and dried under vacuum to afford pure t-butyl (L)-tyrosinate (13.5 g , $0.057 \mathrm{~mol}, 57 \%$ yield $)$ as a white solid. $\mathrm{R} f\left(\mathrm{SiO}_{2} ;\right.$ EtOAc/acetone $\left.9: 1\right)=0.4 .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.75-3.01(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}) \cdot[\alpha]_{D}^{20} 26.4(c=0.5, \mathrm{MeOH})$; for commercial product from Fluka: $[\alpha]_{D}^{20} 26.1(c=0.5$, MeOH).

Synthesis of (S)-t-butyl 3-(4-hydroxyphenyl)-2-(3-trifluoromethyl-benzenesulfonylamino)propionate.

Sulfonylation of t-butyl tyrosinate under usual conditions, ${ }^{3}$ i.e. with 3-trifluoromethylbenzenesulfonyl chloride and pyridine in DCM at $20^{\circ} \mathrm{C}$, gave a mixture of the desired N -sulfonyl derivative $(25-35 \%)$ and O, N-bis-sulfonyl derivative ($30-40 \%$). The two products could be separated by column-chromatography on silica gel. The chemoselectivity in favour of aliphatic NH_{2} versus aromatic OH could be improved by using a mixture of THF and DMF as solvent. This specific solvatation effect was initially developed by Albanese et al. ${ }^{1,2}$

Protocol.

In a 500 mL reactor (equipped with a dropping funnel, a mechanical stirrer and a cooling system with temperature control), (L)-t-butyl tyrosinate ($19 \mathrm{~g}, 80 \mathrm{mmol}, 1.1$ equiv.) was introduced and dissolved in DMF (30.4 mL) and THF (152 mL). After cooling at $0{ }^{\circ} \mathrm{C}$, 3(trifluoromethyl)benzenesulfonyl chloride ($11.65 \mathrm{~mL}, 72.7 \mathrm{mmol}, 1$ equiv.) dissolved in THF (91 mL) was added dropwise over 3 h . The reaction mixture was allowed to reach room temperature and stirring was maintained for 1 h . Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}(7.7 \mathrm{~g}, 72.7 \mathrm{mmol}, 1$ equiv.) was then added in one portion and the mixture was stirred for another 1 h . Filtration over a celite pad, and concentration under reduced pressure left a residue which was dissolved in ether/EtOAc (9:1 mixture, v/v; 200 mL). Extraction with brine ($3 \times 50 \mathrm{~mL}$), $1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \times 20$ mL), drying over MgSO_{4}, filtration and concentration gave the title compound (32.1 g , 72 mmol , 90% yield) as a colorless oil. ${ }^{4} \mathrm{R} f\left(\mathrm{SiO}_{2} ; \mathrm{DCM} / E t \mathrm{OAc} 9: 1\right)=0.8 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.25(\mathrm{~s}, 9 \mathrm{H}), 2.97(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 5.94\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHSO}_{2}\right), 5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $6.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=8.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H})$.

Enantionmeric purity control.

The previous protocol has been applied to racemic t-butyl tyrosinate and the N-sulfonated product was analyzed by HPLC (Gilson equipment: two pumps 306, manometric modulus 805, dynamic
mixer 811D, injector Rheodyne 7725i, detector Jasco CD2095 Plus, computer program Unipoint). An AD-H chiral column from Daicel (FR) was used ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm} ; 5 \mu \mathrm{M}$). Elution was made with n-hexane $/ i$-propanol $85: 15(\mathrm{v} / \mathrm{v})$ at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ and detection was recorded at 280 $n m$. The enantiomers were detected at $R_{T}=11.1 \mathrm{~min}$ and $\mathrm{R}_{\mathrm{T}}=23.0 \mathrm{~min}$. The compound synthesized from (L)-tyrosinate gave one major peak at $\mathrm{R}_{\mathrm{T}}=23.0 \mathrm{~min}$ (enantiomeric purity $\geq 97 \%$).

Synthesis of (S)-t-butyl 3-(4-hydroxy-3-nitro-phenyl)-2-(3-trifluoromethyl-benzene

sulfonylamino)-propionate.

Protocol.

In a 500 mL reactor (equipped with a dropping funnel, a mechanical stirrer and a cooling system with temperature control), the previous intermediate ($22.82 \mathrm{~g}, 51.3 \mathrm{mmol}, 1$ equiv.) was introduced and dissolved in acetic acid (200 mL). The solution was cooled at $15^{\circ} \mathrm{C}$ and 90% nitric acid (3.06 mL) dissolved in acetic acid (100 mL) was added dropwise over a period of 1 h (the temperature was not allowed to increase over $19^{\circ} \mathrm{C}$). After complete addition, the mixture was stirred for 15 min , then poured on ice $(200 \mathrm{~g})$. The mixture was introduced in a separation funnel and diluted with DCM (200 mL) and water (300 mL). The organic layer was recovered. The aqueous phase was extracted with DCM ($2 \times 100 \mathrm{~mL}$). The organic phases were gathered, washed with brine (50 mL) and transferred in the reactor. Water (100 mL) was added and the residual acetic acid was neutralized by careful addition of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in small portions, under stirring, in order to reach pH 9. The mixture was transferred in the separation funnel; the organic layer was recovered, dried over MgSO_{4}, filtered over a short pad of celite and silicagel using DCM/EtOAc (95:5, v/v) as eluent. The filtrate was concentrated under vacuum to afford the title compound ($25 \mathrm{~g}, 51 \mathrm{mmol}$, 98% yield) as a yellow solid (spontaneous crystallization). ${ }^{4} \mathrm{R} f\left(\mathrm{SiO}_{2} ; \mathrm{DCM}\right)=0.7 .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{~s}, 9 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 5.38\left(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{~N} H\right), 7.08$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1$ H), $7.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 10.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$.

Enantiomeric purity control.

Nitration was similarly performed on the racemic precursor and the product was analyzed by HPLC as above. The enantiomers were detected at $\mathrm{R}_{\mathrm{T}}=10.4 \mathrm{~min}$ and $\mathrm{R}_{\mathrm{T}}=18.5 \mathrm{~min}$. The compound synthesized from (L)-precursor gave only one peak at $\mathrm{R}_{\mathrm{T}}=18.5 \mathrm{~min}$ (enantiomeric purity $\geq 99 \%$).

REFERENCES

1. Albanese, D.; Landini, D.; Penso, M.; Spano, G.; Trebicka, A. Chemoselective N-alkylation of 2-hydroxycarbazole as a model for the synthesis of N -substituted pyrrole derivatives containing acidic functions. Tetrahedron 1995, 51, 5681-5688.
2. Albanese, D.; Landini, D.; Lupi, V.; Penso, M. N-monoalkylation of alpha-amino acid esters under solid-liquid PTC conditions. Eur. J. Org. Chem. 2000, 1443-1449.
3. Attolini, M.; Boxus, T.; Biltresse, S.; Marchand-Brynaert, J. Chemoselective O-methylation of N-acylated/sulfonylated tyrosine derivatives. Tetrahedron Lett. 2002, 43, 1187-1188.
4. Biltresse, S.; Attolini, M.; Dive, G.; Cordi, A.; Tucker, G. C.; Marchand-Brynaert, J. Novel RGD-like molecules based on the tyrosine template: design, synthesis, and biological evaluation on isolated integrins $\alpha_{V} \beta_{3} / \alpha_{\text {IIb }} \beta_{3}$ and in cellular adhesion tests. Bioorg. \& Med. Chem. 2004, 12, 5379-5393.

II. Synthesis of the various Arg-mimics

This section describes the intermediates drawn in Scheme 2.

Synthesis of N - t-butoxycarbonyl-3-amino-1-propanol (10a).

A solution of 3-amino-1-propanol ($3.05 \mathrm{~mL}, 40 \mathrm{mmol}$) in $t-\mathrm{BuOH}(40 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ was treated successively with $\mathrm{NaOH}(1.6 \mathrm{~g}, 40 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(13.34 \mathrm{~g}, 48 \mathrm{mmol})$ added in small portions. The mixture was stirred for 24 h at $20^{\circ} \mathrm{C}$, then extracted with ether ($2 \times 25 \mathrm{~mL}$). The organic phase was washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by chromatography on silica gel to give $10 \mathrm{a}(6.3 \mathrm{~g}, 90 \%)$ as a colorless oil. $\mathrm{Rf}(\mathrm{DCM} / E t O A c 4: 1)=$ 0.32. IR 3400, 2979, 2938, 2881, 1699, 1539, 1367, 1278, 1253, $1174 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 2.3(\mathrm{br} \mathrm{m}, \mathrm{OH}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, 4.8 (br s, BocNH, 1 H ,). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.4,32.8,37,59.3,79.5,157.1 . \mathrm{MS}$ (ESI) $m / z 198[\mathrm{M}+\mathrm{Na}]^{+}, 142,98 . \mathrm{RN}: 58885-58-8\left(\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{3}\right)$.

Synthesis of N - t-butoxycarbonyl-4-amino-1-butanol (10b).

The title compound was prepared as above from 4-amino-1-butanol ($2.07 \mathrm{~mL}, 22.4 \mathrm{mmol}$), as a colorless oil (4.1 g, 97\%). $\mathrm{Rf}(\mathrm{EtOAc} / \mathrm{DCM} 6: 4)=0.3 . \mathrm{IR} 3366,2976,2933,2869,1689,1537$, $1454,1392,1366,1280,1252,1172 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.57(\mathrm{~m}, 4$ H), 1.90 (br m, OH, 1 H), $3.15(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{br} \mathrm{s}, \mathrm{BocNH}, 1$ H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.74,28.59,29.88,40.48,62.35,79.33,156.41$. MS (ESI) m / z $212[\mathrm{M}+\mathrm{Na}]^{+}, 190[\mathrm{M}+\mathrm{H}]^{+}, 134 . \mathrm{RN}: 75178-87-9\left(\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{3}\right)$.

Synthesis of N, N^{\prime}-di- t-butoxycarbonyl-3,5-dimetylpyrazolyl-1-carboxamidine (11).

$\mathrm{NaH}(1.5 \mathrm{~g}, 60 \%$ weight in paraffin 37.3 mmol) was washed with petroleum ether (3 times) in a flask placed under Ar atmosphere, then covered with dry THF (60 mL). Under stirring, 3,5-dimethyl-1H-pyrazolyl-1-carboxamidine $\left(\mathrm{HNO}_{3}\right.$ salt, $\left.1.5 \mathrm{~g}, 7.2 \mathrm{mmol}\right)$ was added followed by $\mathrm{Boc}_{2} \mathrm{O}(8.13 \mathrm{~g}, 37.3 \mathrm{mmol})$ dissolved in THF (5 mL) and introduced dropwise with a syringe. The mixture was refluxed for 6 h under Ar atmosphere. After cooling, EtOH (50 mL) was added
dropwise under vigorous stirring. The crude mixture was concentrated under vacuum and the residue was dissolved in DCM (30 mL). The organic phase was washed with water ($2 \times 10 \mathrm{ml}$), brine ($1 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and purified by chromatography on silica gel to afford $\mathbf{1 1}(1.98 \mathrm{~g}$, 81%) as a white solid. $\mathrm{R} f(n-\mathrm{Hex} / \mathrm{EtOAc} 5: 1)=0.47 . \mathrm{Mp} 96-9{ }^{\circ} \mathrm{C}$. IR 2982, 2930, 1771, 1711, 1655, 1621, 1495, 1294, $1138 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 2.22$ $(\mathrm{s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H})$, (NHBoc, not visible). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.4$, $15.09,27.94,80.49,82.53,111.24,140.37,144,149.52,150.32,157.46$. MS (ESI) $m / z 361[\mathrm{M}+$ $\mathrm{Na}]^{+}, 339[\mathrm{M}+\mathrm{H}]^{+}, 239,183,139 . \mathrm{RN}: 153114-31-9\left(\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}\right)$.

Synthesis of 3-(N, N^{\prime}-di- t-butoxycarbonylguanidino)-propan-1-ol (12a).

To a solution of 3-amino-1-propanol ($0.2 \mathrm{~mL}, 2.66 \mathrm{mmol}$) in DCM (20 mL) were added successively $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL}, 2.66 \mathrm{mmol})$ and $11(1 \mathrm{~g}, 2.96 \mathrm{mmol})$, under stirring at room temperature. After 18 h , the mixture was diluted with $\mathrm{DCM}(30 \mathrm{~mL})$ and washed with $0.1 \mathrm{~N} \mathrm{HCl}(2$ x 10 mL), $0.1 \mathrm{~N} \mathrm{NaOH}(2 \times 10 \mathrm{~mL})$, brine (1 x 20 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, concentration and chromatography on silica gel gave 12a $(0.78 \mathrm{~g}, 92 \%)$ as a white solid. $\mathrm{R} f(\mathrm{DCM} / E t O A c 1: 1)=0.66$. Mp 112-113 ${ }^{\circ} \mathrm{C}$. IR 3329, 2979, 2930, 1724, 1650, 1415, 1333, 1160, $1136 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.5(\mathrm{~s}, 9 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 4.8(\mathrm{br} \mathrm{s}$, $\mathrm{OH}, 1 \mathrm{H}), 8.46(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 11.45(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.98$, 28.12, $32.8,36.66,57.59,79.41,83.4,153.11,157.13,163.7$. MS (ESI) $m / z 340[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{RN}: 405075-$ 82-3 ($\left.\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$.

Synthesis of 4-(N, N, -di-t-butoxycarbonylguanidino)-butan-1-ol (12b).

The title compound was prepared as above from 4-amino-1-butanol $(0.1 \mathrm{~mL}, 1.08 \mathrm{mmol})$ as a white solid (0.35 g, 97\%). $\mathrm{Rf}(\mathrm{DCM} / E t O A c ~ 1: 1)=0.63 . \mathrm{Mp} 124-125^{\circ} \mathrm{C} . \operatorname{IR} 3334,2983,2930,2869$, $1722,1644,1613,1570,1417,1368,1334,1161,1135,1052,1027 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.5(\mathrm{~s}, 18 \mathrm{H}), 1.64(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.7(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H})$, 8.39 (s, NH, 1 H), 11.48 (s, NH, 1 H). MS (ESI) $m / z 354[\mathrm{M}+\mathrm{Na}]^{+}$, 276, 220. RN: 208465-10-5 $\left(\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}\right)$.

Synthesis of 3-(pyrimidin-2-yl-amino)-propan-1-ol (13a).

A mixture of 2-chloropyrimidine $(0.15 \mathrm{~g}, 1.31 \mathrm{mmol})$ and 3-amino-1-propanol ($0.2 \mathrm{~mL}, 2.62 \mathrm{mmol}$) in ethanol (5 mL) was refluxed for 18 h under Ar atmosphere. Concentration under vacuum and chromatography on silica gel gave 13a $(0.2 \mathrm{~g}, 99 \%)$ as white crystals. $\mathrm{R} f(\mathrm{EtOAc} / i-\mathrm{PrOH} 8: 2)=$ 0.28. Mp 53-54 ${ }^{\circ} \mathrm{C}$. IR 3266, 2938, 2875, 1592, 1539, 1456, 1417, 1368, 1272, $1063 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.78(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H})$, 6.18 (br s, NH, 1 H), $6.52(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 33.36,37.77,58.8,110.6,155.65,158.17$. HRMS $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 154.0980; found, 154.0979.

Synthesis of 4-(pyrimidin-2-yl-amino)-butan-1-ol (13b).

The title compound was prepared as above from 2-chloropyrimidine (1 g) and 4-amino-1-butanol, as a pale yellow crystallin solid ($1.36 \mathrm{~g}, 93 \%$). $\mathrm{R} f(\mathrm{EtOAc} / \mathrm{i}-\mathrm{PrOH} 8: 2)=0.36 . \mathrm{Mp} 36-37{ }^{\circ} \mathrm{C} . \mathrm{IR}$ $3334,2937,2866,1594,1534,1456,1417,1371,1059 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.68$ $(\mathrm{m}, 4 \mathrm{H}), 2.58(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.51(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.41,29.96,41.29$, 62.49, 110.44, 158.07, 162.38. HRMS $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 168.1137$; found, 168.1142.

Synthesis of 3-(1-oxi-pyridin-2-yl-amino)-propan-1-ol (14a).

A mixture of 2-chloropyridine N -oxide hydrochloride ($0.435 \mathrm{~g}, 2.62 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(0.485 \mathrm{~g}$, $5.76 \mathrm{mmol})$ and 3-amino-1-propanol ($0.2 \mathrm{~mL}, 2.62 \mathrm{mmol}$) in t-amyl alcohol (5 mL) was refluxed for 12 h under Ar atmosphere. Filtration, concentration under vacuum, and chromatography on silica gel gave $14 \mathbf{a}(0.425 \mathrm{~g}, 82 \%)$ as a pale yellow solid. $\mathrm{R} f(\mathrm{DCM} / \mathrm{MeOH} 9: 1)=0.33 . \mathrm{Mp} 97-98$ ${ }^{\circ} \mathrm{C}$. IR 3297, 2920, 2850, 1627, 1575, 1532, 1466, 1435, 1194, 1126, 1069, $751 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.88(\mathrm{~m}, 2 \mathrm{H}), 2.7(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{dd}, J$ $=8.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.9(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.7,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.58,38.95,58.99,106.44,111.41$,
129.84, 137.54, 150.52. HRMS $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 169.0977$; found, 169.0972. RN: 187339-14-6.

Synthesis of 4-(1-oxi-pyridin-2-yl-amino)-butan-1-ol (14b).

The title compound was obtained as above from 2-chloropyridine N -oxide hydrochloride (0.365 g) and 4-amino-1-butanol, as a yellow solid ($0.27 \mathrm{~g}, 69 \%$). $\mathrm{R} f(\mathrm{DCM} / \mathrm{MeOH} 9: 1)=0.39 . \mathrm{Mp} 85-86$ ${ }^{\circ} \mathrm{C}$. IR 3349, 2925, 2854, 1626, 1574, 1531, 1439, 1265, 1195, 1060, $738 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.69(\mathrm{~m}, 4 \mathrm{H}), 2.63(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 3.3(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~m}, 2 \mathrm{H})$, 6.85 (br s, NH, 1 H), 7.19 (dd, $J=8.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.79,30.14,42.13,61.92,106.14,111.39,129.48,137.72$, 150.61. HRMS $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 183.1134; found, 183.1138. RN: 258881-10-8

Synthesis of 3-(4-methyl-pyridin-2-yl-amino)-propan-1-ol (15a).

To a solution of 2-amino-4-picoline ($0.758 \mathrm{~g}, 7 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$, placed at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere, was added $1.6 \mathrm{~N} n-\mathrm{BuLi}$ in hexane ($4.37 \mathrm{~mL}, 7 \mathrm{mmol}$) dropwise with a syringe. The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, then t-butyl-(3-iodopropoxy)-dimethylsilane ($2.1 \mathrm{~g}, 7 \mathrm{mmol}$) in THF (5 mL) was added dropwise with a syringe. After 10 min at $0^{\circ} \mathrm{C}$, the mixture was stirred for 18 h at $20^{\circ} \mathrm{C}$. Concentration under vacuum and chromatography on silica gel gave the silylether 15a' $(1.19 \mathrm{~g}, 63 \%)$ as a pale orange oil. $\mathrm{R} f(\mathrm{EtOAc} / n-\mathrm{Hex} 7: 3)=0.60 . \mathrm{IR} 2927,1600,1462,1255$, $1097 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, $3.37(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.09,18.51,21.45,26.18,32.39,40.01$, 61.57, 106.95, 114.22, 147.53, 148.48, 159.1. HRMS $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OSi}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 281.2049$; found, 281.2044.

The O-protected precursor $\mathbf{1 5 a}^{\prime}(0.508 \mathrm{~g}, 2.07 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was treated with 1 N tetrabutylammonium fluoride in THF ($4.2 \mathrm{~mL}, 4.2 \mathrm{mmol}$) for 1 h at $20^{\circ} \mathrm{C}$. Concentration and chromatography on silica gel gave 15a as a yellow oil ($0.333 \mathrm{~g}, 97 \%) . \mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 9: 1)=0.4$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.73(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 3.3(\mathrm{br} \mathrm{m}, \mathrm{OH}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.63$
(t, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.38,33.9,38.2,58.85,108.79,114.7,147.22,148.86$, 159.61. RN: 939770-03-3 ($\left.\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)$.

Synthesis of 4-(4-methyl-pyridin-2-yl-amino)-butan-1-ol (15b).

The previous procedure was applied to 2 -amino-4-picoline ($0.504 \mathrm{~g}, 4.66 \mathrm{mmol}$) and t-butyl-(4-iodobutoxy)-dimethylsilane ($1.2 \mathrm{~mL}, 4.6 \mathrm{mmol}$) to furnish $\mathbf{1 5 b}$ ' (silyl ether) as a pale orange oil $(0.625 \mathrm{~g}, 46 \%) . \mathrm{R} f(\mathrm{EtOAc})=0.7 . \mathrm{IR} 3248,2951,1616,1471,1101 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.65(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{td}, J=5.7,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.65(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 6.4(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.96,19.2,21.51,26.23,26.38,30.55,42.39,63.04$, 106.79, 114.39, 147.95, 148.4, 159.27. HRMS $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OSi}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 295.2206$; found, 295.2215 .

Deprotection of $\mathbf{1 5 b}{ }^{\prime}(0.273 \mathrm{~g}, 0.927 \mathrm{mmol})$ with TBAF as above gave $\mathbf{1 5 b}(0.163 \mathrm{~g}, 98 \%)$ as a yellow oil. $\mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 9: 1)=0.4 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.68(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, 2.89 (br s, OH, 1 H), $3.28(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H})$, $6.39(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.9(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.44,26.45$, $30.03,42.04,62.59,107.38,114.54,147.58,148.86,159.09 . \operatorname{MS}(A P C I) m / z 181[\mathrm{M}+\mathrm{H}]^{+}, 163$, $109\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}\right)$.

Synthesis of 3-(6-methyl-pyridin-2-yl-amino)-propan-1-ol (16a).

The procedure described for $\mathbf{1 5 a}$ was applied to 2 -amino-6-picoline ($1 \mathrm{~g}, 9.2 \mathrm{mmol}$) to furnish $\mathbf{1 6 a}$, (silyl ether) as a pale orange oil ($1.55 \mathrm{~g}, 60 \%) . \mathrm{R} f(\mathrm{EtOAc} / n-\mathrm{Hex} 7: 3)=0.8$. IR 2927, 1600, 1462, $1255,1097 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.81$ (quint, $J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{td}, J=5.7,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H})$, $6.2(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.02,18.6,24.55,26.25,32.57,40.01,61.42,102.82,112.11,138.06,156.88,158.7$. HRMS $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OSi}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 281.2049$; found, 281.2053.

Deprotection of 16a' was performed as for 15a' to give the title compound in quantitative yield, as a yellowish oil. $\mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 9: 1)=0.5 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 5.21(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $23.81,33.11,38.15,58.52,104.73,111.66,137.98,156.08,158.82 . \mathrm{RN}: 939769-96-7\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)$.

Synthesis of 4-(6-methyl-pyridin-2-yl-amino)-butan-1-ol (16b).

The procedure described for $\mathbf{1 5 b}$ was applied to 2-amino-6-picoline ($0.504 \mathrm{~g}, 4.66 \mathrm{mmol}$) to furnish $\mathbf{1 6 b}{ }^{\prime}$ (silyl ether) as an orange oil ($\left.0.856 \mathrm{~g}, 62 \%\right) . \mathrm{R} f(\mathrm{EtOAc})=0.8$. IR 2952, 1599, 1462, $1097 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.64(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{td}, J$ $=6.6,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.01,19.1,24.58,26.21$, $26.31,30.49,42.56,62.96,102.42,112.17,137.98,157.04,158.67$. HRMS $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OSi}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 295.2206$; found, 295.2209.

Deprotection of $\mathbf{1 6 b}$ ' was performed as for $\mathbf{1 5 a}$ ' to give the title compound in 91% yield, as a yellow oil. $\mathrm{R} f(\mathrm{DCM} / i-\mathrm{PrOH} 9: 1)=0.5 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.68(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $3.24(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{t}+\mathrm{br} \mathrm{s}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}+\mathrm{OH}), 4.77(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.3(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.1,26.45,30.14$, $42.23,61.98,102.84,112.13,138.28,156.74,158.67 . \mathrm{MS}(\mathrm{APCI}) \mathrm{m} / \mathrm{z} 181[\mathrm{M}+\mathrm{H}]^{+}, 163,109$ $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}\right)$.

Synthesis of t-butyl N-(3-hydroxypropyl)- N-(4-methyl-pyridin-2-yl)-carbamate (17a).

To a mixture of $\mathbf{1 5 a}{ }^{\prime}(0.5 \mathrm{~g}, 1.78 \mathrm{mmol})$ and DMAP ($\left.0.022 \mathrm{~g}, 0.178 \mathrm{mmol}\right)$ in DCM (5 mL) was added $\mathrm{Boc}_{2} \mathrm{O}(0.855 \mathrm{~g}, 3.92 \mathrm{mmol})$ in one portion. The solution was stirred for 8 h at $20{ }^{\circ} \mathrm{C}$ under Ar atmosphere. Concentration under vacuum and chromatography on silica gel gave 17a' (silyl ether) as a yellow oil $(0.57 \mathrm{~g}, 84 \%) . \mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 98: 2)=0.8$. IR 2930, 1708, 1580, 1460, 1390, 1367, 1161, $1099 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.5(\mathrm{~s}, 9$ H), $1.83(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=4.8$
$\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.07,18.5,21.29$, $26.12,28.55,32.48,44.58,61.3,80.87,120.93,121.07,147.55,148.23,154.53,155.03 . \mathrm{MS}$ (APCI) $m / z 381[\mathrm{M}+\mathrm{H}]^{+}, 325,281,149\left(\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}\right)$.

The O-protected precursor $\mathbf{1 7 a}{ }^{\prime}(0.469 \mathrm{~g}, 1.23 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was treated with 1 N TBAF solution in THF ($1.9 \mathrm{~mL}, 1.9 \mathrm{mmol}$) added dropwise with a syringe. The mixture was stirred for 3 h at $20^{\circ} \mathrm{C}$, then concentrated under vacuum. The oily residue was dissolved in EtOAc (10 mL), washed with water ($2 \times 5 \mathrm{~mL}$), brine $(1 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Chromatography on silica gel furnished quantitatively $\mathbf{1 7 a}(0.329 \mathrm{~g})$ as a pale yellow oil. $\mathrm{R} f(\mathrm{DCM} / i-\mathrm{PrOH} 97: 3)=$ 0.65. IR 3417, 2931, 1705, 1458, 1390, 1367, $1159 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53(\mathrm{~s}, 9$ H), $1.92(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1$ $\mathrm{H}), 6.85(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.5(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $21.4,28.46,31.6,44.66,57.98,81.57,120.18,120.97,146.67,149.09,154.28,155.64$. MS (APCI) $m / z 267[\mathrm{M}+\mathrm{H}]^{+}, 211,167 . \mathrm{RN}: 939770-06-6\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$.

Synthesis of t-butyl N-(4-hydroxybutyl)- N-(4-methyl-pyridin-2-yl)-carbamate (17b).

The procedure described for $\mathbf{1 7 a}$ was applied starting from $\mathbf{1 5 b}^{\prime}(0.361 \mathrm{~g}, 1.23 \mathrm{mmol})$. Intermediate 17b' (silyl ether) was obtained $(0.441 \mathrm{~g}, 91 \%)$ as a colorless oil. $\mathrm{R} f(n$-Hex/EtOAc 9:1) $=0.8$. IR $2930,1708,1604,1390,1277,1276,1253,1163,1119 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.016$ (s, 6 H$), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.5(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.63(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.07,18.5,21.34,25.61,26.16,28.55,30.41,46.98,62.78,80.88,121.06,121.11$, 147.5, 148.34, 154.56, 154.9. HRMS $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$, 417.2549; found, 417.2547.

Deprotection with TBAF as above gave quantitatively $\mathbf{1 7 b}(0.270 \mathrm{~g}$ from 0.381 g of $\mathbf{1 7 b}, 0.97$ $\mathrm{mmol})$ as a pale yellow oil. $\mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 97: 3)=0.60 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.5(\mathrm{~s}, 9$ H), $1.57(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 3.5(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 8.2(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.43,25.29,28.54,29.46,46.48,62.43,81.27,120.56,121.06,147.13,148.85$, 154.41, 154.71. HRMS $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}, 303.1685$; found, 303.1690.

Synthesis of t-butyl N-(3-hydroxypropyl)- N-(6-methyl-pyridin-2-yl)-carbamate (18a).

The procedure described for $\mathbf{1 7 a}$ was applied starting from 16a' ($0.5 \mathrm{~g}, 1.78 \mathrm{mmol}$). Intermediate 18a' (silyl ether) was obtained ($0.413 \mathrm{~g}, 61 \%$) as a yellow oil. $\mathrm{R} f(\mathrm{DCM})=0.5$. IR 2954, 2929, 2856, 1708, 1604, 1390, 1168, $1097 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, $1.49(\mathrm{~s}, 9 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.5(\mathrm{dd}, J=6.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.18,19,24.48,26.1,28.53,32.46,44.62,61.3,80.77,117.43,119.13,137.26,154.2$, 154.5, 156.9. MS (APCI) $m / z 381[\mathrm{M}+\mathrm{H}]^{+}, 325,281\left(\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}\right)$.

Deprotection with TBAF as above gave $\mathbf{1 8 a}(0.195 \mathrm{~g}$ from 0.297 g of $\mathbf{1 8 a} \mathbf{a}, 94 \%)$ as a pale yellow oil. $\operatorname{Rf}(\mathrm{DCM} / i-\mathrm{PrOH} 97: 3)=0.60$. IR 3417, 2931, 1705, 1458, 1390, 1367, $1159 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2$ H), $5.8(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=6.6,7.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.82,28.5,31.49,44.78,57.97,81.61,116.82,119.14$, 137.96, 154.31, 155.15, 156.43. MS (APCI) $m / z 267[M+H]^{+}, 211,167\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$.

Synthesis of \boldsymbol{t}-butyl N -(4-hydroxypropyl)-N-(6-methyl-pyridin-2-yl)-carbamate (18b).

The procedure described for $\mathbf{1 7 a}$ was applied starting from $\mathbf{1 6 b}^{\prime}(0.585 \mathrm{~g}, 1.99 \mathrm{mmol})$. Intermediate 18b’ (silyl ether) was obtained ($0.7 \mathrm{~g}, 89 \%$) as a colorless oil. $\mathrm{R} f(n$-Hex/EtOAc 1:1) $=0.7$. IR 1707, 1635, 1458, 1389, 1367, $1159 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.5$ (s, 9 H), 1.42-1.66 (m, 4 H$), 2.48(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.5(\mathrm{~d}, J=7.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.09,18.5,24.48,25.03,25.56,28.53,30.45,46.98,63.13,80.72,117.57,119.13$, 137.27, 154.2, 154.3, 156.88. HRMS $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}, 417.2549$; found, 417.2551. Deprotection with TBAF as above gave $\mathbf{1 8 b}(0.420 \mathrm{~g}$ from 0.6 g of $\mathbf{1 8 b}, ~ 98 \%)$ as a pale yellow oil. $\mathrm{R} f(\mathrm{EtOAc} / i-\mathrm{PrOH} 98: 2)=0.8 . \mathrm{IR} 3417,2931,1705,1458,1390,1367,1159 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.61-1.73(\mathrm{~m}, 4 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H})$, $3.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.6,8.7$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 24.29,25.15,28.45,29.59,46.66,62.23,80.88,117.36$, 119.22, 137.32, 153.9, 154.26, 156.7. HRMS $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}, 303.1685$; found, 303.1679 .

Synthesis of 3-(1,8-naphthyridin-2-yl)-propan-1-ol (19a).

A mixture of 2-amino-3-pyridine carboxaldehyde ($0.486 \mathrm{~g}, 4.1 \mathrm{mmol}$), 3-acetyl-1-propanol (0.415 $\mathrm{mL}, 4.1 \mathrm{mmol})$ and (L)-proline $(0.249 \mathrm{~g}, 2.11 \mathrm{mmol})$ in $\mathrm{EtOH}(15 \mathrm{~mL})$ was refluxed for 24 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$ were added. The crude solution was extracted with DMC ($3 \times 10 \mathrm{~mL}$). The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Chromatography on silica gel gave $19 \mathrm{a}(0.26 \mathrm{~g}, 33 \%)$ as a red oil. $\mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 9: 1)=0.57$. IR 3392, 2934, 2866, 1609, 1556, 1499, $1060 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.15(\mathrm{~m}, 2 \mathrm{H}), 3.17$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.5(\mathrm{br} \mathrm{m}, \mathrm{OH}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (m, 1 H), 8.07 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, $J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.03(\mathrm{dd}, J=4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 31.31,35.63,61.77,120.85,121.38,122.64,136.6,137.08,153.15$, 155.36, 166.11. MS (APCI) $m / z 189[\mathrm{M}+\mathrm{H}]^{+}$, 171. RN: 870089-46-6 $\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}\right)$.

Synthesis of 4-(1,8-naphthyridin-2-yl)-butan-1-ol (19b).

A mixture of 2-amino-3-pyridine carboxaldehyde ($1 \mathrm{~g}, 8.43 \mathrm{mmol}$), ethyl 5-oxo-hexanoate (1.35 $\mathrm{mL}, 8.43 \mathrm{mmol}$) and (L)-proline ($0.48 \mathrm{~g}, 4.2 \mathrm{mmol}$) in EtOH (20 mL) was refluxed for 18 h . Concentration and chromatography gave 19b' intermediate (ethyl ester) as a yellow solid (1.24 g, $60 \%) . \operatorname{Rf}(\mathrm{DCM} / E t O A c 8: 2)=0.27$. IR 2980, 1731, 1610, 1556, $1500 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.1(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.1,4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{dd}, J=4,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.08,24.11,38.08,33.61,60.14,120.94,121.37,122.45,136.57,136.93,153.2,155.82,165.48$, 173.25. MS (APCI) $m / z 245[\mathrm{M}+\mathrm{H}]^{+}, 199,171 . \mathrm{RN}: 193818-28-9\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$.

A solution of $\mathbf{1 9 b}{ }^{\prime}(0.5 \mathrm{~g}, 2.04 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was treated with $1 \mathrm{~N} \mathrm{LiAlH}_{4}$ in THF $(4.1 \mathrm{~mL}$, 4.1 mmol), by dropwise addition at $-78^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was stirred for 1 h at $78{ }^{\circ} \mathrm{C}$ and 2 h at $20^{\circ} \mathrm{C}$. After concentration, DCM was added $(10 \mathrm{~mL})$ and the organic phase was washed with 1 N NaOH (5 mL) and brine (5 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, concentration and chromatography afforded $\mathbf{1 9 b}(0.228 \mathrm{~g}, 55 \%)$ as a pale yellow oil. $\mathrm{R} f(\mathrm{DCM} / i-\mathrm{PrOH} 9: 1)=0.7 .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{br} \mathrm{m}, \mathrm{OH}, 1 \mathrm{H}), 3.06(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 1 \mathrm{H}), 8.1(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{dd}, J=4,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.36$, $32.55,38.76,62.44,121.39,121.82,123.02,137.13,137.44,153.6,156.07,166.85$. MS (APCI) m / z $203[\mathrm{M}+\mathrm{H}]^{+}, 185\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right)$.

Synthesis of 4-(2-methyl-[1,3]-dioxolan-2-yl)-butan-1-ol (21).

A mixture of ethyl 5-oxo-hexanoate ($10.1 \mathrm{~mL}, 63 \mathrm{mmol}$), ethylene glycol ($5.23 \mathrm{~mL}, 94 \mathrm{mmol}$) and p-toluenesulfonic acid $(0.2 \mathrm{~g}, 1.08 \mathrm{mmol})$ in benzene $(80 \mathrm{~mL})$ was refluxed in a flask equipped with a Dean-Stark trap, during 18 h under vigorous stirring. The solution was washed with $10 \% \mathrm{NaHCO}_{3}$ $(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, concentration and distillation of the residue (pale green oil) under reduced pressure gave 21' (ethyl ester intermediate) as a colorless oil (8.32 g, $63 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.74(\mathrm{~m}, 4 \mathrm{H})$, $2.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\operatorname{sharp} \mathrm{~m}, 4 \mathrm{H}), 4.12(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.35,19.64,23.82,34.35,38.41,60.25,64.7,109.77,173.52 . \mathrm{MS}(\mathrm{APCI}) \mathrm{m} / \mathrm{z} 203[\mathrm{M}+\mathrm{H}]^{+}$, 157. RN : 944-27-4 $\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}\right)$.

A solution of ester $\mathbf{2 1}^{\prime}(1 \mathrm{~g}, 4.9 \mathrm{mmol})$ in ether (2.5 mL) was added dropwise during 30 min to a cooled solution (ice-bath) of $1 \mathrm{~N} \mathrm{LiAlH}_{4}$ in ether ($5.4 \mathrm{~mL}, 5.4 \mathrm{mmol}$) under Ar atmosphere and vigorous stirring. The mixture was further stirred for 15 min at $0^{\circ} \mathrm{C}$ and 2 h at $20^{\circ} \mathrm{C}$. After careful addition of brine $(20 \mathrm{~mL})$ and $\operatorname{EtOAc}(20 \mathrm{~mL})$, the organic layer was recovered, washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum to furnish $21(0.726 \mathrm{~g}, 92 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.7(\mathrm{~m}, 6 \mathrm{H}), 2.0(\mathrm{br} \mathrm{m}, \mathrm{OH}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=$
$6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.37,23.89,32.94,38.97,62.76,64.77$, 110.22. $\mathrm{MS}\left(\mathrm{CI} / \mathrm{CH}_{4}-\mathrm{N}_{2} \mathrm{O}\right) \mathrm{m} / \mathrm{z} 161[\mathrm{M}+\mathrm{H}]^{+}, 99 . \mathrm{RN}: 5745-75-5\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3}\right)$.

Synthesis of N-(phthalimido)-3-amino-1-propanol (22).

Potassium phthalimide ($1 \mathrm{~g}, 5.4 \mathrm{mmol}$) was dissolved in DMF $(10 \mathrm{~mL})$ by heating at $90{ }^{\circ} \mathrm{C}$, under stirring (Ar atmosphere). 1-Iodo-3-propanol ($0.62 \mathrm{~mL}, 6.5 \mathrm{mmol}$) was added dropwise with a syringe and the mixture was stirred for 18 h at $90^{\circ} \mathrm{C}$. After addition of water $(50 \mathrm{~mL})$, the solution was extracted with DCM ($3 \times 15 \mathrm{~mL}$). Drying $\left(\mathrm{MgSO}_{4}\right)$, concentration and chromatography gave 22 $(1.47 \mathrm{~g}, 67 \%)$ as a white solid. $\mathrm{R} f(n$-Hex/EtOAc $6: 4)=0.43$. IR $3454,1706,1051 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.89(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{br} \mathrm{m}, \mathrm{OH}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.5,34.5,59.24,123.6$, 132.15, 134.3, 169.1. MS (ESI) $m / z 228[\mathrm{M}+\mathrm{Na}]^{+}, 206[\mathrm{M}+\mathrm{H}]^{+}$, 188. RN: 883-44-3 $\left(\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}\right)$.

Synthesis of 2,2-dimethyl-4-oxo-3,8,11,14-tetraoxa-5-azohexadecan-16-oic acid (23a).

2-(2-(2-Azidoethoxy)ethoxy)ethanol.
2-(Chloroethoxy)ethoxy-ethanol ($10 \mathrm{~g}, 60 \mathrm{mmol}$) in water (60 mL) was treated with $\mathrm{NaN}_{3}(10 \mathrm{~g}$, $600 \mathrm{mmol})$ and $\mathrm{NaI}(1.8 \mathrm{~g}, 12 \mathrm{mmol})$ at $50^{\circ} \mathrm{C}$ for 48 h under vigorous stirring. Extraction with EtOAc ($3 \times 30 \mathrm{~mL}$), washing the organic phase with brine $(10 \mathrm{~mL})$, drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration under reduced pressure gave 2-(azidoethoxy)ethoxy-ethanol as a yellow oil (7.46 g, 71%). IR 3428, 2936, 2868, 2107, 1298, 1120, $1067 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.16$ (br s, $\mathrm{OH}, 1 \mathrm{H}), 3.41(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.77(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{RN}: 86520-52-7\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$. 2-(2-(2-Aminoethoxy)ethoxy)ethanol.
$10 \% \mathrm{Pd} / \mathrm{C}(0.1 \mathrm{~g})$ in EtOAc $(5 \mathrm{~mL})$ was placed under H_{2} atmosphere (1 atm) and stirred for 2 h . The azide solution ($0.985 \mathrm{~g}, 5.63 \mathrm{mmol}$ in $\mathrm{EtOAc}, 1 \mathrm{~mL}$) was added dropwise and the mixture was vigorously stirred under H_{2} atmosphere for 18 h at $20^{\circ} \mathrm{C}$. Filtration on celite and concentration furnished crude amine $(0.678 \mathrm{~g}, 81 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.3(\mathrm{br} \mathrm{s}, \mathrm{OH}$ $\left.+\mathrm{NH}_{2}, 3 \mathrm{H}\right), 2.9(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.76(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{RN}: 6338-55-2\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)$.
t-Butyl N-2-(2-(2-hydroxyethoxy)ethoxy)ethyl carbamate.
Amine precursor $(0.971 \mathrm{~g}, 5.7 \mathrm{mmol})$ in $\mathrm{EtOAc}(5 \mathrm{~mL})$ was treated with $\mathrm{Boc}_{2} \mathrm{O}(1.489 \mathrm{~g}, 6.8 \mathrm{mmol})$ for 18 h at $20^{\circ} \mathrm{C}$ under stirring. After washing with water (5 mL), brine (5 mL), drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration, the residue was purified by chromatography on silica gel to furnish the carbamate $(0.959 \mathrm{~g}, 69 \%)$ as a yellow oil. $\mathrm{R} f(\mathrm{EtOAc})=0.4 . \mathrm{IR} 3361,2913,2871,2108,1706$, 1284, 1251, 1170, $1120 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.38(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H})$, $3.23(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.6-3.7(\mathrm{~m}, 6 \mathrm{H}), 3.76(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{br} \mathrm{s}$, NHBoc, 1 H$)$. RN: 139115-92-7 ($\left.\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}_{5}\right)$.

Methyl 2,2-dimethyl-4-oxo-3,8,11,14-tetraoxa-5-azahexadecan-16-oate.

The previous compound $(0.45 \mathrm{~g}, 1.8 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was treated with $1 \mathrm{~N} t$-BuOK in THF ($3.6 \mathrm{~mL}, 3.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, under Ar atmosphere, by dropwise addition with a syringe. After 30 min at $0^{\circ} \mathrm{C}$, methyl bromoacetate $(0.2 \mathrm{~mL}, 2.17 \mathrm{mmol})$ was added with a syringe over 10 min . The mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$ and 15 h at $20^{\circ} \mathrm{C}$. Concentration and chromatography gave the ester $(0.475 \mathrm{~g}, 82 \%)$ as a colorless oil. $\mathrm{R} f(\mathrm{EtOAc} / n-\mathrm{Hex} 7: 3)=0.47$. IR 2929, 1755, 1712, $1519,1450 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 3.31(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2$ H), 3.6-3.8 (m $+\mathrm{s}, 8 \mathrm{H}+3 \mathrm{H}$), $4.19(\mathrm{~s}, 2 \mathrm{H}), 5.1(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $28.6,40.54,51.98,68.78,70.37-71.09,79.33,156.21,171.07$. HRMS $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NO}_{7}$ calcd for $[\mathrm{M}+$ $\mathrm{Na}]^{+}, 344.1685$; found, 344.1695 .

Title compound (23a).

The ester precursor ($0.69 \mathrm{~g}, 2.15 \mathrm{mmol}$) in acetonitrile (5 mL) was treated with $1 \mathrm{~N} \mathrm{LiOH}(5 \mathrm{~mL})$, by dropwise addition with a syringe over 20 min at $20^{\circ} \mathrm{C}$. The mixture was diluted with water (5 mL) and the pH adjusted to 3 by addition of $10 \% \mathrm{HCl}$. Extraction with EtOAc ($3 \times 7 \mathrm{~mL}$), drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration gave 23a $(0.532 \mathrm{~g}, 80 \%)$ as a yellow oil. IR 3362, 2930, 1712, 1531, $1122 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43(\mathrm{~s}, 9 \mathrm{H}), 3.31(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.5-$ $3.8(\mathrm{~m}, 8 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{br} \mathrm{m}$, NHBoc, 1 H$), 11.5\left(\mathrm{brm}, \mathrm{CO}_{2} \mathrm{H}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 28.6,40.53,68.5-71.05,79.55,156.37,173.5 . \mathrm{MS}(\mathrm{ESI}) m / z 346[\mathrm{M}+\mathrm{K}]^{+}, 330[\mathrm{M}+$ $\mathrm{Na}]^{+}, 308[\mathrm{M}+\mathrm{H}]^{+}, 252,208 . \mathrm{RN}: 462100-06-7\left(\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{7}\right)$.

Synthesis of 2-(2-(2-(2-(2-(2-t-butoxycarbonylaminoethoxy)-ethoxy)-ethoxy)-ethoxy)-ethoxy)-ethoxy-acetic acid (23b).

2,2-Dimethyl-4-oxo-3,8,11-trioxa-5-azatridecane-13-yl-methane sulfonate.
2-(2-(2-t-Butoxycarbonyl-aminoethoxy)ethoxy-ethanol $\quad(5.26 \mathrm{~g}, \quad 0.0211 \mathrm{mmol}$), tetramethylammonium chloride $(0.296 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(6 \mathrm{~mL}, 0.0422 \mathrm{mmol})$ were dissolved in dry $\mathrm{DCM}(10 \mathrm{~mL})$ and cooled at $0^{\circ} \mathrm{C}$. A solution of mesyl chloride ($1.96 \mathrm{~mL}, 25.3 \mathrm{mmol}$) in DCM (10 mL) was added dropwise with a syringe over 40 min . The mixture was stirred for 1 h at 0 ${ }^{\circ} \mathrm{C}$ and 3 h at $20^{\circ} \mathrm{C}$. Evaporation under vacuum gave an oily residue which was dissolved in EtOAc
(40 mL), washed with $5 \% \mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{x} 5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Chromatography on silica gel gave the mesylate ($6.08 \mathrm{~g}, 88 \%$) as a colorless oil. $\mathrm{R} f$ (ether) $=0.4$. IR 2935, 1704, 1518, 1352, 1175, $1108 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 3.07(\mathrm{~s}, 3$ H), $3.3(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.8(\mathrm{~m}, 6 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.6,37.9,40.5,69.1,69.2-70.9,156.1$, (CMe_{3} not visible). HRMS $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{7}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}, 344.1249$; found, $344.1248 . \mathrm{RN}$: 430430-57-2.
t-Butyl 17-hydroxyl-3,6,9,12,15-pentaoxaheptadecylcarbamate.
A mixture of triethyleneglycol ($2.5 \mathrm{~mL}, 18.8 \mathrm{mmol}$) and 50% aqueous $\mathrm{NaOH}(1.14 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 1 h under vigorous stirring. Mesylate ($3.08 \mathrm{~g}, 9.5 \mathrm{mmol}$) in toluene (3 mL) was added dropwise with a syringe over 30 min . The mixture was stirred at $100^{\circ} \mathrm{C}$ for 18 h , then concentrated under vacuum. The residue was diluted in brine (5 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic phase was washed with water $(2 \times 5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to furnish the coupling product $(1.87 \mathrm{~g}, 52 \%)$ as a pale orange oil. $\mathrm{R} f($ EtOAc/acetone $1: 1)=0.55$. IR 3353, 2872, 1693, 1519, 1365, 1278, 1251, 1172, $1105 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44$ (s, 9 H$), 2.76(\mathrm{br} \mathrm{s}, \mathrm{OH}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.67(\mathrm{~m}, 18 \mathrm{H}), 3.73(\mathrm{t}, J$ $=4 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.43,40.36,61.71,70.23-70.57$, 72.56, 156.04, (CMe_{3} not visible). MS (ESI) $m / z 404[\mathrm{M}+\mathrm{Na}]^{+}$. $\mathrm{RN}: 331242-61-6\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{NO}_{8}\right)$. Ethyl 2-(2-(2-(2-(2-(2-t-butyloxycarbonylaminoethoxy)- ethoxy)- ethoxy)- ethoxy)- ethoxy)- ethoxy)acetate.

The previous compound ($1.81 \mathrm{~g}, 4.74 \mathrm{mmol}$) in $\mathrm{DCM}(10 \mathrm{~mL})$ was treated successively with ethyl diazoacetate ($0.498 \mathrm{~mL}, 4.74 \mathrm{mmol}$) and BF_{3}.ether $(0.06 \mathrm{~mL}, 0.0474 \mathrm{mmol})$ added dropwise with a syringe, at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 2 h at $20^{\circ} \mathrm{C}$. After concentration under vacuum, the residue was dissolved in EtOAc (10 mL), washed with water ($2 \times 3 \mathrm{~mL}$) and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and chromatographied on silica gel to afford the ester precursor $(0.798 \mathrm{~g}, 36 \%)$ as an orange oil. $\mathrm{R} f(\mathrm{EtOAc} /$ acetone 9:1) $=0.5$. IR 2870 , 2104, 1751, $1121 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 3.3$
(m, 2 H), $3.54(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.6-3.75(\mathrm{~m}, 20 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.06$ (br s, NHBoc, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.4,28.64,40.58,61,68.93$, 70.45-71.1, 170.68, $\left(\mathrm{CO}_{2} C \mathrm{Me}_{3}\right.$ not visible). MS (APCI) $m / z 468[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{NO}_{10}\right)$.

Title compound (23b).

A solution of ester $(0.798 \mathrm{~g}, 1.71 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was treated with 1 N aqueous LiOH (3.4 $\mathrm{mL}, 3.4 \mathrm{mmol})$ for 2 h at $20^{\circ} \mathrm{C}$. The mixture was concentrated and the pH adjusted to 3 with 1 N HCl . The aqueous phase was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The organic phase was washed with brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to furnish $\mathbf{2 3 b}(0.736 \mathrm{~g}, 97 \%)$ as a pale yellow oil. IR 3362, 2930, 1712, 1531, $1122 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44(\mathrm{~s}, 9 \mathrm{H}), 3.31$ (br m, $2 \mathrm{H}), 3.54(\mathrm{t}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.8(\mathrm{~m}, 20 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{br} \mathrm{s}, \mathrm{NHBoc}, 1 \mathrm{H}), 12(\mathrm{br} \mathrm{m}$, $\left.\mathrm{CO}_{2} \mathrm{H}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.6,40.51,69.06,70.38-71.25,172.44,\left(\mathrm{CO}_{2} \mathrm{CMe}_{3}\right.$ not visible). MS (ESI) $m / z 438[\mathrm{M}-\mathrm{H}]^{-}, 364,338 . \mathrm{RN}: 391684-36-9\left(\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{NO}_{10}\right)$.

Synthesis of 2-(2-(2-methoxy-ethoxy)-ethoxy)-ethoxy)-acetic acid (24).

Methyl 2,5,8,11-tetraoxatridecan-13-oate.
Triethylene glycol monomethyl ether ($5 \mathrm{~g}, 30 \mathrm{mmol}$) in dry THF (5 mL) was treated, at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere, with $1 \mathrm{~N} t$-BuOK in THF (30 mL , 30 mmol), by dropwise addition during 15 min . Methyl bromoacetate ($2.76 \mathrm{~mL}, 30 \mathrm{mmol}$) was added dropwise with a syringe at $0^{\circ} \mathrm{C}$. The mixture was stirred for 18 h at $20^{\circ} \mathrm{C}$, then filtered on a celite pad. The filtrate was concentrated, and the residue purified by chromatography on silica gel to give the methyl ester ($2.63 \mathrm{~g}, 46 \%$) as a yellow oil. $\mathrm{R} f($ EtOAc/acetone $8: 2)=0.6$. $\mathrm{IR} 2878,1755,1454,1111 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 3.6-3.7(\mathrm{~m}, 10 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 51.96,59.23,68.85,70.7-71.1,72.14,171.07 . \operatorname{HRMS} \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{6}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$, 259.1158; found, 259.1163.

Title compound (24).

1 N aqueous $\mathrm{LiOH}(20 \mathrm{~mL}, 20 \mathrm{mmol})$ was added dropwise to a solution of the previous ester (2.6 g , $11 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$, at $20^{\circ} \mathrm{C}$ under stirring. After 20 min , the mixture was diluted with
water (5 mL) and the pH adjusted to 3 with $10 \% \mathrm{HCl}$. The aqueous phase was extracted with EtOAc (3 x 10 mL). The organic phase was dried and concentrated to furnish acid $24(0.756 \mathrm{~g}$, 31%) as a yellow oil. IR $3447,2881,1732,1456,1109 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.39(\mathrm{~s}$, $3 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H}), 3.6-3.7(\mathrm{~m}, 8 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 10\left(\mathrm{br} \mathrm{m}, \mathrm{CO}_{2} \mathrm{H}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 59.16,69.16,70.5-70.9,71.7,72.16,173.5$. HRMS $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{6}$ calcd for $[\mathrm{M}+$ $\mathrm{Na}^{+}, 245.1001$; found, 245.1007. RN: 16024-60-5.

General procedure for coupling alcohols to key-intermediate 1 (Table 1).

Tyrosine scaffold 1 ($0.5 \mathrm{~g}, 1.02 \mathrm{mmol}, 1$ equiv.) and alcohol (from Scheme 2, $1.12 \mathrm{mmol}, 1.1$ equiv.) were dissolved in dry THF (4 mL) under argon atmosphere, and cooled at $0^{\circ} \mathrm{C} . \mathrm{Ph}_{3} \mathrm{P}(0.4 \mathrm{~g}$, $1.53 \mathrm{mmol}, 1.5$ equiv.) and then DIAD ($0.3 \mathrm{~mL}, 1.43 \mathrm{mmol}, 1.4$ equiv.) were added dropwise. The stirred mixture was allowed to reach slowly room temperature and further left for 1 to 12 h at $20^{\circ} \mathrm{C}$. Concentration under vacuum and flash chromatography on silica gel gave the coupled product 2 of Table 1.

(S)-t-Butyl 3-(4-(4-t-butoxycarbonylamino-butoxy)-3-nitro-phenyl)-2-(3-

(trifluoromethyl)phenylsulfonamido)propionate (2b). The title compound was obtained from $\mathbf{1 0 b}(0.212 \mathrm{~g}, 1.12 \mathrm{mmol})$ as a yellow oil $(0.43 \mathrm{~g}, 64 \%) . \mathrm{Rf}(\mathrm{DCM} / \mathrm{EtOAc} 9: 1)=0.8 . \mathrm{IR} 3403,3272$, 2979, 1694, 1533, 1367, 1327, 1262, 1165, $1105 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27(\mathrm{~s}, 9 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 3 \mathrm{H}), 4.64(\mathrm{br} \mathrm{s}, 1$ H), $5.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 2 \mathrm{H})$, $7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $26.4,26.8,27.59,28.29,29.03,38.01,38.02,56.73,67.85,79.06,83.82,114.39,122.89\left(\mathrm{CF}_{3}\right)$, $124.09,126.58,127.54,129.36,129.85,130.37,131.68,135.61,139.09,140.79,151.45,156.08$, 169.01. MS (ESI) $m / z 684[\mathrm{M}+\mathrm{Na}]^{+}$for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$.
(S)-t-Butyl 3-(3-nitro-4-(3-(pyrimidin-2-ylamino)propoxy)phenyl)-2-(3-
(trifluoromethyl)phenylsulfonamido)propanoate (2c). The title compound was obtained from 13a $(0.141 \mathrm{~g}, 0.92 \mathrm{mmol})$ as a pale yellow oil $(0.122 \mathrm{~g}, 22 \%) . \mathrm{R} f(\mathrm{DCM} / E t O A c 6: 4)=0.37$. IR $29771730153113271153 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(\mathrm{~s}, 9 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 2.99$ (m, 1 H), $3.07(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{brt} \mathrm{t}, \mathrm{NH}, 1 \mathrm{H})$, $6.07\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{NHSO}_{2}, 1 \mathrm{H}\right), 6.5(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=$ 8.6, 2.2 Hz, 1 H), $7.58(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$
$(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.55$, $28.58,38.02,38.19,56.74,67.29,83.68,110.43,114.38,124.1,126.5,127.37,129.26,129.79$, 130.36, 131.6, 135.59, 139.01, 140.94, 151.57, 157.94, 162.25, 169.15, ($C \mathrm{~F}_{3}$ not visible). MS (ESI) $m / z 626[\mathrm{M}+\mathrm{H}]^{+}, 570[\mathrm{M}-t \mathrm{Bu}]^{+} . \mathrm{HRMS} \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 626.1896$; found, 626.1906.

(S)-t-Butyl 3-(3-nitro-4-(4-(pyrimidin-2-ylamino)butoxy)phenyl)-2-(3-

(trifluoromethyl)phenylsulfonamido)propanoate (2d). The title compound was obtained from 13b $(0.136 \mathrm{~g}, 0.82 \mathrm{mmol})$ as a yellow gum $(0.32 \mathrm{~g}, 61 \%) . \mathrm{R} f(\mathrm{EtOAc})=0.7$. IR 2938, 1726, 1591, 1531, 1327, $1157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.9(\mathrm{~m}, 2 \mathrm{H})$, $2.99(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{br} \mathrm{t}, \mathrm{NH}$, $1 \mathrm{H}), 6.23\left(\mathrm{br} \mathrm{d}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.5(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.6$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.55,25.9$, $26.18,38.03,40.71,56.73,69.07,83.63,110.28,114.38,124.08,126.41,127.18,129.24,129.76$, $130.34,131.55,135.44,139.08,140.95,151.54,157.92,162.17,169.23,\left(\mathrm{CF}_{3}\right.$ not visible $) . \mathrm{MS}$ (ESI) $m / z 638.17(\mathrm{M}-1), 582.1,536.1,209.1, \mathrm{HRMS}_{28} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 640.2053; found, 640.2065.
(S)-2-(3-(4-(3-t-Butoxy-3-oxo-2-(3-(trifluoromethyl)phenylsulfonamido)propyl)-2-
nitrophenoxy)propylamino)pyridine 1-oxide (2e). The title compound was obtained from 14a $(0.137 \mathrm{~g}, 0.82 \mathrm{mmol})$ as a yellow powder $(0.360 \mathrm{~g}, 69 \%) . \mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 9: 1)=0.53 . \mathrm{Mp}=185-$ $186{ }^{\circ} \mathrm{C}$. IR 2979, 1734, 1531, 1327, $1157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(\mathrm{~s}, 9 \mathrm{H}), 2.18$ (m, 2 H), $2.95(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.55$ (br d, $\left.\mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.54(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{NH}, 1 \mathrm{H}), 7.2(\mathrm{td}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1$ H), $8.12(\mathrm{dd}, J=6.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.56,28.69,37.82,38.21$,
56.85, 65.9, 83.34, 105.87, 111.38, 114.3, 123.05 ($\left.C^{3}\right)_{3}, 123.94,126.59,127.93,129.01,129.08$, $129.71,130.3,131.45,135.52,137.33,138.88,141.23,150.28,151.16,169.2$ MS (APCI) m / z $639.2(\mathrm{M}-1), 583.0,537.1$, 209.1. $\mathrm{HRMS} \mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 641.1893$; found, 641.1891.

(S)-2-(4-(4-(3-t-Butoxy-3-oxo-2-(3-(trifluoromethyl)phenylsulfonamido)propyl)-2-

 nitrophenoxy)butylamino)pyridine-1-oxide (2f). The title compound was obtained from 14b $(0.150 \mathrm{~g}, 0.82 \mathrm{mmol})$ as a yellow powder $(0.350 \mathrm{~g}, 65 \%) . \mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 9: 1)=0.34 . \mathrm{Mp}=180-$ $181{ }^{\circ} \mathrm{C}$. IR 2939, 1734, 1531, 1327, $1157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.95$ (m, 4 H), 2.95(m, 1 H$), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.53$ $(\mathrm{m}, 1 \mathrm{H}), 6.55\left(\mathrm{br} \mathrm{d}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.64(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{brt}, \mathrm{NH}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.56,26.1,27.57,37.82,41.61,56.88,68.88,83.34,105.74,111.22,114.32,123.05$ $\left(C F_{3}\right), 123.93,126.53,127.7,128.8,129.07,129.71,130.31,131.42,135.5,137.36,139.08,141.23$, 150.16, 151.24, 169.19. MS (ESI) $m / z 653[\mathrm{M}-\mathrm{H}]^{-}$, 209. HRMS $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}$ calcd for $[\mathrm{M}+$ $\mathrm{H}]^{+}, 655.2049$; found, 655.2051.(S)-t-Butyl 3-(4-(4-(t-butoxycarbonyl(6-methylpyridin-2-yl)amino)butoxy)-3-nitrophenyl)-2-(3-(trifluoromethyl)phenylsulfonamido)propanoate (2h). The title compound was obtained from $18 \mathbf{b}(0.2 \mathrm{~g}, 0.714 \mathrm{mmol})$ as a pale yellow oil $(0.350 \mathrm{~g}, 65 \%) . \mathrm{R} f(n \mathrm{Hex} / \mathrm{EtOAc} 6: 4)=0.57$. IR 2978, 1701, 1533, 1327, $1161 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.83(\mathrm{~m}, 4$ H), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 3 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $\left.6.5 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 24.17$, $25.25,26.25,27.55,28.2,37.98,46.15,56.68,69.23,80.68,83.63,114.38,117.12,118.94,124.08$,
$124.7\left(\mathrm{CF}_{3}\right), 126.41,127.18,129.24,129.76,130.34,131.55,135.44,137.11,139.08,140.95$, 151.54, 153.7, $154.18,156.62,169.23$. MS (APCI) $m / z 753[\mathrm{M}+\mathrm{H}]^{+}, 697,641$ for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}$. (S)-t-Butyl 3-($N(N, N$ '-di- t-butoxycarbonylguanidinyl)-4-aminobutoxy)-3-nitrophenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoate (2i). The title compound was obtained from 12b $(0.203 \mathrm{~g}, 0.612 \mathrm{mmol})$ as a pale yellow foam $(0.486 \mathrm{~g}, 98 \%) . \mathrm{R} f(\mathrm{DCM} / i-\operatorname{PrOH} 98: 2)=0.4 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25$ ($\mathrm{s}, 9 \mathrm{H}$), 1.5 (br s, 18 H), 1.81 (m, 2 H), 1.9 (m, 2 H), 2.95-3.1 (m, $2 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 3 \mathrm{H}), 5.3\left(\mathrm{br} \mathrm{d}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1$ $\mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 11.5(\mathrm{br} \mathrm{s}, \mathrm{NHBoc}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.1$, 26.7, 27.9, 28.2, 28.4, 38.31, 41, 57, 67.92, 83.38, 83.6, 114.91, 124.4, 126.82, 127.82, 129.7, $130.2,130.68,131.71,135.77,139.46,141.06,153.4,156.2,156.57,163,169.23,\left(C F_{3}\right.$ not visible $)$. MS (APCI) $m / z 802[\mathrm{M}-\mathrm{H}]^{-}$for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{~S}$.
(S)-t-Butyl 3-(4-(3-(1,3-dioxoisoindolin-2-yl)propoxy)-3-nitrophenyl)-2-(3-
(trifluoromethyl)phenylsulfonamido)propanoate (2j). The title compound was obtained from $\mathbf{2 2}$ $(0.113 \mathrm{~g}, 0.61 \mathrm{mmol})$ as a pale yellow gum $(0.217 \mathrm{~g}, 52 \%) . \mathrm{R} f(n$ Hex/EtOAc 6:4) $=0.3$. IR 2979, 1712, 1533, 1327, $1159 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~s}, 9 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~m}, 1$ $\mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=8.9$ $\left.\mathrm{Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1$ H), $7.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ (s, 1 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.83,28.53,35.26,38.21,57.07,67.63,83.91,114.88$, $123.43,124.32,126.74,127.87,129.65,130.18,130.64,131.55,132.22,134.16,135.75,139.3$, 141.1, 151.66, 168.56, 169.39, $\left(\mathrm{CF}_{3}\right.$ not visible). MS (APCI) $m / z 677.8(\mathrm{M}+1)$, 621.8. HRMS $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}, 700.1553$; found, 700.1558 .
(S)-t-Butyl 3-(4-(4-(2-methyl-1,3-dioxolan-2-yl)butoxy)-3-nitrophenyl) -2-(3-
(trifluoromethyl)phenylsulfonamido)propanoate (21). The title compound was obtained from 21 $(0.130 \mathrm{~g}, 0.816 \mathrm{mmol})$ as a pale yellow foam $(0.450 \mathrm{~g}, 87 \%) . \mathrm{R} f($ ether $/ n$ Hex $9: 1)=0.63$. IR 2950,

1732, 1622, 1533, 1326, $1161 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.6$ $(\mathrm{m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 4 \mathrm{H}), 4.07(\mathrm{~m}, 3 \mathrm{H})$, $5.48\left(\mathrm{~d}, J=9 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.64,24,27.85,29.21,38.24,38.86,57.08,64.88,69.72$, 83.98, 110.12, 114.7, 124.33, 126.62, 127.41, 129.65, 130.16, 130.66, 131.62, 135.66, 139.46, 141.07, 151.92, 169.4, ($C \mathrm{~F}_{3}$ not visible). MS (ESI) $m / z 1262[\mathrm{M}-\mathrm{H}]^{-} \times 2,631[\mathrm{M}-\mathrm{H}]^{-}$. HRMS $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}, 655.1913$; found, 655.1940 .
(S)-t-Butyl 3-(4-(3-aminopropoxy)-3-nitrophenyl)-2-(3-
(trifluoromethyl)phenylsulfonamido)propanoate (3a). To a solution of precursor $\mathbf{2 j}$ (0.305 g , $0.45 \mathrm{mmol})$ in $\mathrm{DCM}(3 \mathrm{~mL})$ and $\mathrm{EtOH}(12 \mathrm{~mL})$ was added dropwise hydrazine $(0.13 \mathrm{~mL}, 2.7$ $\mathrm{mmol})$ at $20^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was heated 2 h at $80^{\circ} \mathrm{C}$. After addition of DCM (dissolution of the precipitate), and then hexane (until the solution becomes cloudy), the mixture was placed in the fridge $\left(-4^{\circ} \mathrm{C}\right)$ for 4 h . Filtration, washing with ice-cold hexane, and concentration of the filtrate gave the title compound $(0.181 \mathrm{~g}, 73 \%)$ as a yellow gum. $\mathrm{R} f($ acetone $/ i-\mathrm{PrOH} 9: 1)=$ 0.3. IR 3375 (br), 2931, 1734, 1624, 1532, 1327, $1157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26$ (s, $9 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 2.72\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 2.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3(\mathrm{~m}, 1 \mathrm{H}), 3.1(\mathrm{~m}, 1 \mathrm{H}), 4.08$ $(\mathrm{m}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 5.60\left(\mathrm{~d}, J=9 \mathrm{~Hz}, \mathrm{NHSO}_{2}, 1 \mathrm{H}\right), 7(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=$ 8.6, 2.2 Hz, 1 H$), 7.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.54,32.27,37.93,38.84,56.74$, $67.62,83.64,114.34,124,126.4,127.31,129.31,129.82,130.32,131.55,135.48,139.05,140.86$, 151.56, 169.06, $\left(\mathrm{CF}_{3}\right.$ not visible). MS (APCI) $m / z 548[\mathrm{M}+\mathrm{H}]^{+}, 492$. HRMS $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 548.1678$; found, 548.1659 .
(S)-t-Butyl 3-($N(N, N$ '-di- t-butoxycarbonylguanidinyl)-3-aminopropoxy)-3-nitrophenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoate (3b). To a mixture of precursor 3a ($0.1 \mathrm{~g}, 0.183$ $\mathrm{mmol})$ and $\mathrm{di}(\mathrm{Boc})$ thiourea $(0.06 \mathrm{~g}, 0.219 \mathrm{mmol})$ in DMF $(0.1 \mathrm{~mL})$ under Ar atmosphere, were
added successively $\mathrm{Et}_{3} \mathrm{~N}(0.056 \mathrm{~mL}, 0.403 \mathrm{mmol})$ and Mukaiyama salt $(0.056 \mathrm{~g}, 0.219 \mathrm{mmol})$ dissolved in DMF (0.2 mL), dropwise with a syringe, under vigorous stirring. After 1 h at $20^{\circ} \mathrm{C}$, water (3 mL) was added and the solution was extracted with ether ($3 \times 3 \mathrm{~mL}$). The organic phase was washed with brine $(2 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under vacuum and the residue was chromatographied to furnish the title compound $(0.097 \mathrm{~g}, 66 \%)$ as a pale yellow solid. $\mathrm{R} f(\mathrm{DCM} / i-$ $\operatorname{PrOH} 98: 2)=0.35 . \mathrm{Mp}=103-104{ }^{\circ} \mathrm{C} . \operatorname{IR} 2987,1722,1622,1533,1327,1157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.5(\mathrm{~s}, 9 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 3(\mathrm{~m}, 1 \mathrm{H}), 3.1(\mathrm{~m}, 1 \mathrm{H})$, $3.64(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 5.36\left(\mathrm{brd}, J=8 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.97(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~m}, \mathrm{NH}, 1 \mathrm{H}), 11.47(\mathrm{~s}, \mathrm{NH}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.9,28.27,28.52,28.88,37.95,38.31,57,67.55,79.48,83.38$, 84.1, 114.91, 124.4, 126.82, 127.82, 129.7, 130.2, 130.68, 131.71, 135.77, 139.46, 141.06, 151.74, 153.43, 156.57, 163.78, 169.23, ($C F_{3}$ not visible). MS (ESI) $m / z 788[\mathrm{M}-\mathrm{H}]^{-}, 671,571$. HRMS $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 790.2945$; found, 790.2921 .

(S)-t-Butyl 3-(3-nitro-4-(5-oxohexyloxy)phenyl)-2-(3-

(trifluoromethyl)phenylsulfonamido)propanoate (3d). A mixture of precursor $21(0.320 \mathrm{~g}, 0.506$ $\mathrm{mmol})$ and FeCl_{3} adsorbed on $\mathrm{SiO}_{2}(5 \%, 0.054 \mathrm{~g})$ in acetone (12 mL) was stirred for 2 h at $20^{\circ} \mathrm{C}$. Concentration and chromatography gave the title compound ($0.254 \mathrm{~g}, 85 \%$) as a colorless oil. $\mathrm{R} f$ (ether $/ n$-Hex 9:1) $=0.67 . \operatorname{IR} 2939,1731,1622,1533,1327,1163 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.79(\mathrm{~m}, 4 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H})$, $4.08(\mathrm{~m}, 3 \mathrm{H}), 5.87\left(\mathrm{~d}, J=9 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1$ H), $7.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.37,27.7,28.34,29.92,38.01,43.11,57.15$, 69.42, 83.67, 114.55, 124.15, 126.5, 127.65, 129.46, 130.08, 130.56, 131.37, 135.64, 139.23, 141.14, 151.63, 169.42, 209.09, ($C F_{3}$ not visible). MS (ESI) $m / z 587[\mathrm{M}-\mathrm{H}]^{-}$, 209. HRMS $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}, 611.1651$; found, 611.1640 .
(S)-t-Butyl 3-(4-(4-(1,8-naphthyridin-2-yl)butoxy)-3-nitrophenyl)-2-(3-
(trifluoromethyl)phenylsulfonamido)propanoate (3e). A solution of 2-amino-3-pyridincarboxaldhehyde ($0.074 \mathrm{~g}, 0.627 \mathrm{mmol})$, precursor $3 \mathbf{d}(0.335 \mathrm{~g}, 0.570 \mathrm{mmol})$ and (L)-proline (0.033 $\mathrm{g}, 0.285 \mathrm{mmol})$ in $\mathrm{EtOH}(6 \mathrm{~mL})$ was refluxed for 48 h under Ar atmosphere. Concentration and chromatography afforded the title compound $(0.194 \mathrm{~g}, 50 \%)$ as a yellow foam. $\mathrm{R} f(\mathrm{DCM} / i-\mathrm{PrOH}$ 98:2) $=0.3 . \operatorname{IR} 2935,1734,1608,1531,1327,1159 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~s}, 9$ H), $1.92(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 2.97-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 3 \mathrm{H}), 5.7(\mathrm{~d}$, $\left.J=8.9 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.93(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 2$ H), $7.57(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=8.1,2 \mathrm{~Hz}, 1 \mathrm{H}), 9.08(\mathrm{dd}, J=4.3,2 \mathrm{~Hz}, 1$ H). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.49,27.83,28.6,38.17,38.63,57.16,69.43,83.87,114.67$, $121.29,121.67,122.77,124.3,124.7\left(\mathrm{CF}_{3}\right), 126.62,127.51,129.6,130.12,130.65,131.59,135.72$, 137.01, 137.35, 139.32, 141.18, 151.85, 153.47, 156.07, 166.36, 169.41. MS (ESI) m/z 1346 [M -$\mathrm{H}]^{-}$x 2, $673[\mathrm{M}-\mathrm{H}]^{-}$. $\mathrm{HRMS} \mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$, 697.1920; found, 697.1898.

General procedure for reduction of 2-3 (Table 2).

Method A. A solution of $\mathbf{2}$ or $\mathbf{3}$ in MeOH or $\mathrm{EtOH}(0.1 \mathrm{mmol} / 3 \mathrm{~mL})$ containing $\mathrm{Pd} / \mathrm{C}(10 \%)$ as catalyst ($0.01 \mathrm{~g} / 0.1 \mathrm{mmol}$ product $\mathbf{2}$ or $\mathbf{3}$) was placed under H_{2} atmosphere (1 atm) and stirred for 18 h at $20^{\circ} \mathrm{C}$. The mixture was filtered over a short celite pad, using $\mathrm{MeOH}(\mathrm{EtOH})$; filtrate concentration under vacuum gave quantitatively crude 4.

Method B. A solution of $2(0.2 \mathrm{mmol})$ in $\mathrm{HOAc}(5 \mathrm{~mL})$ and $37 \% \mathrm{HCl}_{\mathrm{aq}}(0.5 \mathrm{~mL})$, containing Pd / C (10%) as catalyst (0.1 g) was introduced in a Parr flask. The mixture was hydrogenated (Parr apparatus) for 2 h at $20^{\circ} \mathrm{C}$, under a pressure of 45 psi . The mixture was filtered on a celite pad, using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$. Concentration under vacuum and chromatography gave crude 4 , recovered by lyophilization.

Method C. A solution of $2(0.5 \mathrm{mmol})$ and ammonium formate (5 mmol) in $\mathrm{EtOH}(5 \mathrm{~mL})$, containing $\mathrm{Pd} / \mathrm{C}(10 \%)$ as catalyst $(0.05 \mathrm{~g})$, was refluxed for 12 h under Ar atmosphere and vigorous
stirring. The mixture was filtered on a celite pad, using EtOH. After concentration, the residue was dissolved in EtOAc $(10 \mathrm{~mL})$, washed with brine $(2 \mathrm{x} 5 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent evaporation gave crude compound 4.

(S)- t-Butyl 3-(3-amino-4-(4-t-butoxycarbonylamino-butoxy)phenyl)-2-(3-

(trifluoromethyl)phenylsulfonamido)propanoate (4b). The title compound was obtained from $\mathbf{2 b}$ $(0.052 \mathrm{~g}, 0.078 \mathrm{mmol})$, according to Method A, as a white foam ($0.05 \mathrm{~g}, 100 \%) . \mathrm{Rf}$ (DCM/EtOAc $8: 2)=0.9 \cdot[\alpha]_{D}^{20}-12\left(c=1.2, \mathrm{CHCl}_{3}\right) . \operatorname{IR} 3383,2978,1697,1518,1327,1163 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~m}, 2$ H), $3.72\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 3.95(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.62\left(\mathrm{br} \mathrm{s}, \mathrm{NH}-\mathrm{CO}_{2}, 1 \mathrm{H}\right), 5.34(\mathrm{~d}, J$ $\left.=9 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.4,26.8,27.56,28.28,38.64,40.16,57.01,67.74,79.09,82.67,111.21,116.73$, $120.08,124.08,127.37,129.04,129.62,130.4,131.35,134.68,141.19,146.01,155.91,169.56$, $\left(\mathrm{CF}_{3}\right.$ not visible). MS (APCI) $\mathrm{m} / \mathrm{z} 1260[\mathrm{M}-\mathrm{H}]^{-} \mathrm{x} 2,630[\mathrm{M}-\mathrm{H}]^{-} . \mathrm{HRMS} \mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 632.2617$; found, 632.2620. Anal. calcd (\%) C, 55.15; H, 6.34; N, 6.66; S, $5.07-$ Found C, 54.88; H, 6.36; N, 6.61; S, 6.16.
(S)-3-(3-Amino-4-(3-(1,4,5,6-tetrahydropyrimidin-2-ylamino) propoxy)phenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoic acid (4c). The title compound was obtained from $\mathbf{2 c}(0.115 \mathrm{~g}, 0.184 \mathrm{mmol})$, according to Method B, as a white foam $(0.062 \mathrm{~g}, 62 \%)$ after chromatography. $\mathrm{R} f\left(\mathrm{EtOH} / \mathrm{NH}_{4} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1\right)=0.8 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.85(\mathrm{~m}, 2$ H), $2.01(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 6 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2$ H), $6.5(\mathrm{dd}, J=8.1,2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 22.02,30.68,39.81,40.52$, 40.97, 61.84, 67.02, 113.26, 119.32, 122.04, 125.66, 130.66, 131.98, 132.54, 132.6, 133, 137.87, 144.48, 147.73, 155.47, 177.88, (CF_{3} not visible). MS (ESI) $m / z 578\left[\mathrm{M}+2 \mathrm{H}_{2} \mathrm{O}-\mathrm{H}\right]^{-}$. HRMS $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 544.1842$; found, 544.1829.
(S)-3-(3-Amino-4-(4-(1,4,5,6-tetrahydropyrimidin-2-ylamino) butoxy)phenyl)-2-(3-
(trifluoromethyl)phenylsulfonamido)propanoic acid (4d). The title compound was obtained from $2 \mathbf{d}(0.120 \mathrm{~g}, 0.156 \mathrm{mmol})$, according to Method B, as a white foam $(0.083 \mathrm{~g}, 95 \%)$ after chromatography. $\mathrm{R} f\left(\mathrm{EtOH} / \mathrm{NH}_{4} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O} 8: 1: 1\right)=0.9 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.91(\mathrm{~m}, 2$ H), $1.77(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 3.2(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 4$ H), $3.82(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1$ H), $6.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 21.18,26.82,27.6,39.61,39.82,41.8,61.31$, $68.72,112.37,118.04,120.79,124.52,129.77,131.16,131.34,131.56,131.81,136.88,143.52$, 146.97, 154.44, 177.9, ($C \mathrm{~F}_{3}$ not visible). MS (ESI) $m / z 1112[\mathrm{M}-\mathrm{H}]^{-}$x $2,556[\mathrm{M}-\mathrm{H}]^{-}$. HRMS $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 558.1998$; found, 558.1976.
(S)-t-Butyl 3-(3-amino-4-(3-(pyridin-2-ylamino)propoxy)phenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoate (4e). The title compound was obtained from $\mathbf{2 e}$ $(0.325 \mathrm{~g}, 0.507 \mathrm{mmol})$, according to Method C , as a yellow oil ($0.240 \mathrm{~g}, 80 \%$). $\mathrm{R} f(\mathrm{DCM} / i-\mathrm{PrOH}$ 9:1) $=0.8 .[\alpha]_{D}^{20}-11.5\left(c=0.1, \mathrm{CHCl}_{3}\right)$. IR 3364, 2923, 1734, 1516, 1327, $1155 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23(\mathrm{~s}, 9 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 3.5(\mathrm{~m}, 2 \mathrm{H}), 3.75\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right)$, 4.07 (m, 3 H), 4.81 (br s, NH, 1 H), 5.54 (d, $\left.J=9.3 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.41(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=4.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 27.88,29.14,38.99,39.74,57.43,65.92,82.91,107.97,111.53,112.54$, $116.39,119.57,124.36,128.02,129.32,129.92,130.71,131.3,136.39,139.95,141.58,144$, 145.68, 158, 169.6, ($C \mathrm{~F}_{3}$ not visible). MS (ESI) $m / z 593[\mathrm{M}-\mathrm{H}]^{-}, 537$, 209. HRMS $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 595.2202$; found, 595.2188. Anal. calcd for $\mathrm{M} . \mathrm{H}_{2} \mathrm{O}$ (\%) C, 54.95; H, 5.70; N, 9.15 - Found C, 55.26; H, 5.45; N, 9.11.
(S)-t-Butyl 3-(3-amino-4-(4-(pyridin-2-ylamino)butoxy)phenyl)-2-(3-
(trifluoromethyl)phenylsulfonamido)propanoate (4f). The title compound was obtained from $2 \mathbf{f}$
($0.1 \mathrm{~g}, 0.152 \mathrm{mmol}$), according to Method C , as a yellow oil ($0.082 \mathrm{~g}, 88 \%$). $\mathrm{R} f(\mathrm{DCM} / i-\mathrm{PrOH} 9: 1)$ $=0.8 .[\alpha]_{D}^{20}-8\left(c=1.7, \mathrm{CHCl}_{3}\right)$. IR 3365, 2935, 1730, 1518, 1327, $1155 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}), 1.9(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.9(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}, 2 \mathrm{H}\right), 3.99(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.7(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 5.3\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1\right.$ H), $6.4(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{dd}$, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.08,26.71,27.56,38.73,41.75,57.01$, $67.66,82.6,106.75,111.19,112.48,115.94,119.19,124.08,127.36,129.01,129.57,130.37$, 131.32, 136.14, 138.1, 141.25, 145.59, 146.6, 158.09, 169.64, ($C \mathrm{~F}_{3}$ not visible). MS (ESI) $\mathrm{m} / \mathrm{z} 607$ [$\mathrm{M}-\mathrm{H}]^{-}$, 209. HRMS $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 609.2359$; found, 609.2339. (S)-t-Butyl 3-(3-amino-4-(4-(t-butoxycarbonyl(6-methylpyridin-2-yl)amino)butoxy)phenyl)-2-(3-(trifluoromethyl)phenylsulfonamido)propanoate (4h). The title compound was obtained from 2h $(0.350 \mathrm{~g}, 0.460 \mathrm{mmol})$, according to Method A, as a pale yellow oil ($0.310 \mathrm{~g}, 93 \%)$. $\mathrm{R} f$ $\left(\right.$ ether/EtOAc 9:1) $=0.9 \cdot[\alpha]_{D}^{20}-11\left(c=1.3, \mathrm{CHCl}_{3}\right)$. IR 2976, 1703, 1518, 1327, $1159 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 1.23$ (s, 9 H), 1.48 (s, 9 H), 1.79 (m, 4 H), 2.47 ($\mathrm{s}, 3 \mathrm{H}$), 2.86-2.90 (m, 2 H), $3.69\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 3.93(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $\left.9.1 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.39(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.18,25.44,26.56,27.57,28.22,38.76,46.42,56.96,67.86,80.64,82.6,111.07,115.78$, $117.2,118.94,119.16,124.1,127.07,129.04,129.6,130.37,131.35,136.12,137.05,141.13$, 145.72, 153.76, 154.16, 156.64, 169.53, (C F $_{3}$ not visible). MS (APCI) $m / z 721[\mathrm{M}-\mathrm{H}]^{\top}, 621,209$. HRMS $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 723.3039$; found, 723.3063.
(S)-t-Butyl 3-($N\left(N, N^{\prime}\right.$-di- t-butoxycarbonylguanidinyl)-4-aminobutoxy))-3-aminophenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoate (4i). The title compound was obtained from $\mathbf{2 i}$
$(0.5 \mathrm{~g}, 0.62 \mathrm{mmol})$, according to Method A, as a pale brown foam $(0.461 \mathrm{~g}, 95 \%) \cdot[\alpha]_{D}^{20}-5(c=1$, CHCl_{3}). IR 2955, 1724, 1640, 1518, 1327, $1157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.23$ (s, 9 H), $1.5(\mathrm{~s}, 18 \mathrm{H}), 1.77-1.87(\mathrm{~m}, 4 \mathrm{H}), 2.86-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.5(\mathrm{~m}, 2 \mathrm{H}), 3.73\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 3.96(\mathrm{t}, J$ $=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 5.41\left(\mathrm{~d}, J=9 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H})$, $6.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1$ H), $8.04(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 11.4(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.12$, 26.7, 27.86, 28.22, 28.43, 38.83, 41, 57.43, 67.92, 82.93, 83.61, 111.48, 117.52, 120.8, 124.28, $127.77,129.31,129.99,130.73,131.35,135.47,141.49,146.53,153.4,156.16,163,169.92,\left(C_{3}\right.$ not visible). MS (APCI) $m / z 772[\mathrm{M}-\mathrm{H}]^{-}, 672,655 . \mathrm{HRMS} \mathrm{C}_{35} \mathrm{H}_{50} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$, 796.3179; found, 796.6159. Anal. calcd for M. $\mathrm{H}_{2} \mathrm{O}$ (\%) C, 53.10; H, 6.57 - Found C, 58.34; H, 6.58.
(S)-t-Butyl 3-(N-(N, N^{\prime}-di-t-butoxycarbonylguanidinyl)-3-aminopropoxy)-3-aminophenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoate (4j). The title compound was obtained from $\mathbf{3 b}$ $(0.097 \mathrm{~g}, 0.122 \mathrm{mmol})$, according to Method A, as a pale brown foam $(0.082 \mathrm{~g}, 88 \%) \cdot[\alpha]_{D}^{20}-8(c=$ $0.9, \mathrm{CHCl}_{3}$). IR 2977, 1723, 1638, 1518, 1327, $1157 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(\mathrm{~s}, 9$ H), $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.75\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right)$, $4.01(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 5.26\left(\mathrm{~d}, J=9 \mathrm{~Hz}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.40(\mathrm{dd}, J=8.2,2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.6(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 11.53$ (br s, NH, 1 H$).{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.92,28.3,28.35,29.13,38.78,39.08,57.36,66.49,79.54,83,83.43,111.45$, $116.35,119.53,124.43,127.88,129.39,129.94,130.72,131.6,136.61,141.5,145.8,153.55$, 156.42, 163.79, 169.92, ($C \mathrm{FF}_{3}$ not visible). MS (ESI) $m / z 1517$ [2M - H] ${ }^{-}, 758[\mathrm{M}-\mathrm{H}]^{-}, 641$. HRMS $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 760.3203$; found, 760.3209 .
(S)-t-Butyl 3-(3-amino-4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butoxy)phenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoate (4l). The title compound was obtained from $\mathbf{3 e}$
($0.145 \mathrm{~g}, 0.215 \mathrm{mmol})$, according to Method A , as a pale brown foam $(0.123 \mathrm{~g}, 88 \%) . \mathrm{Rf}$
$\left(\right.$ EtOAc/acetone 8:2) $=0.2 .[\alpha]_{D}^{20}-11\left(c=1, \mathrm{CHCl}_{3}\right) . \mathrm{IR} 2933,1734,1651,1516,1327,1159 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.8-2.01(\mathrm{~m}, 6 \mathrm{H}), 2.71-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{~m}, 2 \mathrm{H})$, $3.46(\mathrm{~m}, 2 \mathrm{H}), 3.69\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 3.96(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 5.25\left(\mathrm{~m}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right)$, 6.36-6.39 (m, 2 H), $6.43(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{br} \mathrm{s}$, $\mathrm{NH}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 20.11, 25.8, 25.87, 27.93, 28.98, 34.19, 39.06, 41.34, $57.35,67.73,82.99,110.27,111.35,115,116.15,119.4,124.41,127.5,129.39,129.97,130.73$, 131.35, 136.57, 139.7, 141.13, 145.97, 169.92, $\left(\mathrm{CF}_{3}\right.$ and two naphthyridinyl quaternary C not visible). MS (ESI) $m / z 647[\mathrm{M}-\mathrm{H}]^{-}, 591$, 209. $\mathrm{HRMS} \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 649.2672; found, 649.2685.

General procedure for the coupling of spacer-arms (Table 3).

Acid $\mathbf{2 3}$ or $\mathbf{2 4}$ (see Scheme $1,0.2 \mathrm{mmol}$) dissolved in DMF (1 mL) was treated successively with $\operatorname{PyBOP}(0.011 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.027 \mathrm{~mL}, 0.2 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$ under Ar atmosphere. After 2 h, precursor $4(0.18 \mathrm{mmol})$ dissolved in DMF $(0.3 \mathrm{~mL})$ was added dropwise with a syringe, and the mixture was stirred for 18 h at $20^{\circ} \mathrm{C}$. After dilution with brine (5 mL), the solution was extracted with ether ($3 \times 5 \mathrm{~mL}$) and EtOAc (1 x 5 mL). The combined organic phases were washed with brine (5 mL), dried over MgSO_{4} and concentrated under vacuum. The residue (brown oil) was purified by chromatography on silica gel.
(S)-t-Butyl 3-(3-(2-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)acetamido)-4-(4-(4-methylpyridin-2-yl-t-butoxycarbonylamino)butoxy)phenyl-2-(3-
(trifluoromethyl)phenylsulfonamido)propanoate (6c). The title compound was obtained from 24 $(0.1 \mathrm{~g})$ and $\mathbf{4 g}(0.1 \mathrm{~g})$ as a white foam $(0.078 \mathrm{~g}, 61 \%) . \mathrm{R} f(\mathrm{EtOAc} / n-\mathrm{Hex} 9: 1)=0.6$. IR 2932, 1699, $1327,1161 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.82-1.86(\mathrm{~m}, 4 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.73(\mathrm{~m}, 12 \mathrm{H}), 3.99(\mathrm{~m}, 4 \mathrm{H}), 4.05$ $(\mathrm{m}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 5.4\left(\mathrm{br} \mathrm{s}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.3,2 \mathrm{~Hz}, 1$
H), $6.85(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.4(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.2(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.9(\mathrm{~s}, \mathrm{CONH}, 1$ H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.32,25.54,26.75,27.88,28.51,38.96,46.47,57.4,59.21$, $68.36,70.72-72.04,72.04,81.14,83.22,111.05,120.72,120.89,121.15,124.37,125.26,127.11$, $127.69,129.26,129.88,130.78,131.2,141.42,146.91,147.48,148.38,154.37,154.74,167.78$, 169.93, $\left(C^{2}\right.$ not visible). MS (APCI) $m / z 925[\mathrm{M}-\mathrm{H}]^{-}$, 825. HRMS $\mathrm{C}_{44} \mathrm{H}_{61} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{~S}$ calcd for [M $+\mathrm{Na}]^{+}, 949.3857$; found, 949.3874 .
(S)-t-Butyl 3-(3-(2,5,8,11-tetraoxatridecanamido-4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propoxy)phenyl)-2-(3-(trifluoromethyl)phenylsulfonamido)propanoate (6d). The title compound was obtained from $24(0.076 \mathrm{~g})$ and $\mathbf{4 k}(0.2 \mathrm{~g})$ as a white foam $(0.118 \mathrm{~g}, 45 \%) . \mathrm{R} f$ $\left(\right.$ EtOAc/acetone 9:1) $=0.75$. IR 2930, 1736, 1327, $1159 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26$ (s, 9 H), 1.91 (m, 2 H), 2.19 (m, 2 H), 2.67-2.76 (m, 4 H), 2.85-3.04 (m, 2 H), 3.36 (s, 3 H), 3.41 (m, 2 H), 3.5-3.8 (m, 12 H$), 3.99(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 4.9(\mathrm{br} \mathrm{s}, \mathrm{NH}-$ $\mathrm{C}=\mathrm{N}, 1 \mathrm{H}), 5.4\left(\mathrm{br} \mathrm{s}, \mathrm{SO}_{2} \mathrm{NH}, 1 \mathrm{H}\right), 6.35(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.9(\mathrm{~s}, \mathrm{CONH}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $21.63,26.55,27.9,29.24,33.97,38.96,41.78,57.44,59.22,67.97,70.7-70.89,71.33,72.09,83.21$, $111.14,111.6,113.85,120.8,124.38,125.23,127.16,127.65,129.23,129.86,130.77,131.72$, $136.48,141.48,147.23,156.03,156.84,167.74,170.01,\left(\mathrm{CF}_{3}\right.$ not visible). MS (ESI) $\mathrm{m} / \mathrm{z} 1675$ [2M $-\mathrm{H}]^{-}, 837[\mathrm{M}-\mathrm{H}]^{-} . \mathrm{HRMS}_{40} \mathrm{H}_{53} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 839.3513; found, 839.3546.

General procedure for Boc deprotection (Table 4).

Boc-protected compound $(0.1 \mathrm{~g})$ dissolved in DCM $(1 \mathrm{~mL})$ was treated with TFA $(1 \mathrm{~mL})$ during 2 h at $20^{\circ} \mathrm{C}$. Concentration under vacuum quantitatively gave the peptidomimetic (for testing) as TFA salt. Compounds are stored in the fridge $\left(-18{ }^{\circ} \mathrm{C}\right)$ as TFA salt. Neutralisation could be performed by dissolution in $\operatorname{DCM}(0.1 \mathrm{~g} / 5 \mathrm{~mL}$ DCM), washing with phosphate buffer ($\mathrm{pH} 8,2 \times 1 \mathrm{~mL}$), drying $\left(\mathrm{MgSO}_{4}\right)$ and concentration (yellow oils).
(S)-3-(3-Amino-4-(4-amino-butoxy)-phenyl)-2-(3-trifluoromethyl)phenylsulfonamido)propionic acid (5b). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.93(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~m}, 2 \mathrm{H})$, $3.12(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.5,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 25.98,27.92,39.65,41.28,59.66,70.05,114.65,121.37,125.7$, $126.81,130.9,131.98,132.03,132.4,133.27,133.3,144.46,153.01,174.41,\left(\mathrm{CF}_{3}\right.$ not visible $)$. HRMS $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 475.1389$; found, 475.1453. (S)-3-(3-Amino-4-(3-(pyridin-2-ylamino)propoxy)phenyl)-2-(3-(trifluoro methyl)phenylsulfonamido)propanoic acid (5e). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.27(\mathrm{~m}, 2 \mathrm{H})$, $2.84(\mathrm{~m}, 1 \mathrm{H}), 3.1(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.1(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}$, $J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.1(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.5,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ $(\mathrm{d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.94(\mathrm{~m}, 3 \mathrm{H}), 7.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1$ H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 29.76,39.78,40.74,59.68,67.72,114.34,114.53,114.54$, 122.67, 125.7, 126.22, 130.91, 132, 132.22, 132.44, 132.46, 137.38, 144.53, 145.57, 152.5, 155.46, 174.29, ($C-C \mathrm{~F}_{3}$ not visible). HRMS $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 539.1576$; found, 539.1564.
(S)-3-(3-Amino-4-(4-(pyridin-2-ylamino)butoxy)phenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoic acid (5f). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.96$ (m, 4 H), 2.84 (m, 1 H), 3.1 (m, 1 H), 3.45 (m, 2 H), 4.14 (m, $3 H), 6.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (m, 2 H$), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03$ (s, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 26.66,28.25,39.71,43.77,59.65,70.34,114.17,114.67$, $121.4,125.7,126.71,130.09,131.96,132,132.42,132.84,133.27,137.24,144.53,145.35,153.07$, 155.35, 174.27, ($C \mathrm{~F}_{3}$ not visible). HRMS $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 553.1733$; found, 553.1723.
(S)-3-(3-Amino-4-(4-(6-methylpyridin-2-ylamino)butoxy)phenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoic acid (5h). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.96$
$(\mathrm{m}, 4 \mathrm{H}), 2.5(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (m, 2 H), $7.68(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 19.84,26.83,28.19,39.62$, 43.96, 59.7, $70.31,110.54,113.74,114.94,121.92,125.62,126.47,130.85,131.76,132.02,132.4,132.77$, 133.22, 144.44, 146.17, 149.79, 152.89, 155.93, 174.41, ($C \mathrm{~F}_{3}$ not visible). HRMS $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 567.1889$; found, 567.1879.
(S)-3-(N-Guanidinyl)-3-aminopropoxy)-3-aminophenyl)-2-(3-
(trifluoromethyl)phenylsulfonamido) propanoic acid (5i). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.14$ $(\mathrm{m}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.1(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.1(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2$ H), $7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 30.27,39.76,39.96,59.67,67.77$, $114.6,122.24,125.71,126.42,130.9,132.03,132.21,132.45,132.78,133.16,144.53,152.68$, $159.65,174.31,\left(C F_{3}\right.$ not visible $)$. HRMS $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 504.1529$; found, 504.1520 .

(S)-3-(N-Guanidinyl)-4-aminobutoxy)-3-aminophenyl)-2-(3-

(trifluoromethyl)phenylsulfonamido) propanoate (5j). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.82-1.94$ $(\mathrm{m}, 4 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.1(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.1(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 27.02,28.11,39.72,43.01,59.64$, $70.34,114.64,121.93,125.68,126.58,130.9,131.93,132.01,132.43,132.9,133.09,144.51$, 152.99, 159.58, 174.27, ($C \mathrm{~F}_{3}$ not visible). HRMS $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 518.1685$; found, 518.1676.
(S)-3-(3-Amino-4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propoxy)phenyl)-2-(3(trifluoromethyl)phenylsulfonamido)propanoic acid (5k). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.1(\mathrm{~m}, 1$
H), $3.49(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.1(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $J=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 21.3,27.27,30.2$, $30.77,39.77,42.94,59.66,69.3,112.48,114.56,121.73,121.99,125.7,126.44,130.91,132$, $132.18,132.43,132.96,143.52,144.56,149.73,152.73,153.92,174.25,\left(C-C F_{3}\right.$ not visible $)$. HRMS $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 579.1889$; found, 579.1888.
(S)-3-(3-2,5,8,11-Tetraoxatridecanamido-4-(4-(4-methylpyridin-2-ylamino)butoxy)phenyl)-2-(3-(trifluoromethyl)phenylsulfonamido)propanoic acid (8c). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $1.96(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.43-3.81 (m, 12 H$), 4.05-4.12(\mathrm{~m}, 5 \mathrm{H}), 6.73(\mathrm{dd}, J=6.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.8(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.3,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.7(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.9(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 22.84,26.9,28.51,40.09,43.66,59.86,60.08,69.75,72.21-73.66,113.29,113.3$, 116.37, 123.17, 125.4, 127.68, 128.22, 130.5, 131.2, 131.86, 132.33, 132.89, 136.37, 144.7, 149.2, 149.28, 154.8, 170.8, 174.96, (CF_{3} not visible $)$. HRMS $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 771.2887; found, 771.2906.

(S)-3-(3-2,5,8,11-Tetraoxatridecanamido-4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-

 yl)propoxy)phenyl)-2-(3-(trifluoromethyl)phenylsulfonamido)propanoic acid (8d). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.4(\mathrm{~m}, 2 \mathrm{H}), 3.46,3.57,3.61,3.65,3.72,3.8(\mathrm{~m}, 12$ H), $4.05(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.8(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.3,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.91(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 21.3,27.24,29.96,31.5,40.13$, $43.12,59.9,60.1,69,72.2-73.66,112.79,113.2,121.6,123.4,125.5,127.8,128.16,130.62,131.36$, 131.9, 132.38, 132.95, 143.72, 144.71, 149.08, 149.67, 153.56, 170.85, 174.91, ($C \mathrm{~F}_{3}$ not visible). HRMS $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{~S}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 783.2887$; found, 783.2863.
V. Modelisation of the cyclic peptide

Cilengitide, i.e. cyclo-[RGDfN(Me)V]-, was optimized at the RHF/6-31G(d) level. Several conformations could be located, close to the X-ray conformation observed in the complex with the extracellular fragment of $\alpha_{v} \beta_{3}$ integrin. The observed X-ray conformation remained a local minimum when reoptimized (energetic range minder than $3 \mathrm{kcal} \mathrm{mole}^{-1}$).

Figure S1. Optimized geometry of Cilengitide.

Figure S2. Re-optimized geometry of Cilengitide from the X-ray structure.

