Iron-Porphyrin NO Complexes with Covalently Attached N-Donor Ligands: The Formation of a Stable Six-Coordinate Species in Solution

Timothy C. Berto, V. K. K. Praneeth, Lauren E. Goodrich, Nicolai Lehnert*

Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

Supporting Information

Figure S1. EPR spectrum of [Fe(TMP-*m*Py)(NO)] (1) recorded at 77 K in frozen toluene. Estimated g values are indicated.

Figure S2. EPR spectrum of [Fe(TMP-*m*Py)(NO)] (1) recorded at 77 K in frozen toluene (red; cf. Figure S1) and fit of the spectrum using the program SpinCount (green).¹ Fit parameters: $g_x = 2.099$, $g_y = 2.04$, $g_z = 2.012$; ¹⁴N hyperfine: ^{NO}A_x = 45 MHz, ^{NO}A_y = 48 MHz, ^{NO}A_z = 48 MHz.

Figure S3. FT-IR spectrum of [Fe(TMP-*m*Py)(NO)] (1) in KBr. The band at 1694 cm⁻¹ corresponds to the N-O stretch v(N-O).

Figure S4. FT-IR spectra of $[Fe(To-F_2PP-C_3IM)(Cl)]$ (dashed line), and of the corresponding NO complex $[Fe(To-F_2PP-C_3IM)(NO)]$ (**2**; solid line) in KBr.

Figure S5. EPR spectrum of $[Fe(To-F_2PP-C_3IM)(NO)]$ (2) in frozen DMSO at 5 K. The additional species (g_?) is typically observes in 6C ferrous heme nitrosyls.² Estimated g values are indicated.

Figure S6. EPR spectrum of $[Fe(To-F_2PP-C_3IM)(NO)]$ (2) recorded at 77 K in frozen DMSO (red) and fit of the spectrum using the program SpinCount (green).¹ Fit parameters: $g_x = 2.087$, $g_y = 2.002$, $g_z = 1.982$; ¹⁴N hyperfine: ^{NO}A_x = 40.5 MHz, ^{NO}A_y = 57 MHz, ^{NO}A_z = 37 MHz; ^{IM}A_y = 2 MHz.

Figure S7. EPR spectrum of $[Fe(To-F_2PP-C_3IM)(NO)]$ (2) recorded at 5 K in frozen DMSO (red) and fit of the spectrum using the program SpinCount (green).¹ Fit parameters: $g_x = 2.08$, $g_y = 2.001$, $g_z = 1.989$; ¹⁴N hyperfine: ^{NO}A_x = 40.5 MHz, ^{NO}A_y = 57 MHz, ^{NO}A_z = 50 MHz; ^{IM}A_y = 2 MHz.

Figure S8. EPR spectrum of [Fe(TPP)(NO)] in a frozen 1:1 mixture of toluene and DMSO at 77 K.

Figure S9. UV-Vis spectrum of $[Fe(To-F_2PP-C_4IM)(NO)]$ (3) in CH₂Cl₂ at room temperature.

Figure S10. EPR spectrum of $[Fe(To-F_2PP-C_4IM)(NO)]$ (**3**) in frozen DMSO at 77 K. The additional species (g_?) is typically observes in 6C ferrous heme nitrosyls.² Estimated g values are indicated.

Figure S11. EPR spectrum of $[Fe(To-F_2PP-C_4IM)(NO)]$ (**3**) recorded at 77 K in frozen toluene (red) and fit of the spectrum using the program SpinCount (green).¹ Fit parameters: $g_x = 2.073$, $g_y = 1.9905$, $g_z = 1.971$; ¹⁴N hyperfine: ^{NO}A_x = 39 MHz, ^{NO}A_y = 57 MHz, ^{NO}A_z = 37 MHz; ^{IM}A_y = 2 MHz.

Figure S12. EPR spectrum of $[Fe(To-F_2PP-BzIM)(NO)]$ (4) in frozen DMSO at 77 K (red) and fit of the spectrum using the program SpinCount (green).¹ Fit parameters: $g_x = 2.077$, $g_y = 2.009$, $g_z = 1.978$; ¹⁴N hyperfine: ^{NO}A_x = 37 MHz, ^{NO}A_y = 62 MHz, ^{NO}A_z = 39 MHz; ^{IM}A_y = 19 MHz.

Figure S13. FT-IR spectra of the precursor $[Fe(To-F_2PP-BzIM)(Cl)]$ in KBr (top), and $[Fe(To-F_2PP-BzIM)(NO)]$ (4) in CHCl₃ (bottom). The FT-IR spectrum of 4 exhibits bands at 1680 cm⁻¹ and 1624 cm⁻¹, which, however, are also present in the precursor complex $[Fe(To-F_2PP-BzIm)(Cl)]$ and have been assigned to v(C=O) and phenyl v(C-C) modes. In comparison with the precursor, a new, intense band at 1644 cm⁻¹ is observed for the NO complex **4**, which is therefore assigned to v(N-O).

Figure S14. UV-Vis data for complex **4** recorded in CH_2Cl_2 . This figure shows that the Soret position is independent of concentration in solution. As the concentration of complex **4** is increased (moving from the purple to the dark blue line) no change in Soret position is observed. This result implies that no intermolecular binding of the IM tether is occurring (see text for explanation).

Figure S15. Overlay of ¹H-NMR data obtained for the alkyl chain substituted ligands L2 and L3 as compared to $H_2To-F_2PP-C_3Br$ where imidazole has been replaced by bromine.

Figure S16. Overlay of ¹H-NMR data obtained for the benzyl substituted ligand **L4** and the corresponding zinc complex.

Figure S17. ¹H-NMR data obtained for 1-methylimidazole (MI) in deuterated acetone. The aromatic protons are observed as singlets as in the case of our imidazole (IM) tethered porphyrins, indicating very weak couplings between the IM ring protons.

Table S1. Crystal data and structure refinement for [Zn(To-F₂PP-BzIM)].

Identification code	znbzim
Empirical formula	C56 H33 Cl2 F6 N7 O Zn
Formula weight	1070.16
Temperature	85(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	<pre>a = 10.5223(8) A alpha = 103.955(1)deg. b = 13.2057(10) A beta = 101.557(1)deg. c = 19.7516(15) A gamma = 100.116(1)deg</pre>
Volume	2536.1(3) A^3
Z, Calculated density	2, 1.401 Mg/m^3
Absorption coefficient	0.659 mm ⁻¹
F(000)	1088
Crystal size	0.14 x 0.14 x 0.10 mm
Theta range for data collection	1.63 to 28.32 deg.
Limiting indices	-14<=h<=14, -17<=k<=17, -26<=l<=26
Reflections collected / unique	54977 / 12597 [R(int) = 0.0460]
Completeness to theta = 28.32	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9370 and 0.9134
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	12597 / 153 / 749
Goodness-of-fit on F^2	1.075
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0570, wR2 = 0.1630
R indices (all data)	R1 = 0.0778, wR2 = 0.1770
Largest diff. peak and hole	1.301 and -0.655 e.A^-3

	x	У	Z	U(eq)
 Q(1)	5290(2)	3769(2)	9175(1)	39(1)
Zn(1)	455(1)	6873(1)	7550(1)	23(1)
F(1)	4139(2)	10523(1)	9279(1)	39(1)
F(2)	748(2)	9370(1)	10334(1)	35(1)
F(5)	-4266(2)	3837(2)	5650(1)	45(1)
F(6)	-80(2)	3633(2)	5238(1)	47(1)
N(1)	-71(2)	5223(2)	7378(1)	24(1)
N(2)	1259(2)	7020(2)	8639(1)	23(1)
N(3)	380(2)	8465(2)	7860(1)	26(1)
N(4)	-971(2)	6676(2)	6608(1)	24(1)
N(5)	3529(2)	4474(2)	8809(1)	28(1)
N(6)	3972(2)	6524(2)	6911(1)	33(1)
N(7)	2228(2)	6994(2)	7230(1)	27(1)
C(1)	-803(3)	4477(2)	6746(1)	25(1)
C(2)	-849(3)	3408(2)	6818(2)	31(1)
C(3)	-160(3)	3521(2)	7501(2)	31(1)
C(4)	334(3)	4660(2)	7853(1)	24(1)
C(5)	1084(2)	5111(2)	8569(1)	22(1)
C(6)	1550(2)	6212(2)	8921(1)	23(1)
C(7)	2384(2)	6664(2)	9651(1)	24(1)
C(8)	2578(2)	7744(2)	9799(I)	25(1)
C(9)	1860(2)	7962(2)	9167(1)	24(1)
C(10)	1/58(3)	8985(2)	9112(1)	25(1) 27(1)
C(11)	1052(3)	9214(2)	8508(1) 8480(2)	2/(1)
C(12)	888(3) 11E(2)	10268(2) 10145(2)	848U(Z) 7914(2)	33(1) 24(1)
C(13)	112(3)	10145(2)	7014(2)	34(⊥) 21(1)
C(14)	-213(3)	9010(2)	7429(1) 6729(1)	31(1) 29(1)
C(15)	-1020(3)	7/71(2)	62/7(1)	20(1) 26(1)
C(10)	-2238(3)	79718(2)	5628(1)	20(1)
C(18)	-2354(3)	5944(2)	5459(1)	29(1)
C(10)	-1563(3)	5731(2)	5135(1) 6075(1)	25(1)
C(20)	-1465(3)	4707(2)	6131(1)	23(1) 24(1)
C(21)	1343(3)	4346(2)	9006(1)	23(1)
C(22)	339(3)	3918(2)	9293(2)	29(1)
C(23)	522(3)	3189(2)	9686(2)	30(1)
C(24)	1715(3)	2877(2)	9786(1)	27(1)
C(25)	2739(3)	3296(2)	9514(1)	27(1)
C(26)	2548(3)	4027(2)	9120(1)	24(1)
C(27)	4778(3)	4317(2)	8836(1)	28(1)
C(28)	5515(3)	4882(2)	8408(1)	28(1)
C(29)	6905(3)	5203(2)	8644(2)	30(1)
C(30)	7620(3)	5726(2)	8262(2)	34(1)
C(31)	6970(3)	5917(3)	7634(2)	34(1)

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \ x \ 10^3$) for [Zn(To-F₂PP-BzIM)]. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

(22)	EE01(2)	5501(2)	7200(2)	22/1)
C(32)	1966(2)	5091(3)	7300(2)	33(1) 21(1)
C(33)	4000(3)	5064(2)	770Z(Z)	31(1)
C(34)	4037(3)	5013(3)	7201(2)	40(1)
C(35)	4303(3)	7300(3)	7301(2)	30(I) 21(1)
C(36)	3300(3)	7873(2)	/494(2)	31(1)
C(37)	20/0(3)	6202(2)	0887(1) 0772(1)	29(1)
C(38)	2398(3)	9912(2)	9/73(1)	20(1)
C(39)	3553(3)	10002(2)	9837(2)	29(1)
C(40)	4138(3)	11536(2)	10437(2)	32(1)
C(41)	3530(3)	11682(2)	10075(2)	34(1)
C(42)	2386(3)	10953(2)	10975(2)	33(1)
C(43)	1867(3)	10094(2)	10367(1)	28(1)
F(3)	3/1(4)	9/12(3)	5933(2)	56(1)
F(4)	-344/(4)	9028(3)	6770(2)	42(1)
C(44)	-1605(3)	9303(2)	636U(1)	32(1)
C(45)	-854(6)	9862(4)	5982(3)	37(1)
C(46)	-1355(7)	10552(4)	5628(3)	42(1)
C(47)	-2604(8)	10713(6)	5659(4)	40(2)
C(48)	-3342(8)	10229(6)	6045(4)	38(2)
C(49)	-2797(6)	9543(6)	6379(3)	31(2)
F(3A)	-299(8)	9200(6)	5582(4)	58(2)
F(4A)	-3260(6)	9376(5)	7080(3)	33(1)
C(44A)	-1605(3)	9303(2)	6360(1)	32(1)
C(45A)	-1309(11)	9578(9)	5775(5)	37(2)
C(46A)	-1901(11)	10241(9)	5432(6)	41(2)
C(47A)	-2959(13)	10568(12)	5660(8)	34(3)
C(48A)	-3392(13)	10250(11)	6205(7)	27(2)
C(49A)	-2712(11)	9623(10)	6547(6)	25(2)
C(50)	-2138(3)	3772(2)	5479(1)	26(1)
C(51)	-3504(3)	3362(2)	5255(2)	32(1)
C(52)	-4137(3)	2496(2)	4658(2)	37(1)
C(53)	-3354(3)	2009(2)	4256(2)	37(1)
C(54)	-1990(3)	2388(2)	4443(2)	36(1)
C(55)	-1416(3)	3259(2)	5050(2)	32(1)
Cl(98)	3684(2)	1520(1)	5773(1)	44(1)
Cl(99)	2284(2)	3084(2)	6350(1)	68(1)
C(99)	3757(7)	2656(5)	6469(4)	48(2)
Cl(91)	4209(2)	791(2)	7588(1)	64(1)
Cl(90)	6815(2)	2222(2)	7881(1)	64(1)
C(90)	5713(8)	1441(6)	8212(4)	55(2)

O(1) - C(27)	1 221(3)
2n(1) - N(2)	2,064(2)
$Z_{\rm II}(1) = N(3)$	$2.00 \pm (2)$
$Z_{11}(1) = N(4)$	2.073(2)
2n(1) - N(1)	2.077(2)
Zn(1)-N(7)	2.079(2)
Zn(1)-N(2)	2.095(2)
F(1)-C(39)	1.357(3)
F(2)-C(43)	1.359(3)
F(5) - C(51)	1,356(3)
F(6) = C(55)	1 348(3)
N(1) = C(1)	1, 370(3)
N(1) = C(1)	1.370(3)
N(1) = C(4)	1.378(3)
N(2) - C(9)	1.367(3)
N(2)-C(6)	1.369(3)
N(3) - C(14)	1.374(3)
N(3)-C(11)	1.376(3)
N(4) - C(16)	1.371(3)
N(4) - C(19)	1,373(3)
N(5) - C(27)	1 359(3)
N(5) = C(25)	$1 \ 117(2)$
N(5) = C(20)	1 240(4)
N(6) = C(37)	1.348(4)
N(6) - C(35)	1.374(4)
N(6)-C(34)	1.474(4)
N(7)-C(37)	1.314(4)
N(7)-C(36)	1.383(3)
C(1) - C(20)	1.403(4)
C(1) - C(2)	1.446(4)
C(2) - C(3)	1,355(4)
C(3) - C(4)	1 446(4)
C(3) C(1)	1,110(1)
C(4) - C(5)	1.400(4)
C(5) - C(6)	1.402(4)
C(5) - C(21)	1.504(3)
C(6)-C(7)	1.449(3)
C(7)-C(8)	1.353(4)
C(8)-C(9)	1.444(3)
C(9) - C(10)	1.402(4)
C(10) - C(11)	1.402(4)
C(10) - C(38)	1.498(4)
C(11) - C(12)	1 445(4)
C(12) - C(13)	1 357(4)
C(12) C(13)	$1.007(\pm)$
C(13) - C(14)	1.205(4)
C(14) - C(15)	1.396(4)
C(15) - C(16)	1.398(4)
C(15)-C(44)	1.499(4)
C(16) - C(17)	1.441(4)
C(17)-C(18)	1.353(4)
C(18)-C(19)	1.447(4)
C(19) - C(20)	1.403(4)
C(20) - C(50)	1 497(4)
C(21) - C(22)	1 295(4)
$C(\Delta I) C(\Delta Z)$	1 200(4)
C(ZI) - C(Zb)	1.398(4)

Table S3. Bond lengths [A] and angles [deg] for [Zn(To-F ₂ PP-BzIM)].	
--	--

C(22)-C(23) C(23)-C(24)	1.389(4) 1.381(4)
C(24) - C(25) C(25) - C(26)	1.387(4) 1.394(3)
C(27) - C(28)	1.496(4)
C(28) - C(29) C(28) - C(33)	1.396(4) 1.397(4)
C(29)-C(30)	1.382(4)
C(30) - C(31)	1.394(4)
C(32) - C(32)	1.395(4)
C(32) - C(34)	1.517(4)
C(35) - C(36) C(38) - C(43)	1.351(4)
C(38)-C(39)	1.389(4)
C(39) - C(40) C(40) - C(41)	1.384(4)
C(41)-C(42)	1.387(4)
C(42) - C(43) F(3) - C(45)	1.375(4)
F(4) - C(49)	1.353(7)
C(44) - C(49)	1.352(7)
C(44) - C(45) C(45) - C(46)	1.422(6)
C(46)-C(47)	1.378(9)
C(47) - C(48) C(48) - C(49)	1.375(9) 1.379(7)
F(3A)-C(45A)	1.334(10)
F(4A) - C(49A) C(45A) - C(46A)	1.374(10)
C(46A)-C(47A)	1.381(12)
C(47A) - C(48A)	1.375(12)
C(50) - C(51)	1.383(4)
C(50) - C(55)	1.384(4)
C(51) - C(52) C(52) - C(53)	1.381(4)
C(53)-C(54)	1.376(5)
C(54) - C(55) Cl(98) - C(99)	1.388(4)
Cl(99)-C(99)	1.733(7)
Cl(91)-C(90) Cl(90)-C(90)	1.729(8) 1.745(8)
$\mathbf{N}(2)$ $\mathbf{Z}_{\mathbf{m}}(1)$ $\mathbf{N}(4)$	
N(3) - Zn(1) - N(4) N(3) - Zn(1) - N(1)	88.39(9) 159.51(9)
N(4) - Zn(1) - N(1)	88.37(8)
N(3) - Zn(1) - N(7) N(4) - Zn(1) - N(7)	101.12(9)
N(1) - Zn(1) - N(7)	99.31(9)
N(3) - Zn(1) - N(2) N(4) - Zn(1) - N(2)	87.90(8) 158.82(9)
N(1) - Zn(1) - N(2)	87.85(8)
N(7) - Zn(1) - N(2) C(1) - N(1) - C(4)	97.76(8) 106.7(2)
C(1) - N(1) - Zn(1)	126.16(17)
C(4) - N(1) - Zn(1)	126.95(17)

C(9) - N(2) - C(6)	106.6(2)
C(9) - N(2) - Zn(1)	125.63(16)
C(6)-N(2)-Zn(1)	126.33(17)
C(14) - N(3) - C(11)	106.4(2)
C(14) - N(3) - Zn(1)	126.48(18)
C(11) - N(3) - Zn(1)	126.70(17)
C(16)-N(4)-C(19)	106.1(2)
C(16) - N(4) - Zn(1)	127.00(17)
C(19) - N(4) - Zn(1)	126.35(17)
C(27)-N(5)-C(26)	129.1(2)
C(37)-N(6)-C(35)	107.1(2)
C(37)-N(6)-C(34)	125.7(3)
C(35)-N(6)-C(34)	125.5(3)
C(37)-N(7)-C(36)	105.9(2)
C(37) - N(7) - Zn(1)	126.84(19)
C(36) - N(7) - Zn(1)	125.40(19)
N(1) - C(1) - C(20)	125.5(2)
N(1) - C(1) - C(2)	109.7(2)
C(20) - C(1) - C(2)	124.7(2)
C(3) - C(2) - C(1)	107.0(2)
C(2) - C(3) - C(4)	107.2(2)
N(1) - C(4) - C(5)	125.8(2)
N(1) - C(4) - C(3)	109.4(2)
C(5) - C(4) - C(3)	124.8(2)
C(4) - C(5) - C(6)	125.5(2)
C(4) - C(5) - C(21)	117 5(2)
N(2) - C(5) - C(5)	127.5(2) 125.5(2)
N(2) = C(6) = C(7)	109 8(2)
C(5) - C(6) - C(7)	124 7(2)
C(8) - C(7) - C(6)	106.6(2)
C(7) - C(8) - C(9)	107.1(2)
N(2) - C(9) - C(10)	125.1(2)
N(2) - C(9) - C(8)	109.8(2)
C(10) - C(9) - C(8)	125.0(2)
C(11) - C(10) - C(9)	126.0(2)
C(11)-C(10)-C(38)	117.0(2)
C(9)-C(10)-C(38)	117.0(2)
N(3)-C(11)-C(10)	125.1(2)
N(3)-C(11)-C(12)	109.9(2)
C(10) - C(11) - C(12)	124.9(2)
C(13) - C(12) - C(11)	106.7(2)
C(12)-C(13)-C(14)	107.2(2)
N(3)-C(14)-C(15)	125.5(2)
N(3) - C(14) - C(13)	109.7(2)
C(15) - C(14) - C(13)	124.7(2)
C(14) - C(15) - C(16)	126.2(2)
C(14) - C(15) - C(44)	117.0(2)
C(16) - C(15) - C(44)	116.8(2)
N(4) - C(16) - C(15)	124.7(2)
N(4) - C(16) - C(17)	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$
C(12) - C(10) - C(17)	$\perp \angle \Im \cdot \bot (\angle)$
C(10) - C(12) - C(10)	$\pm 00.0(2)$
U(1) = C(10) = C(10)	10/.U(Z) 125 1/2)
N(4) = C(19) = C(20) N(4) = C(19) = C(19)	100 Q(2)
C(20) = C(19) = C(18)	105.0(2)
\bigcirc	12J.U(2)

C(1)-C(20)-C(19)	125.8(2)
C(1) - C(20) - C(50)	116.9(2)
C(19) - C(20) - C(50)	117.3(2)
C(22)-C(21)-C(26)	118.6(2)
C(22) - C(21) - C(5)	119.1(2)
C(26)-C(21)-C(5)	122.3(2)
C(23)-C(22)-C(21)	121.1(3)
C(24)-C(23)-C(22)	119.3(3)
C(23)-C(24)-C(25)	121.0(2)
C(24)-C(25)-C(26)	119.3(2)
C(25)-C(26)-C(21)	120.6(2)
C(25)-C(26)-N(5)	123.0(2)
C(21)-C(26)-N(5)	116.4(2)
O(1)-C(27)-N(5)	124.6(3)
O(1) - C(27) - C(28)	121.1(2)
N(5) - C(27) - C(28)	114.4(2)
C(29)-C(28)-C(33)	119.4(3)
C(29) - C(28) - C(27)	118.2(2)
C(33) - C(28) - C(27)	122.4(2)
C(30) - C(29) - C(28)	119.8(3)
C(29) - C(30) - C(31)	120.6(3)
C(32) - C(31) - C(30)	120.2(3)
C(31) - C(32) - C(33)	119.2(3)
C(31) - C(32) - C(34)	121.2(3)
C(33) - C(32) - C(34)	119.5(3)
C(32) - C(33) - C(28)	120.7(3)
N(6) - C(34) - C(32)	109.5(2)
C(36) - C(35) - N(6)	106.4(3)
C(35) - C(36) - N(7)	109.3(3)
N(7) - C(37) - N(6)	111.2(3)
C(43) - C(38) - C(39)	114.8(2)
C(43) - C(38) - C(10)	122.2(2)
C(39) - C(38) - C(10)	123.0(2)
F(1) - C(39) - C(40)	118.4(2)
F(1) - C(39) - C(38)	117.9(2)
C(40) - C(39) - C(38)	123.6(3)
C(41) - C(40) - C(39)	118.3(3)
C(40) - C(41) - C(42)	120.9(3)
C(43) - C(42) - C(41)	117.9(3)
F(2) - C(43) - C(42)	118.7(3)
F(2) - C(43) - C(38)	116.8(2)
C(42) - C(43) - C(38)	124.5(3)
C(49) - C(44) - C(45)	114.9(4)
C(49) - C(44) - C(15)	125.4(4)
C(45) - C(44) - C(15)	119.6(3)
F(3) - C(45) - C(46)	117.1(5)
F(3) - C(45) - C(44)	121.0(4)
C(46) - C(45) - C(44)	121.8(5)
C(47) - C(46) - C(45)	118.7(6)
C(48) - C(47) - C(46)	121.6(6)
C(47) - C(48) - C(49)	117.0(7)
C(44) - C(49) - F(4)	112.7(5)
C(44) - C(49) - C(48)	125.9(6)
F(4) - C(49) - C(48)	121.4(6)
F(3A) - C(45A) - C(46A)	121.4(8)
C(47A) - C(46A) - C(45A)	116.8(10)
C(48A)-C(47A)-C(46A)	121.1(11)

C(47A)-C(48A)-C(49A)	118.9(11)
F(4A)-C(49A)-C(48A)	112.0(9)
C(51)-C(50)-C(55)	114.9(2)
C(51)-C(50)-C(20)	123.5(2)
C(55)-C(50)-C(20)	121.5(2)
F(5)-C(51)-C(52)	118.1(3)
F(5)-C(51)-C(50)	117.7(2)
C(52)-C(51)-C(50)	124.2(3)
C(51)-C(52)-C(53)	118.0(3)
C(54)-C(53)-C(52)	120.8(3)
C(53)-C(54)-C(55)	118.3(3)
F(6)-C(55)-C(50)	117.6(2)
F(6)-C(55)-C(54)	118.6(3)
C(50)-C(55)-C(54)	123.8(3)
Cl(99)-C(99)-Cl(98)	111.9(4)
Cl(91)-C(90)-Cl(90)	113.5(4)

	U11	U22	U33	U23	U13	U12
O(1)	29(1)	52(1)	51(1)	35(1)	12(1)	18(1)
Zn(1)	26(1)	20(1)	27(1)	12(1)	6(1)	6(1)
F(1)	35(1)	34(1)	49(1)	10(1)	19(1)	3(1)
F(2)	40(1)	29(1)	37(1)	14(1)	15(1)	1(1)
F(5)	32(1)	44(1)	51(1)	0(1)	10(1)	9(1)
F(6)	38(1)	54(1) 22(1)	48(1) 27(1)	8(1) 10(1)	18(1)	12(1)
$N(\perp)$	24(1)	22(1)	2/(1)	$\perp 2(\perp)$ 12(1)	6(1) E(1)	5(1) 5(1)
$\mathbb{N}(\mathbb{Z})$	23(1)	20(1)	20(1)	$\perp \angle (\perp)$ 12(1)	5(1)	5(1)
N(3) N(4)	30(1) 27(1)	22(1)	20(1) 29(1)	13(1) 14(1)	7(1) 9(1)	9(1) 7(1)
N(-1)	25(1)	34(1)	36(1)	24(1)	9(1)	12(1)
N(5)	29(1)	48(1)	32(1)	26(1)	11(1)	11(1)
N(7)	26(1)	30(1)	26(1)	13(1)	5(1)	4(1)
C(1)	30(1)	20(1)	28(1)	11(1)	9(1)	7(1)
C(2)	43(2)	20(1)	29(1)	9(1)	4(1)	7(1)
C(3)	43(2)	21(1)	31(1)	13(1)	8(1)	10(1)
C(4)	26(1)	21(1)	29(1)	12(1)	9(1)	8(1)
C(5)	22(1)	23(1)	28(1)	14(1)	7(1)	8(1)
C(6)	20(1)	24(1)	28(1)	15(1)	6(1)	6(1)
C(7)	22(1)	25(1)	29(1)	13(1)	5(1)	5(1)
C(8)	22(1)	26(1)	28(1)	11(1)	5(1)	4(1)
C(9)	22(1)	24(1)	27(1)	13(1)	7(1)	3(1)
C(10)	24(1)	22(1)	30(1)	11(1)	8(1)	3(1)
C(11)	32(1)	21(1)	30(1)	11(1)	8(1)	6(1)
C(12)	49(2)	21(1)	30(1)	12(1)	7(1)	8(1)
C(13)	55(2)	22(1)	29(1)	$\perp 3(\perp)$	8(1) 10(1)	13(1)
C(14)	45(2)	23(1)	29(1)	15(1)	10(1)	$\perp \perp (\perp)$ 12(1)
C(15)	39(1) 20(1)	24(1)	28(1)	10(1)	8(1)	$\perp 2(\perp)$
C(10)	29(1)	2/(1)	27(1)	$\pm 4(\pm)$ 12(1)	7(1)	9(1) 12(1)
C(17)	$3 \pm (1)$	29(1)	27(1)	12(1)	5(1)	10(1)
C(10)	26(1)	25(1)	26(1)	11(1)	6(1)	7(1)
C(20)	25(1)	23(1)	26(1)	10(1)	7(1)	6(1)
C(21)	26(1)	20(1)	26(1)	11(1)	6(1)	5(1)
C(22)	28(1)	30(1)	37(1)	18(1)	10(1)	11(1)
C(23)	30(1)	29(1)	37(1)	19(1)	11(1)	6(1)
C(24)	34(1)	23(1)	26(1)	14(1)	4(1)	6(1)
C(25)	28(1)	28(1)	30(1)	15(1)	6(1)	10(1)
C(26)	27(1)	24(1)	25(1)	13(1)	7(1)	6(1)
C(27)	25(1)	32(1)	31(1)	14(1)	7(1)	9(1)
C(28)	26(1)	33(1)	30(1)	14(1)	9(1)	11(1)
C(29)	28(1)	36(1)	32(1)	15(1)	8(1)	12(1)
C(30)	25(1)	41(2)	42(2)	18(1)	10(1)	11(1)
C(31)	30(1)	45(2)	38(1)	21(1)	16(1)	13(1)

Table S4. Anisotropic displacement parameters ($A^2 \ge 10^3$) for [Zn(To-F2PP-BzIM)].The anisotropic displacement factor exponent takes the form:-2 pi² [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

C(32)	29(1)	50(2)	31(1)	21(1)	13(1)	18(1)
C(33)	25(1)	42(2)	32(1)	17(1)	9(1)	12(1)
C(34)	36(2)	65(2)	37(2)	30(1)	18(1)	23(1)
C(35)	27(1)	46(2)	38(2)	27(1)	4(1)	1(1)
C(36)	29(1)	33(1)	30(1)	15(1)	2(1)	-2(1)
C(37)	26(1)	35(1)	29(1)	15(1)	7(1)	6(1)
C(38)	29(1)	21(1)	29(1)	12(1)	2(1)	6(1)
C(39)	27(1)	26(1)	38(1)	12(1)	8(1)	9(1)
C(40)	24(1)	24(1)	45(2)	10(1)	1(1)	4(1)
C(41)	35(2)	26(1)	33(1)	7(1)	-5(1)	5(1)
C(42)	42(2)	31(1)	29(1)	14(1)	5(1)	8(1)
C(43)	31(1)	25(1)	29(1)	13(1)	6(1)	4(1)
F(3)	79(2)	54(2)	69(2)	41(2)	50(2)	38(2)
F(4)	34(2)	41(2)	58(2)	30(2)	8(2)	8(1)
C(44)	52(2)	24(1)	24(1)	13(1)	7(1)	13(1)
C(45)	60(3)	32(3)	27(2)	14(2)	16(2)	19(2)
C(46)	76(4)	31(3)	27(3)	14(2)	16(3)	17(3)
C(47)	75(4)	22(3)	26(3)	12(2)	7(3)	17(3)
C(48)	46(3)	28(3)	34(4)	14(2)	-9(2)	9(2)
C(49)	33(2)	29(3)	21(3)	12(2)	-12(2)	-3(2)
F(3A)	84(5)	72(4)	67(4)	53(3)	55(3)	57(4)
F(4A)	33(3)	38(3)	35(3)	23(2)	8(2)	9(2)
C(44A)	52(2)	24(1)	24(1)	13(1)	7(1)	13(1)
C(45A)	54(5)	47(6)	25(4)	19(4)	17(4)	33(4)
C(46A)	59(6)	50(6)	36(5)	32(4)	17(4)	32(5)
C(47A)	48(6)	34(6)	33(5)	22(4)	11(4)	22(4)
C(48A)	27(4)	29(5)	24(5)	15(4)	-2(3)	-2(3)
C(49A)	33(4)	24(5)	15(4)	13(3)	-7(3)	2(4)
C(50)	35(1)	21(1)	24(1)	11(1)	5(1)	9(1)
C(51)	33(1)	31(1)	32(1)	8(1)	5(1)	11(1)
C(52)	40(2)	33(2)	32(1)	8(1)	-3(1)	6(1)
C(53)	54(2)	30(1)	24(1)	10(1)	2(1)	13(1)
C(54)	54(2)	32(1)	29(1)	12(1)	15(1)	18(1)
C(55)	33(1)	34(1)	31(1)	12(1)	9(1)	10(1)
Cl(98)	61(1)	35(1)	34(1)	7(1)	5(1)	22(1)
Cl(99)	46(1)	56(1)	83(1)	-13(1)	6(1)	20(1)
C(99)	63(4)	37(3)	46(4)	6(3)	24(3)	17(3)
Cl(91)	83(1)	52(1)	52(1)	29(1)	6(1)	-8(1)
Cl(90)	58(1)	66(1)	64(1)	11(1)	21(1)	8(1)
C(90)	65(5)	56(4)	47(4)	21(3)	10(3)	18(4)

	x	У	Z	U
	3296	4916	8564	3
H(2A)	-1280	2751	6456	3
H(3A)	-27	2958	7709	3
H(7A)	2728	6278	9965	2
H(8A)	3091	8261	10236	3
H(12A)	1252	10921	8856	4
H(13A)	-161	10699	7634	4
H(17A)	-2645	7400	5330	3
H(18A)	-2858	5428	5019	3
H(22A)	-485	4128	9219	3
H(23A)	-166	2907	9883	3
H(24A)	1837	2368	10046	3
H(25A)	3563	3087	9594	3
H(29A)	7357	5063	9066	3
H(30A)	8564	5959	8430	4
H(31A)	7473	6270	7373	4
H(33A)	3919	4875	7623	3
H(34A)	5508	6159	6493	4
H(34B)	4324	5130	6361	4
H(35A)	5253	8036	7413	4
H(36A)	3291	8567	7768	3
H(37A)	2142	5494	6653	3
H(40A)	4936	12024	10461	3
H(41A)	3900	12290	11411	4
H(42A)	1976	11044	11366	4
H(46A)	-846	10907	5370	5
H(47A)	-2963	11169	5408	4
H(48A)	-4189	10361	6080	4
H(46B)	-1593	10460	5057	5
H(47B)	-3395	11019	5437	4
H(48B)	-4143	10456	6346	3
H(52A)	-5080	2242	4527	4
H(53A)	-3765	1406	3847	4
H(54A)	-1454	2061	4164	4
H(99A)	3941	2486	6936	5
H(99B)	4503	3244	6488	5
H(90A)	6142	898	8369	6
H(90B)	5537	1907	8640	6

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2 x \ 10^3$) for [Zn(To-F₂PP-BzIM)].

Complete Ref. 2d.

Hersleth, H.P.; Varnier, A.; Harbitz, E.; Rohr, A.K.; Schmidt, P.P; Sorlie, M.; Cederkvist, F.H.; Marchal, S.; Gorren, A.C.F.; Mayer, B.; Uchida, T.; Schunemann, V.; Kitagawa, T.; Trautwein, A.X.; Shimizu, T.; Lange, R.; Gorbitz, C.H.; Anderson, K.K. *Inorg. Chim. Acta*, **2008**, *361*, 831-843.

References:

¹ SpinCount (Version 2.2.40), written by Prof. Michael Hendrich, Carnegie Mellon University, 2008.

² Lehnert, N.; "EPR and Low-Temperature Magnetic Circular Dichroism Spectroscopy of Ferrous Heme Nitrosyls"; in: "The Smallest Biomolecules: Diatomics and their Interactions with Heme Proteins"; Ghosh, A., ed., Elsevier, Amsterdam, **2008**.