Supporting Information

Catalytic Allylic C-H Acetoxylation and Benzoyloxylation via Suggested (η^{3}-Allyl)palladium(IV) Intermediates

Lukasz T. Pilarski, Nicklas Selander, Dietrich Böse and Kálmán J. Szabó* Stockholm University, Arrhenius Laboratory, Department of Organic Chemistry SE-106 91 Stockholm, Sweden. E-mail: kalman@organ.su.se. Fax: +46-8-15 4908

Contents:

1. General Information S2
2. Experimental Procedures and Spectral Data for 4a-4h S2
3. Catalytic Acetoxylation of Deuterated Cyclohexene S7
4. Oxidation of Palladium Complex 1b Monitored by ${ }^{1} \mathrm{H}$ NMR S8
5. Oxidation of 2a using $\operatorname{PhI}(\mathrm{OAc})_{2}$ and LiOBz S 9
6. References S10
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 a - 4 h}$ S11

1. General Information

Palladium pincer complex $\mathbf{1} \mathbf{b}^{1}$, deuterated substrate $\mathbf{2 f}-1 d^{2,3}$ and iodonium salt $\mathbf{3} \mathbf{b}^{4}$ were prepared according to literature procedures. Glacial acetic acid was distilled prior to use. All other chemicals were obtained from commercial sources and used as received. All reactions were carried out under air. Unless otherwise stated ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} (internal standard: $7.26 \mathrm{ppm},{ }^{1} \mathrm{H}$; $77.00 \mathrm{ppm},{ }^{13} \mathrm{C}$) using a Bruker 400 or 500 MHz spectrometer. ${ }^{2} \mathrm{H}$ NMR spectrum was recorded in CDCl_{3} (internal standard: $7.26 \mathrm{ppm},{ }^{1} \mathrm{H}$) using a Bruker 500 MHz spectrometer. High resolution mass data (HRMS) were obtained using ESI technique. For column chromatography, silica gel (35-70 microns) was used.

2. Experimental Procedures and Spectral Data

General Procedures:

Procedure A: Acetoxylation of Alkenes (Table 1). To a 2 mL screw-top glass vial equipped with a magnetic stirring bar were added sequentially: the indicated palladium salt ($0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathbf{3 a}$ ($193.3 \mathrm{mg}, 0.60 \mathrm{mmol}$), substrate (0.30 mmol), potassium acetate ($29.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) and appropriate solvent (1 mL). The mixture was stirred for 18 h at $40^{\circ} \mathrm{C}$. The crude reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, washed with water $(3 \times 5 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solid residues were washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and the combined liquors concentrated under reduced pressure to give the crude products ($\mathbf{4 a}, \mathbf{4 c}$ and $\mathbf{4 e}-\mathbf{4 h}$), which were further purified by silica gel chromatography.

Procedure B: Benzoyloxylation of Alkenes (Table 1). To a 2 mL screw-top glass vial equipped with a magnetic stirring bar were added sequentially: the indicated
palladium salt ($0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathbf{3 b}$ ($267.7 \mathrm{mg}, 0.60 \mathrm{mmol}$), substrate (0.30 mmol), lithium benzoate ($38.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$. The mixture was stirred for 18 h at $40^{\circ} \mathrm{C}$. The crude reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (5 mL), washed sequentially with water $\left(3 \times 5 \mathrm{~mL}\right.$) and aqueous NaHCO_{3} ($0.4 \mathrm{M}, 3 \mathrm{~mL}$), and then dried $\left(\mathrm{MgSO}_{4}\right)$. The solid residues were washed with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 5 \mathrm{~mL}$) and the combined liquors concentrated under reduced pressure to give the crude products ($\mathbf{4 b}$ and $\mathbf{4 d}$), which were further purified by silica gel chromatography.

Асо сооме $^{\text {(E)-Methyl }}$ 4-acetoxybut-2-enoate (4a). General Procedure A. 4a Isolated in 59% yield (27.3 mg) using pentane $/ \mathrm{Et}_{2} \mathrm{O} 10: 1$ as eluent for silica gel chromatography. The NMR data obtained for $\mathbf{4 a}$ are in agreement with literature values. ${ }^{5}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.94(\mathrm{td}, J=4.6,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{td}$, $J=2.0,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (dd, $J=2.0,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (s, 3H), 2.12 (s, 3H); ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): δ 170.3, 166.2, 141.4, 121.8, 62.5, 51.7, 20.7; HRMS (pos. ESI) m / z : calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$181.0471, found 181.0476.

вzо へсооме (E)-Methyl 4-benzoyloxybut-2-enoate (4b). General Procedure B. 4b Isolated in 64% yield (42.0 mg) using pentane $/ \mathrm{Et}_{2} \mathrm{O} 10: 1$ as eluent for silica gel chromatography. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (td, $J=4.5,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (td, $J=2.0,15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.00 (dd, $J=2.0,4.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.76 (s, 3H); ${ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.2,165.8,141.5,133.3,129.7,129.5,128.5,121.8,62.9,51.8 ;$ HRMS (pos. ESI) m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$243.0628, found 243.0630.

(E)-Methyl 4-acetoxypent-2-enoate (4c). General Procedure A. Isolated in 62% yield (32.0 mg) using pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 6:1 as eluent for silica gel chromatography. The NMR data obtained for 4c are in agreement with literature values. ${ }^{5}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.88(\mathrm{dd}, J=5.0,15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 (dd, $J=1.6,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (ddq, $J=1.6,5.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (s, 3H), $2.09(\mathrm{~s}, 3 \mathrm{H}), 1.36$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,166.5$, 146.6, 120.6, 68.8, 51.7, 21.1, 19.6; HRMS (pos. ESI) m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NaO}_{4}$ $\left[^{2}+\mathrm{Na}\right]^{+} 195.0628$, found 195.0627.

(E)-Methyl 4-benzoyloxypent-2-enoate (4d). General Procedure B. Isolated in 61% yield (42.8 mg) using pentane $/ \mathrm{Et}_{2} \mathrm{O} 10: 1$ as eluent for silica gel chromatography. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07$ (d, $J=7.6$ Hz, 2H), $7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=4.9,15.8 \mathrm{~Hz}$, 1 H), 6.07 (dd, $J=1.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (ddq, $J=1.7,4.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (s, 3H), $1.50(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5,165.5,146.6$, 133.2, 129.9, 129.7, 128.4, 120.6, 69.3, 51.7, 19.7; HRMS (pos. ESI) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$257.0784, found 257.0782.

4 e
(E)-Methyl 4-acetoxyhex-2-enoate (4e). General Procedure A. Isolated in 61% yield (34.0 mg) using pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 10:1 as eluent for silica gel chromatography. The NMR data obtained for $\mathbf{4 e}$ are in agreement with literature values. ${ }^{5}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.85$ (dd, $J=5.3,15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.95 (dd, $J=1.6,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (ddt, $J=1.6,5.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (s, 3H), 2.10 (s, 3H), 1.70 (dq, $J=6.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 170.1,166.5,145.5,121.3,73.5,51.7,26.8,21.0,9.2$; HRMS (pos. ESI) m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$209.0784, found 209.0793.

(E)-Methyl 4-acetoxynon-2-enoate (4f). General Procedure A. Isolated in 70% yield (47.9 mg) using pentane $/ \mathrm{Et}_{2} \mathrm{O} 10: 1$ as eluent for silica gel chromatography. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.85$ (dd, $J=5.4,15.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.94 (dd, $J=1.6,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (ddt, $J=1.6,5.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,166.5,145.8,121.0,72.5,51.7,33.7,31.4$, 24.6, 22.4, 21.0, 13.9; HRMS (pos. ESI) m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 251.1254, found 251.1256.

4-Acetoxypent-2-enenitrile (4g). General Procedure A. Isolated as a mixture of trans-4g and cis-4g (1:1 ratio) in 51\% yield (21.6 mg) using pentane/Et 2 O 10:1 as eluent for silica gel chromatography. The NMR data obtained for $\mathbf{4 g}$ are in agreement with literature values. ${ }^{6,7}$ trans $-\mathbf{4 g}:{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta 6.65$ (dd, $\left.J=5.0,16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.54$ (dd, $\left.J=1.8,16.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.44$ (ddq, $J=1.8,5.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}): δ 169.7, 152.6, 116.5, 100.2, 68.6, 20.9, 19.3; HRMS (pos. ESI) $m / z:$ calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$162.0525, found 162.0526. cis-4g: ${ }^{1} \mathbf{H}$ NMR (400 MHz , CDCl_{3}): $\delta 6.40$ (dd, $\left.J=6.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.65$ (ddq, $\left.J=1.4,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.41$ (dd, $J=1.4,11.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0,152.3,114.8,99.6,68.9,20.9,19.6$.

Cyclohex-2-enyl acetate (4h). General Procedure A. Isolated in 66\% yield (27.6 mg) using pentane/ $\mathrm{Et}_{2} \mathrm{O} 20: 1$ as eluent for silica gel chromatography. The NMR data obtained for $\mathbf{4 h}$ are in agreement with literature values. ${ }^{8}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.94$ (dtd, $J=1.3,3.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.72-5.66$ (m, 1H), $5.27-$ 5.22 (m, 1H), 2.14-1.93 (m, 2H), 2.04 (s, 3H), 1.91-1.82 (m, 1H), 1.78-1.57 (m, 3H);
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}): $\delta 170.8,132.6,125.7,68.1,28.3,24.8,21.4,18.8$; HRMS (pos. ESI) m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$163.0730, found 163.0732.

3. Catalytic Acetoxylation of Deuterated Cyclohexene

The acetoxylation of $\mathbf{2 f}$-1d was performed according to General Procedure A. The isotope distribution in product $\mathbf{4 h}$ was determined by integration of the peaks in the ${ }^{2} \mathrm{H}$ NMR spectrum shown below. No other deuterated species were detected. Spectral data for the three isomers:

4h-1d: ${ }^{2} \mathbf{H}$ NMR ($76.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.03-5.93$ (br s, 1D).
4h-2d: ${ }^{2} \mathbf{H}$ NMR (76.8 MHz, CDCl_{3}): $\delta 5.80-5.67$ (br s, 1D).
4h-3d: ${ }^{2} \mathbf{H}$ NMR (76.8 MHz, CDCl_{3}): $\delta 5.30-5.20$ (br s, 1D).

4. Oxidation of Palladium Complex 1b Monitored by ${ }^{1} \mathrm{H}$ NMR

A NMR tube was charged with a solution of palladium complex $\mathbf{1 b}(7.6 \mathrm{mg}, 0.02$ mmol) in $\mathrm{CDCl}_{3}(0.3 \mathrm{~mL})$. To this solution, iodonium salt $\mathbf{3 a}(19.3 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added in $\mathrm{CDCl}_{3}(0.1 \mathrm{~mL})$. The sample was vigorously shaken to give a homogeneous solution and five minutes thereafter a ${ }^{1} \mathrm{H}$ NMR spectrum (shown below) was recorded at room temperature. Approximately 10 minutes later (at room temperature), a second ${ }^{1} \mathrm{H}$ NMR spectrum was recorded, showing no peaks assigned to complex 7. Spectral data for the benzyl and methyl protons of proposed complex 7: ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.46$ (d, $J=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}$), 4.38 (d, $J=13.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}$), $3.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right)$.

5. Oxidation of 2a using $\mathrm{PhI}(\mathrm{OAc})_{2}$ and LiOBz

To a 2 mL screw-top glass vial equipped with a magnetic stirring bar were added sequentially: $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathbf{3 a}$ ($64.4 \mathrm{mg}, 0.20 \mathrm{mmol}$), 2a ($10.0 \mathrm{mg}, 0.10 \mathrm{mmol}$), lithium benzoate $(12.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{CD}_{3} \mathrm{CN}(0.3$ mL). The mixture was stirred for 18 h at $40^{\circ} \mathrm{C}$, filtered through a cotton wool plug and additional $\mathrm{CD}_{3} \mathrm{CN}(0.2 \mathrm{~mL})$ was added. The product ratio was determined by ${ }^{1} \mathrm{H}$ NMR and found to be 4a:4b 2:1.

6. References

(1) Alsters, P. L.; Baesjou, P. J.; Janssen, M. D.; Kooijman, H.; Sicherer-Roetman, A.; Spek, A. L.; van Koten, G. Organometallics 1992, 11, 4124.
(2) Hashimoto, T.; Prakash, G. K. S.; Shih, J. G.; Olah, G. A. J. Org. Chem. 1987, 52, 931.
(3) Nägeli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; Müller, P. Helv. Chim. Acta. 1997, 80, 1087.
(4) Stang, P. J.; Boehshar, M.; Wingert, H.; Kitamura, T. J. Am. Chem. Soc. 1988, 110, 3272.
(5) Hoffman, R. V.; Severns, B. S. J. Org. Chem. 1996, 61, 5567.
(6) Nudelman, A.; Keinan, E. Synthesis 1982, 687.
(7) Baeza, A.; Casas, J.; Nájera, C.; Sansano, J. M. J. Org. Chem. 2006, 71, 3837.
(8) Magens, S.; Ertelt, M.; Jatsch, A.; Plietker, B. Org. Lett. 2008, 10, 53.

7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $4 a-4 h$

