A New Ring Closure Approach to Enantiopure 3,6-Dihydro-2*H*-pyrans – Stereodivergent Access to Carbohydrate Mimetics

Fabian Pfrengle, Dieter Lentz and Hans-Ulrich Reissig*

Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.

hans.reissig@chemie.fu-berlin.de

General methods	S1
Characteristic ${}^{3}J_{H-H}$ coupling constants in carbohydrate mimetics 14, 16, 19 and 22	S2
Mechanistic suggestion for the transformation of hydroxylamine 17 into nitrone 18	
Experimental procedures and characterization data	S3
¹ H- and ¹³ C-NMR spectra	S20

General methods:

Reactions were generally performed under argon in flame-dried flasks, and the components were added by syringe. Methanol was purchased in p. a. quality and stored under argon over molecular sieves (4 Å). Tetrahydrofuran and dichloromethane were obtained from a solvent purification system MB-SPS-800 (M. Braun). Products were purified by flash chromatography on silica gel (230–400 mesh, Merck). Unless otherwise stated, yields refer to analytically pure samples. 1 H NMR [CHCl₃ (δ = 7.26 ppm), TMS (δ = 0.00 ppm), CD₃OD (δ = 3.31 ppm) or D₂O (δ = 4.79 ppm) as internal standards] and 13 C NMR spectra [CDCl₃ (δ = 77.0 ppm) or CD₃OD (δ = 49.0 ppm) as internal standards] were recorded on Bruker AC 250, ECP 400, AC 500, AVIII 700, or Joel Eclipse 500 instruments in CDCl₃, CD₃OD or D₂O solution. Integrals are in accordance with assignments; coupling constants are given in Hz. IR spectra were measured with an FT-IR spectrometer Nicolet 5 SXC or with a Nexus FT-IR equipped with a Nicolet Smart DuraSamplIR ATR. MS and HRMS analyses were performed on Finnigan MAT 711 (EI, 80 eV, 8 kV), MAT CH7A (EI, 80 eV, 3 kV), CH5DF (FAB, 80 eV, 3 kV), Varian Ionspec QFT-7 (ESI-FT-ICR) and Agilent ESI-TOF 6210 (4 μ L/min, 1 bar, 4000 V) instruments. The elemental analyses were

recorded with "Elemental-Analyzers" (Perkin–Elmer or Carlo Erba). Melting points were measured with a Reichert apparatus (Thermovar) and are uncorrected. Optical rotations ($[\alpha]_D$) were determined with Perkin–Elmer 241 polarimeter at the temperatures given. Commercially available chemicals were used without further purification.

Characteristic ${}^{3}J_{H-H}$ coupling constants in carbohydrate mimetics 14, 16, 19 and 22:

Mechanistic suggestion for the transformation of hydroxylamine (17) into nitrone (18)

After deprotonation of the hydroxylamine moiety by azide, a hydride shift occurs from the benzylic position to the 3-position of the pyran ring providing nitrone 18 in an intramolecular S_N2 -like reaction. The transformation might be facilitated by the suitable geometry of compound 17. Different approaches to further clarify the reaction mechanism are currently under investigation (e.g. reaction without base or with sterically demanding bases).

Experimental procedures and characterization data:

Due to hindered rotation of the bulky -N(OTBS)Bn moiety some signals in the ¹H- or ¹³C-NMR spectra of the compounds containing this group are broadened and in several cases these signals can not be clearly recognized.

N-Benzyl-O-(tert-butyldimethylsilyl)-N-((S)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-ethoxyallyl)hydroxylamine (syn-10)

Ethyl vinyl ether (445 μL, 4.62 mmol) was dissolved in THF (8 mL) and cooled to -78 °C. tBuLi (1.6 M in pentane, 2.89 mL, 4.62 mmol) was added and the reaction mixture was stirred for 1 h until it reached 0 °C. After further stirring for 1 h at this temperature, it was cooled down to -78 °C again. A solution of nitrone 1a (725 mg, 3.08 mmol) in THF (2 mL) was added dropwise over a period of 15 min. Then, the mixture was stirred at this temperature for 1 h and quenched by addition of H₂O. After the mixture reached room temperature it was extracted 3 times with Et₂O. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. The crude product (844 mg) was dissolved in CH₂Cl₂ (7 mL) and 2,6-lutidine (641 µL, 5.50 mmol) and TBSOTf (946 µL, 4.13 mmol) were added slowly at 0 °C. The mixture was stirred at room temperature for 30 min and was then quenched by the addition of a sat. NH₄Cl solution. The layers were separated and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 20:1) yielded syn-10 (800 mg, 61%) and anti-10 (115 mg, 9%) as colorless oils. syn-10: $[\alpha]_D^{22} = -27.2$ (c = 0.20, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 0.10$ (s, 6 H, SiMe₂), 0.88 (s, 9 H, tBu), 1.28 (t, J = 7.0 Hz, 3 H, Et), 1.33, 1.36 (2 s, 3 H each, Me), 3.29 (s_{br} , 1 H, 3-H), 3.57 (t, J = 7.9 Hz, 1 H, 5-H), 3.66, 3.72 $(2 \text{ td}, J = 7.0, 9.4 \text{ Hz}, 1 \text{ H each}, \text{ Et}), 3.85 (s_{br}, 1 \text{ H}, \text{NCH}_2), 3.99 (dd, J = 6.8, 7.9 \text{ Hz}, 1 \text{ H}, 5-\text{H}),$ 4.03 (d, J = 1.6 Hz, 1 H, 1-H), 4.12 (d, J = 13.2 Hz, 1 H, NCH₂), 4.16 (d, J = 1.6 Hz, 1 H, 1-H), 4.40 (td, J = 6.8, 7.9 Hz, 1 H, 4-H), 7.20-7.42 (m, 5 H, Ph) ppm. ¹³C-NMR (176 MHz, CDCl₃): δ = -5.2, -4.8 (2 q, SiMe₂), 14.6 (q, Et), 17.9, 26.2 (s, q, tBu), 25.6, 26.7 (2 q, Me), 60.5 (t, NCH₂),

62.2 (t, Et), 67.6 (t, C-5), 71.5 (d, C-3), 74.1 (d, C-4), 87.4 (t, C-1), 109.2 (s, C-2'), 126.9, 127.9, 129.8, 138.0 (3 d, s, Ph), 157.3 (s, C-2) ppm. IR (film): 3100-2850 cm⁻¹ (=C-H, C-H). ESI-TOF: m/z calc. for [M + Na]⁺ 444.2541, found 444.2546. Anal. calc. for C₂₃H₃₉NO₄Si (421.7): C 65.52, H 9.32, N 3.32, found: C 65.39, H 9.37, N 3.36.

N-Benzyl-O-(tert-butyldimethylsilyl)-N-((R)-1-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-ethoxyallyl)hydroxylamine (anti-10)

Ethyl vinyl ether (409 μL, 4.25 mmol) was dissolved in THF (8 mL) and cooled to -78 °C. tBuLi (1.6 M in pentane, 2.66 mL, 4.25 mmol) was added and the reaction mixture was stirred for 1 h until it reached 0 °C. After further stirring for 3 h at this temperature, it was cooled down to -78 °C again. A solution of nitrone 1a (200 mg, 0.850 mmol) in THF (2 mL) was treated with Et₂AlCl (1 M in hexane, 850 μL, 0.850 mmol) for 5 min. The prepared solution was added dropwise over a period of 15 min. Then, the mixture was stirred at this temperature for another 15 min and quenched by addition of 2 M NaOH solution. After the mixture reached room temperature it was extracted 3 times with Et₂O. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. The crude product (250 mg) was dissolved in CH₂Cl₂ (3 mL) and 2,6-lutidine (180 µL, 1.22 mmol) and TBSOTf (268 µL, 1.63 mmol) were added slowly at 0 °C. The mixture was stirred at room temperature for 30 min and then quenched by the addition of sat. NH₄Cl solution. The phases were separated and the aequeous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 20:1) yielded syn-10 (14 mg, 4%) and anti-10 (171 mg, 48%) as colorless oils. anti-10: $\left[\alpha\right]_{D}^{22}$ = +26.7 (c = 0.22, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ = -0.40 (s_{br}, 3 H, SiMe₂), -0.01 (s, 3 H, SiMe₂), 0.85 (s, 9 H, tBu), 1.34 (m_c, 3 H, Et), 1.35 (s, 6 H, Me), 3.31 (s_{br}, 1 H, 3-H), 3.80-3.90 (m, 4 H, NCH₂, OCH₂, 3-H), 4.01 (m_c , 1 H, 5-H), 4.11 (dd, J = 5.8, 8.4 Hz, 1 H, 5-H), 4.16 (d, J =1.9 Hz, 1 H, 1-H), 4.31 (d, J = 1.9 Hz, 1 H, 1-H), 4.42 (td, J = 5.8, 9.9 Hz, 1 H, 4-H), 7.20-7.34 (m, 5 H, Ph) ppm. ¹³C-NMR (126 MHz, CDCl₃): $\delta = -4.8$, -4.6 (2 q, SiMe₂), 14.6 (q, Et), 17.8, 26.1 (s, q, tBu), 25.7, 26.9 (2 q, Me), 60.8 (t, NCH₂), 62.4 (t, Et), 67.9 (t, C-5), 74.0 (d, C-4), 88.1

(t, C-1), 108.2 (s, C-2'), 127.2, 128.0, 130.2, 138.1 (3 d, s, Ph), 157.3 (s, C-2) ppm. IR (film): $3120-2840 \text{ cm}^{-1}$ (=C-H, C-H). ESI-TOF: m/z calc. for [M + Na]⁺ 444.2541, found 444.2523. Anal. calc. for C₂₃H₃₉NO₄Si (421.7): C 65.52, H 9.32, N 3.32, found: C 64.93, H 8.60, N 3.52.

$((2S,\!3S)\!-\!3\!-\!(Benzyl(\textit{tert}\text{-butyldimethylsiloxy})amino)\!-\!4\!-\!ethoxy\!-\!6,\!6\!-\!dimethyl\!-\!3,\!6\!-\!dihydro\!-\!2H-pyran\!-\!2\!-\!yl)methanol~(11)$

To a solution of syn-10 (135 mg, 0.321 mmol) in CH₂Cl₂ (2 mL) at -30 °C was added TMSOTf (119 μ L, 0.643 mmol), and the resulting solution was stirred until it slowly reached rt (6 h). Then the mixture was quenched by water. After separation of the layers, the aqueous phase was extracted 3 times with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 6:1) yielded 11 (106 mg, 79%) as colorless oil. $[\alpha]_D^{22}$ = -118.6 (c = 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ = -0.05, 0.03 (2 s, 3 H each, SiMe₂), 0.79 (s, 9 H, tBu), 1.24, 1.31 (2 s, 3 H each, Me), 1.37 (t, J = 7.0 Hz, 3 H, Et), 3.55 (dd, J = 2.1, 7.1 Hz, 1 H, 3-H), 3.75 (q, J = 7.0 Hz, 2 H, Et), 3.89-3.98 (m, 3 H, 2-H, OH), 4.11 (m_c, 2 H, 1-H), 4.73 (s, 1 H, 5-H), 7.21-7.26 (m, 5 H, Ph) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ = -5.0 (q, SiMe₃), 14.9 (q, Et), 17.8, 26.1 (s, q, tBu), 25.9, 30.3 (2 q, Me), 62.0 (t, C-1), 62.3 (t, Et), 64.2 (d, C-3), 73.0 (s, C-6), 73.4 (d, C-2), 106.7 (d, C-5), 127.2, 128.0, 130.6, 139.0 (3 d, s, Ph), 149.8 (s, C-4) ppm. IR (film): 3450 cm⁻¹ (OH), 3090-2840 (=C-H, C-H), 1660 (C=C). ESI-TOF: m/z calc. for [M + H]⁺ 422.2727, found 422.2753. Anal. calc. for C₂₃H₃₉NO₄Si (421.7): C 65.52, H 9.32, N 3.32, found: C 65.12, H 9.54, N 3.37.

((2S,3R)-3-[Benzyl(*tert*-butyldimethylsiloxy)amino]-4-ethoxy-6,6-dimethyl-3,6-dihydro-2*H*-pyran-2-yl)methanol (12)

To a solution of anti-10 (1.83 g, 4.34 mmol) in CH₂Cl₂ (25 mL) at -30 °C was added TMSOTf (1.60 µL, 8.27 mmol), and the resulting solution was stirred until it slowly reached rt (6 h). Then the mixture was quenched by water. After separation of the layers, the aqueous phase was extracted 3 times with CH₂Cl₂. The combined organic phases were dried (MgSO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 6:1) yielded 12 (1.53 g, 84%) as colorless oil. $[\alpha]_D^{22} = +69.7$ (c = 0.66, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = -0.16$, 0.01 (2 s, 3 H each, SiMe₂), 0.82 (s, 9 H, tBu), 1.23, 1.29 (2 s, 3 H each, Me), 1.41 (t, J = 7.0 Hz, 3 H, Et), 2.81 (s_{br}, 1 H, OH), 3.36 (m_c, 1 H, 3-H), 3.53 (m_c, 1 H, 1-H), 3.65-3.78 (m, 2 H, Et), 3.82 (td, J = 5.5, 10.6 Hz, 1 H, 1-H), 3.95 (d, J = 12.5 Hz, 1 H, NCH_2), $4.00 (s_{br}, 1 H, 2-H), 4.34 (m_c, 1 H, NCH_2), 4.69 (d, J = 1.1 Hz, 1 H, 5-H), 7.18-7.35 (m, 5 H, Ph)$ ppm. 13 C-NMR (126 MHz, CDCl₃): $\delta = -4.9$, -4.7 (2 q, SiMe₂), 14.9 (q, Et), 17.8, 26.0 (s, q, tBu), 26.7, 31.2 (2 q, Me), 61.0 (d, C-3), 62.2 (t, Et), 64.9 (t, C-1), 70.2 (d, C-2), 72.5 (s, C-6), 105.7 (d, C-5), 127.3, 128.1, 130.3, 137.9 (3 d, s, Ph), 151.5 (s, C-4) ppm. IR (film): 3400 cm⁻¹ (OH), 3090-2840 (=C-H, C-H), 1660 (C=C). ESI-TOF: m/z calc. for $[M + H]^+$ 422.2727, found 422.2744. Anal. calc. for C₂₃H₃₉NO₄Si (421.7): C 65.52, H 9.32, N 3.32, found: C 65.32, H 9.28, N 3.39.

(4R,5R,6S)-5-[Benzyl(hydroxy)amino]-6-(hydroxymethyl)-2,2-dimethyltetrahydro-2H-pyran-4-ol via intermediate (13)

To compound 11 (350 mg, 0.830 mmol) was added satd. methanolic HCl (20 mL) and the resulting mixture was stirred for 12 h at rt. Then the solvent was removed in vacuo and the residue was dissolved in sat. NaHCO₃-solution and CH_2Cl_2 . The layers were separated and the

aqueous phase was extracted 2 times with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄) and the solvent was removed in vacuo to yield (5S,6S)-5-[benzyl(hydroxy)amino]-6-(hydroxymethyl)-2,2-dimethyldihydro-2*H*-pyran-4(3*H*)-one **13** as a brownish oil (180 mg, 84%). The crude product (180 mg, 0.645 mmol) was dissolved in ethanol (1 mL) and cooled to 0 °C. NaBH₄ (36 mg, 0.966 mmol) was added and the mixture was stirred for 1 h at 0 °C. Then the solvent was removed in vacuo and the residue was dissolved in CH₂Cl₂ and H₂O. The layers were separated and the aqueous phase was extracted 2 times with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by recrystallization (hexane/EtOAc) yielded the product (160 mg, 69% over two steps) as colorless crystals. M.p. 86-88 °C. $[\alpha]_D^{22} = +26.7$ (c = 0.61, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 1.20$, 1.25 (2 s, 3 H each, Me), 1.76 (dd, J = 5.6, 12.8 Hz, 1 H, 3-H), 1.96 (t, J = 12.8 Hz, 1 H, 3-H), 3.16 (dd, J = 2.9, 5.6 Hz, 1 H, 5-H), 3.70 (dt, J = 2.9, 5.1 Hz, 1 H, 6-H), 3.79 (dd, J = 5.1, 11.6)Hz, 1 H, 6-CH₂), 3.89 (dd, J = 5.1, 11.6 Hz, 1 H, 6-CH₂), 4.04 (dt, J = 5.6, 11.8 Hz, 1 H, 4-H), 4.24 (s, 2 H, NCH₂), 6.42 (s_{br}, 1 H, OH), 7.24-7.36 (m, 5 H, Ph) ppm. ¹³C-NMR (101 MHz, CDCl₃): $\delta = 23.1$, 31.4 (2 q, Me), 42.3 (t, C-3), 63.2 (d, C-5), 63.7 (t, 6-CH₂), 64.0 (t, NCH₂), 67.9 (d, C-4), 71.9 (d, C-6), 73.4 (s, C-2), 127.5, 128.4, 129.3, 138.0 (3 d, s, Ph) ppm. IR (KBr): 3390-3200 cm⁻¹ (OH), 3090-2840 (=C-H, C-H). ESI-TOF: m/z calc. for $C_{15}H_{23}NO_4$ [M + H]⁺ 282.1700, found 282.1713. Anal. calc. for C₁₅H₂₃NO₄ (281.3): C 64.03, H 8.24, N 4.98, found: C 63.77, H 7.86, N 4.98.

(4R,5R,6S)-5-Amino-6-(hydroxymethyl)-2,2-dimethyltetrahydro-2H-pyran-4-ol (14)

A suspension of palladium on charcoal (10% Pd, 50 mg) in MeOH (4 mL) was saturated with hydrogen for 1 h. After addition of the above described compound (50 mg, 0.178 mmol) in MeOH (2 mL), hydrogen was bubbled through the mixture for another 30 min and finally the reaction mixture was stirred under an atmosphere of hydrogen for 24 h. Filtration through a short pad of celite and concentration of the solution to dryness yielded **14** (28 mg, 90%) as colorless oil. $[\alpha]_D^{22} = +70.9$ (c = 0.47, MeOH). ¹H NMR (500 MHz, CD₃OD): $\delta = 1.20$, 1.25 (2 s, Me), 1.49 (t, J = 13.1 Hz, 1 H, 3-H), 1.70 (dd, J = 5.1, 13.1 Hz, 1 H, 3-H), 3.23 (d, J = 5.1 Hz, 1 H, 5-H), 3.62

(dd, J = 5.3 Hz, 11.5, 1 H, 6-CH₂), 3.89 (dd, J = 5.3, 11.5 Hz, 1 H, 6-CH₂), 3.76 (t, J = 5.3 Hz, 1 H, 6-H), 4.07 (td, 5.1, 13.1 Hz, 1 H, 4-H) ppm. ¹³C-NMR (126 MHz, CD₃OD): $\delta = 23.1$, 31.3 (2 q, Me), 39.6 (t, C-3), 53.2 (d, C-5), 63.5 (t, 6-CH₂), 65.9 (d, C-4), 71.5 (d, C-6), 74.5 (s, C-2) ppm. IR (film): 3400-3100 cm⁻¹ (OH), 2950-2840 (C-H). ESI-TOF: m/z calc. for C₈H₁₇NO₃ [M + H]⁺ 176.1281, found 176.1277.

(3S,5S,6S)-5-[Benzyl(*tert*-butyldimethylsilyl)amino]-3-hydroxy-6-(hydroxymethyl)-2,2-dimethyldihydro-2*H*-pyran-4(3*H*)-one (15)

To a solution of **11** (260 mg, 0.616 mmol) in acetone (3 mL) were added H₂O (300 μL), K₂OsO₄•2H₂O (16 mg, 0.043 mmol) and *N*-methylmorpholine-*N*-oxide (50 wt.% in H₂O, 170 μL, 0.840 mmol). The reaction mixture was stirred for 3 d at rt. Then solid Na₂SO₃ (106 mg, 0.840 mmol) was added and the mixture was stirred for 1 h. The mixture was filtrated over a pad of celite, dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 3:1) yielded **15** (193 mg, 76%) as colorless oil. $[\alpha]_D^{22} = -6.0$ (c = 0.52, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 0.30$ (s_{br}, 6 H, SiMe₂), 0.90 (s, 9 H, *t*Bu), 1.06, 1.42 (2 s, 3 H each, Me), 1.94 (s_{br}, 1 H, OH), 3.36 (s_{br}, 1 H), 3.63 (s_{br}, 2 H), 3.79 (d, *J* = 12.1 Hz, 1 H), 3.85-4.01 (m, 2 H), 4.12 (s_{br}, 1 H), 4.40 (d, *J* = 3.3 Hz, 1 H), 7.24-7.41 (m, 5 H, Ph) ppm. ¹³C-NMR (126 MHz, CDCl₃): $\delta = -4.7$ (q, SiMe₂), 18.0, 28.2 (2 q, Me), 18.6, 25.9 (s, q, *t*Bu), 62.3, 63.6, 73.0, 83.6, 128.2, 128.8, 130.0 ppm. IR (film): 3480 cm⁻¹ (OH), 3090-2820 (=C-H, C-H). ESI-TOF: *m/z* calc. for C₂₁H₃₅NO₅Si [M + Na]⁺432.2177, found 432.2184.

(3R,4S,5R,6S)-5-[Benzyl(*tert*-butyldimethylsiloxy)amino]-6-(hydroxymethyl)-2,2-dimethyltetrahydro-2*H*-pyran-3,4-diol

Compound **15** (90 mg, 0.220 mmol) was dissolved in ethanol (1.5 mL) and cooled to -40 °C. CeCl₃ (164 mg, 0.440 mmol) and then NaBH₄ (17 mg, 0.440 mmol) were added and the mixture was stirred until it slowly reached rt (5 h). Then CH₂Cl₂ and H₂O were added. The layers were separated and the aqueous phase was extracted 2 times with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄), filtered and concentrated. Purification by column chromatography (silica gel, hexane/EtOAc = 2:1) yielded the product (81 mg, 86%) as colorless crystals. M.p. 94-96 °C. [α]_D²² = +85.7 (c = 1.1, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ = -0.78, -0.03 (2 s_{br}, 3 H each, SiMe₂), 0.80 (s, 9 H, tBu), 1.20, 1.34 (2 s, 3 H each, Me), 2.56 (s_{br}, 1 H), 3.11 (s_{br}, 1 H), 3.67-4.09 (m, 6 H), 4.25 (m_c, 1 H), 4.43 (s_{br}, 1 H) 7.21-7.34 (m, 5 H, Ph) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ = -4.6 (q, SiMe₂), 17.3, 28.6 (2 q, Me), 17.6, 26.0 (s, q, tBu), 63.4, 63.7, 64.9, 71.4, 127.8, 128.3, 130.5, 137.5 (3 d, s, Ph) ppm. IR (KBr): 3080 cm⁻¹ (OH), 30700-2830 (=C-H, C-H). ESI-TOF: m/z calc. for C₂₁H₃₇NO₅Si [M + (2H) – (TBS)]⁺ 298.1649, found 298.1414.

(3R,4S,5R,6S)-5-Amino-6-(hydroxymethyl)-2,2-dimethyltetrahydro-2H-pyran-3,4-diol (16)

A suspension of palladium on charcoal (10% Pd, 50 mg) in MeOH (3 mL) was saturated with hydrogen for 1 h. After addition of the above described compound (50 mg, 0.121 mmol) in MeOH (2 mL), hydrogen was bubbled through the mixture for another 30 min and finally the reaction mixture was stirred under an atmosphere of hydrogen for 24 h. Filtration through a short pad of celite and concentration of the solution to dryness yielded **16** (21 mg, 91%) as colorless oil. $[\alpha]_D^{22} = +85.6$ (c = 0.36, MeOH). ¹H NMR (500 MHz, D₂O): δ = 1.23, 1.31 (2 s, Me), 3.41 (d, J = 10.3 Hz, 1 H, 3-H), 3.69 (dd, J = 1.4, 4.6 Hz, 1 H, 5-H), 3.72 (m_c, 2 H, 6-CH₂), 4.02 (m_c, 1 H, 6-H), 4.04 (dd, J = 4.6, 10.3 Hz, 1 H, 4-H) ppm. ¹³C-NMR (101 MHz, D₂O): δ = 16.9, 26.9 (2 q,

Me), 53.8 (d, C-5), 61.3 (t, 6-CH₂), 67.2 (d, C-4), 68.3 (d, C-6), 73.2 (d, C-3) ppm. IR (film): $3400-3100 \text{ cm}^{-1}$ (OH), 2950-2800 (C-H). ESI-TOF: m/z calc. for $C_8H_{17}NO_3$ [M + H]⁺ 192.1230, found 192.1233.

(3R,5R,6S)-5-[Benzyl(hydroxy)amino]3-bromo-6-(hydroxymethyl)-2,2-dimethyldihydro-2H-pyran-4(3H)-one (17)

To a solution of **12** (500 mg, 1.19 mmol) in MeCN (8 mL) were added H₂O (800 μL) and *N*-bromosuccinimide (211 mg, 1.19 mmol). After stirring the reaction mixture for 15 min, it was added further H₂O and the mixture was extracted 3 times with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 2:1) yielded **17** (298 mg, 70%) as colorless crystals. M.p. 109-111 °C. [α]_D²² = -144.5 (c = 0.38, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ = 1.40, 1.42 (2 s, 3 H each, Me), 3.77 (dd, J = 3.6, 11.6 Hz, 1 H, 6-CH₂), 3.80 (dd, J = 3.5, 11.6 Hz, 1 H, 6-CH₂), 4.04 (s, 1 H, 3-H), 4.17 (m, 1 H, 6-H), 4.20 (d, J = 12.8 Hz, 1 H, NCH₂), 4.25 (d, J = 9.6 Hz, 1 H, 5-H), 4.55 (d, J = 12.8 Hz, 1 H, NCH₂), 5.63 (s_{br}, 1 H, OH), 7.26-7.37 (m, 5 H, Ph) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ = 22.7, 28.0 (2 q, Me), 59.2 (d, C-3), 62.5 (t, NCH₂), 63.6 (d, C-5), 63.7 (t, 6-CH₂), 73.6 (d, C-6), 74.8 (s, C-2), 127.8, 128.5, 129.1, 136.7 (3 d, s, Ph), 202.1 (s, C-4) ppm. IR (KBr): 3260 cm⁻¹ (OH), 3090-2820 (=C-H, C-H), 1730 (C=O). ESI-TOF: m/z calc. for C₁₅H₂₀BrNO₄ [M + Na]⁺ 380.0462, found 380.0453.

(2S,3R,Z)-N-Benzylidene-2-(hydroxymethyl)-6,6-dimethyl-4-oxotetrahydropyran-3-amine oxide (18)

To a solution of 17 (110 mg, 0.307 mmol) in DMF (3 mL) was added NaN₃ (99 mg, 1.52 mmol) and the reaction mixture was stirred for 12 h at rt. H₂O was added and the resulting mixture was

extracted 3 times with ethyl acetate. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, CH₂Cl₂/EtOAc = 1:1) yielded **18** (74 mg, 87%) as colorless crystals. M.p. 156 °C. $[\alpha]_D^{22} = +73.8$ (c = 0.13, CHCl₃). ¹H NMR (700 MHz, CDCl₃): $\delta = 1.39$, 1.41 (2 s, 3 H each, Me), 2.50, 2.57 (AB-system, $J_{AB} = 14.5$ Hz, 1 H each, 3-H), 2.57 (s_{br}, 1 H, OH), 3.70 (dd, J = 2.2, 12.3 Hz, 1 H, 6-CH₂), 3.94 (dd, J = 2.2, 12.3 Hz, 1 H, 6-CH₂), 4.79 (dt, J = 2.2, 9.7 Hz, 1 H, 6-H), 4.83 (d, J = 9.7 Hz, 1 H, 5-H), 7.39 (s, 1 H, N=CHPh), 7.40-7.45 (m, 3 H, Ph), 8.23-8.26 (m, 2 H, Ph) ppm. ¹³C-NMR (176 MHz, CDCl₃): $\delta = 24.3$, 30.3 (2 s, Me), 51.8 (t, C-3), 62.1 (t, 6-CH₂), 72.4 (d, C-6), 75.4 (s, C-2), 77.8 (d, C-5), 128.4, 128.9, 129.7, 131.0 (3 d, s, Ph), 138.2 (d, N=CHPh), 199.5 (s, C-4) ppm. IR (KBr): 3280 cm⁻¹ (OH), 3090-2860 (=C-H, C-H), 1720 (C=O). ESI-TOF: m/z calc. for C₁₅H₁₉NO₄ [M + Na]⁺ 300.1212, found 300.1256.

(4S,5S,6S)-5-[Benzyl(hydroxy)amino]-6-(hydroxymethyl)-2,2-dimethyltetrahydro-2H-pyran-4-ol

To a solution of **18** (70 mg, 0.252 mmol) in EtOH (2 mL) was added NaBH₄ (24 mg, 0.631 mmol) at 0 °C and the mixture was stirred for 1 h at rt. Then the solvent was removed in vacuo and the residue was dissolved in CH₂Cl₂ and H₂O. The layers were separated and the aqueous phase was extracted 2 times with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 1:1) yielded the product (63 mg, 89%) as colorless crystals. M.p. 128-129 °C. $[\alpha]_D^{22} = +40.0$ (c = 0.08, CHCl₃). ¹H NMR (700 MHz, CDCl₃): $\delta = 1.18$, 1.51 (2 s, 3 H each, Me), 1.51 (dd, J = 3.1, 14.3 Hz, 1 H, 3-H), 1.88 (dd, J = 3.1, 14.3 Hz, 1 H, 3-H), 2.61 (dd, J = 3.1, 10.3 Hz, 1 H, 5-H), 3.69 (dd, J = 5.3, 11.2 Hz, 1 H, 6-CH₂), 3.83 (dd, J = 5.3, 11.2 Hz, 1 H, 6-CH₂), 4.00, 4.27 (2 d, J = 13.1 Hz, 1 H each, NCH₂), 4.34 (td, J = 5.3, 10.3 Hz, 1 H, 6-H), 4.79 (q, J = 3.1 Hz, 1 H, 4-H), 7.27-7.43 (m, 5 H, Ph) ppm. ¹³C-NMR (176 MHz, CDCl₃): $\delta = 25.3$, 32.1 (2 q, Me), 42.5 (t, C-3), 61.2 (t, NCH₂), 65.0 (d, C-5), 65.8 (t, 6-CH₂), 65.8 (d, C-6), 65.8 (d, C-4), 71.8 (s, C-2), 127.7, 128.5, 129.0, 136.9 (3 d, s, Ph) ppm. IR (KBr): 3440 cm⁻¹ (OH), 3130-2850 (=C-H, C-H). ESI-TOF: m/z calc. for C₁₅H₂₃NO₄ [M + Na]⁺ 304.1519, found 304.1523.

(4S,5S,6S)-5-Amino-6-(hydroxymethyl)-2,2-dimethyltetrahydro-2H-pyran-4-ol (19)

A suspension of palladium on charcoal (10% Pd, 60 mg) in MeOH (4 mL) was saturated with hydrogen for 1 h. After addition of the above described compound (60 mg, 0.214 mmol) in MeOH (2 mL), hydrogen was bubbled through the mixture for another 30 min and finally the reaction mixture was stirred under an atmosphere of hydrogen for 24 h. Filtration through a short pad of celite and concentration of the solution to dryness yielded **19** (35 mg, 94%) as colorless oil. $[\alpha]_D^{22} = +173.8$ (c = 1.80, MeOH). ¹H NMR (700 MHz, CD₃OD): $\delta = 1.19$, 1.44 (2 s, Me), 1.66 (dd, J = 3.3, 14.4 Hz, 1 H, 3-H), 1.87 (dd, J = 3.3, 14.4 Hz, 1 H, 3-H), 2.84 (dd, J = 3.3, 10.0 Hz, 1 H, 5-H), 3.70-3.72 (m, 2 H, 6-CH₂), 3.80 (td, J = 4.5, 10.0 Hz, 1 H, 6-H), 4.06 (q, 3.3 Hz, 1 H, 4-H) ppm. ¹³C-NMR (176 MHz, CD₃OD): $\delta = 25.4$, 32.3 (2 q, Me), 43.3 (t, C-3), 52.8 (d, C-5), 64.5 (t, 6-CH₂), 67.5 (d, C-4), 70.2 (d, C-6), 72.7 (s, C-2) ppm. IR (film): 3350 cm⁻¹ (OH), 2990-2850 (C-H). ESI-TOF: m/z calc. for C₈H₁₇NO₃ [M + H]⁺ 176.1281, found 176.1278.

(3S,4R,5S,6S)-5-[Benzyl(*tert*-butyldimethylsiloxy)amino]-6-(hydroxymethyl)-2,2-dimethyltetrahydro-2*H*-pyran-3,4-diol (21) via intermediate (20)

To a solution of **12** (165 mg, 0.391 mmol) in acetone (2 mL) were added H_2O (200 μ L), $K_2OsO_4 \cdot 2H_2O$ (24 mg, 0.065 mmol) and *N*-methylmorpholine-*N*-oxide (50 wt.% in H_2O , 167 μ L, 0.825 mmol). The reaction mixture was stirred for 3 d at rt. Then solid Na_2SO_3 (50 mg, 0.391 mmol) was added and the mixture was stirred for 1 h. The mixture was filtrated over a pad of celite, dried (Na_2SO_4) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 3:1) yielded starting material (50 mg) and the desired α -hydroxyketone **20** together with the hydroxylated hemiacetal (108 mg, 1:1, 64%) in spectroscopically pure form as colorless oil. 230 mg of the obtained mixture were dissolved in ethanol (5 mL) and cooled to 0 °C. NaBH₄ (42 mg, 1.13 mmol) was added and the mixture was

stirred for 1 h at rt. Then the solvent was removed in vacuo and the residue was dissolved in CH_2Cl_2 and H_2O . The layers were separated and the aqueous phase was extracted 2 times with CH_2Cl_2 . The combined organic layers were dried (Na_2SO_4) and the solvent was removed in vacuo. Purification by recrystallization (Et_2O) yielded **21** (190 mg, 52% over 2 steps) as colorless crystals. M.p. 127-128 °C. [α]_D²² = +89.2 (c = 0.44, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ = 0.21, 0.22 (2 s_{br} , 3 H each, SiMe₂), 0.91 (s, 9 H, t_1 Bu), 1.12, 1.47 (2 s, 3 H each, Me), 2.10 (s_{br} , 1 H, OH), 2.26 (s_{br} , 1 H, OH), 2.72 (dd, J = 2.6, 10.8 Hz, 1 H, 5-H), 3.39-3.47 (m, 2 H, 3-H, 6-CH₂), 3.84 (d, J = 11.3 Hz, 1 H, 6-CH₂), 4.09 (ddd, J = 2.8, 6.5, 10.5 Hz, 1 H, 6-H), 4.17, 4.27 (2 d, J = 12.4 Hz, 1 H each, NCH₂), 4.66 (m_c , 1 H, 4-H), 5.18 (s_{br} , 1 H, OH), 7.19-7.31 (m, 5 H, Ph) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ = -5.1, -4.1 (2 q, SiMe₂), 17.7, 25.8 (s, q, t_1 Bu), 23.0, 26.6 (2 q, Me), 56.3 (d, C-5), 61.7 (t, NCH₂), 63.8 (t, 6-CH₂), 67.3 (d, C-6), 70.2 (d, C-4), 74.1 (d, C-3), 74.3 (s, C-2), 128.0, 128.7, 129.2, 135.9 (3 d, s, Ph) ppm. IR (KBr): 3440 cm⁻¹ (OH), 3080-2830 (=C-H, C-H). ESI-TOF: m/z calc. for $C_{21}H_{37}NO_{5}$ Si [M + Na]⁺ 434.2333, found 434.2341.

(3S,4R,5R,6S)-5-Amino-6-(hydroxymethyl)-2,2-dimethyltetrahydropyran-3,4-diol (22)

A suspension of palladium on charcoal (10% Pd, 60 mg) in MeOH (3 mL) was saturated with hydrogen for 1 h. After addition of compound **21** (60 mg, 0.146 mmol) in MeOH (2 mL), hydrogen was bubbled through the mixture for another 30 min and finally the reaction mixture was stirred under an atmosphere of hydrogen for 24 h. Filtration through a short pad of celite and concentration of the solution to dryness yielded **22** (29 mg, quant.) as colorless crystals. M.p. 148-149 °C. $[\alpha]_D^{22} = +64.4$ (c = 0.23, MeOH). ¹H NMR (400 MHz, D₂O): $\delta = 1.09$, 1.30 (2 s, Me), 3.01 (dd, J = 3.7, 9.9 Hz, 1 H, 5-H), 3.47 (d, J = 3.7 Hz, 1 H, 3-H), 3.58 (dd, J = 5.3, 11.9 Hz, 1 H, 6-CH₂), 3.65-3.75 (m, 2 H, 6-H, 6-CH₂), 3.90 (t, J = 3.7 Hz, 1 H, 4-H) ppm. ¹³C-NMR (101 MHz, D₂O): $\delta = 22.0$, 25.8 (2 q, Me), 46.6 (d, C-5), 61.3 (t, 6-CH₂), 67.2 (d, C-4), 68.3 (d, C-6), 73.2 (d, C-3) ppm. IR (film): 3460-3240 cm⁻¹ (OH), 2990-2830 (C-H). ESI-TOF: m/z calc. for C₈H₁₇NO₃ [M + H]⁺ 192.1230, found 192.1225.

N-Benzyl-O-(tert-butyldimethylsilyl)-N-[(S)-(4,5-dihydrofuran-2-yl)((S)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl]hydroxylamine (syn-25) and N-Benzyl-O-(tert-butyldimethylsilyl)-N-[(R)-(4,5-dihydrofuran-2-yl)((S)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl]hydroxylamine (anti-25)

2,3-Dihydrofuran (726 μL, 9.60 mmol) was dissolved in THF (10 mL) and cooled to -78 °C. tBuLi (1.6 M in pentane, 6.00 mL, 9.60 mmol) was added and the reaction mixture was stirred for 1 h until it reached 0 °C. After further stirring for 1 h at this temperature, it was cooled down to -78 °C again. A solution of nitrone 1a (1.50 g, 6.40 mmol) in THF (4 mL) was added dropwise over a period of 15 min. Then, the mixture was stirred at this temperature for 1 h and quenched by addition of H₂O. After the mixture reached room temperature it was extracted 3 times with Et₂O. The combined organic phases were dried (MgSO₄) and the solvent was removed in vacuo. The crude product (1.91 g) was dissolved in CH₂Cl₂ (15 mL) and 2,6-lutidine (1.46 mL, 12.5 mmol) and TBSOTf (2.15 mL, 9.39 mmol) were added slowly at 0 °C. The mixture was stirred at room temperature for 30 min and was then quenched by the addition of sat. NH₄Cl solution. The phases were separated and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried (MgSO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 20:1) yielded syn-25 (1.57 g, 58%) and *anti-25* (260 mg, 10%) as colorless oils. syn-25: $[\alpha]_D^{22} = -63.7$ (c = 0.19, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = -0.30$ (s_{br}, 3 H, SiMe₂), 0.10 (s, 3 H, SiMe₂), 0.88 (s, 9 H, tBu), 1.28, 1.33 (2 s, 3 H each, Me), 2.65 (m_c , 2 H, DHF), 3.36 (s_{br} , 1 H, 3-H), 3.61 (t, J = 7.5 Hz, 1 H, 5-H), 3.86, 4.06 (2 m_c, 1 H each, NCH₂), 3.98 (m_c, 1 H, 5-H), 4.22-4.36 (m, 3 H, DHF, 4-H), 4.89 (t, J = 2.1 Hz, 1 H, 1-H), 7.15-7.48 (m, 5 H, Ph) ppm. ¹³C-NMR (126 MHz, CDCl₃): $\delta = -$ 4.8 (s, SiMe₂), 17.8, 26.1 (s, q, tBu), 25.5, 26.7 (2 q, Me), 30.0 (t, DHF), 61.1 (t, NCH₂), 67.5 (t, C-5), 69.0 (t, DHF), 74.2 (d, C-4), 99.9 (d, C-1), 109.2 (s, C-2'), 127.0, 128.0, 129.7 (3 d, Ph) ppm. IR (film): 3100-2820 cm⁻¹ (=C-H, C-H). ESI-TOF: m/z calc. for $C_{23}H_{37}NO_4Si$ [M + Na]⁺ 442.2379, found 442.2380. anti-25: $\left[\alpha\right]_{D}^{22} = +46.8$ (c = 0.41, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = -0.24$ (s_{br}, 3 H, SiMe₂), -0.19 (s, 3 H, SiMe₂), 0.85 (s, 9 H, tBu), 1.31, 1.33 (2 s, 3 H

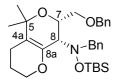
each, Me), 2.73 (m_c, 2 H, DHF), 3.39 (s_{br}, 1 H, 3-H), 3.83 (m_c, 1 H, 5-H), 3.83, 3.94 (2 m_c, 1 H each, NCH₂), 4.06 (dd, J = 8.5, 5.9 Hz, 1 H, 5-H), 4.32-4.39 (m, 2 H, DHF, 4-H) 4.42 (q, J = 8.9 Hz, 1 H, DHF), 4.97 (t, J = 2.4 Hz, 1 H, 1-H), 7.19-7.37 (m, 5 H, Ph) ppm. ¹³C-NMR (126 MHz, CDCl₃): $\delta = -4.6$ (s, SiMe₂), 17.8, 26.0 (s, q, tBu), 25.7, 26.9 (2 q, Me), 30.2 (t, DHF), 67.9 (t, C-5), 69.3 (t, DHF), 74.3 (d, C-4), 109.1 (s, C-2'), 127.3, 128.1, 130.2, 137.8 (3 d, s, Ph) ppm. IR (film): 3100-2820 cm⁻¹ (=C-H, C-H). ESI-TOF: m/z calc. for C₂₃H₃₇NO₄Si [M + Na]⁺ 442.2379, found 442.2377.

N-Benzyl-O-(tert-butyldimethylsilyl)-N-[(S)-(3,4-dihydro-2H-pyran-6-yl)((S)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl]hydroxylamine (syn-26) and N-Benzyl-O-(tert-butyldimethylsilyl)-N-[(R)-(3,4-dihydro-2H-pyran-6-yl)((S)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl]hydroxylamine (anti-26)

3,4-Dihydropyran (444 μ L, 5.37 mmol) was dissolved in THF (5 mL) and cooled to -78 °C. tBuLi (1.6 M in pentane, 3.04 mL, 4.86 mmol) was added and the reaction mixture was stirred for 1 h until it reached 0 °C. After further stirring for 1 h at this temperature the mixture was cooled down to -78 °C again. A solution of nitrone **1a** (840 mg, 3.58 mmol) in THF (2 mL) was added dropwise over a period of 15 min. Then, the mixture was stirred at this temperature for 1 h and quenched by addition of H₂O. After the mixture reached rt it was extracted 3 times with Et₂O. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. The crude product (980 mg) was dissolved in CH₂Cl₂ (8 mL) and 2,6-lutidine (1.07 mL, 9.18 mmol) and TBSOTf (1.40 mL, 6.11 mmol) were added slowly at 0 °C. The mixture was stirred at room temperature for 30 min and was then quenched by the addition of sat. NH₄Cl solution. The phases were separated and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 20:1) yielded *syn*-26 (682 mg, 44%) and *anti*-26 (276 mg, 18%) as colorless oils. *syn*-26: $[\alpha]_D^{22} = -39.5$ (c = 2.3, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = -0.08$ (s_{br}, 3 H, SiMe₂), 0.09 (s, 3 H, SiMe₂), 0.87 (s, 9 H, tBu), 1.32, 1.35 (2 s,

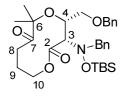
3 H each, Me), 1.72-1.82 (m, 2 H, DHP), 2.02-2.10 (m, 2 H, DHP), 3.17 (s_{br}, 1 H, 3-H), 3.62 (dd, J = 6.9, 7.9 Hz, 1 H, 5 -H), 3.84-3.95 (m, 3 H, DHP, NCH₂), 4.00 (dd, J = 6.9, 7.9 Hz, 1 H, 5 -H), 4.09 (d, J = 13.1 Hz, 1 H, NCH₂), 4.36 (td, J = 6.9, 8.9 Hz, 1 H, 4-H), 4.69 (m_c, 1 H, 1-H), 7.16-H7.41 (m, 5 H, Ph) ppm. 13 C-NMR (126 MHz, CDCl₃): $\delta = -5.2$, -4.8 (2 s, SiMe₂), 17.8, 26.1 (s, q, tBu), 20.2, 22.3 (2 t, DHP), 25.6, 26.7 (2 q, Me), 60.6 (t, NCH₂), 65.3 (t, DHP), 67.6 (t, C-5), 74.2 (d, C-4), 102.8 (d, C-1), 109.1 (s, C-2'), 126.8, 127.9, 129.8 (3 d, Ph), 149.4 (s, C-2) ppm. IR (film): $3090-2820 \text{ cm}^{-1}$ (=C-H, C-H). ESI-TOF: m/z calc. for $[M + Na]^+$ 456.2541, found 456.2538. Anal. calc. for C₂₄H₃₉NO₄Si (433.7): C 66.47, H 9.06, N 3.23; found: C 66.51, H 9.06, N 3.31. anti-26: $[\alpha]_D^{22} = +39.1$ (c = 0.80, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = -0.37$ (s_{br}, 3 H, SiMe₂), -0.03 (s, 3 H, SiMe₂), 0.84 (s, 9 H, tBu), 1.33, 1.35 (2 s, 3 H each, Me), 1.81-1.94 (m, 2 H, DHP), 2.06-2.21 (m, 2 H, DHP), 3.18 (s_{br} , 1 H, 3-H), 3.81 (s_{br} , 1 H, NCH₂), 3.85 (d, J = 11.5Hz, 1 H, NCH₂), 3.95-4.11 (m, 4 H, DHP, 5-H), 4.36 (dt, J = 5.7, 9.4 Hz, 1 H, 4-H), 4.77 (t, J = 5.7, 9.4 Hz, 1 H 3.6 Hz, 1 H, 1-H), 7.20-7.32 (m, 5 H, Ph) ppm. 13 C-NMR (126 MHz, CDCl₃): $\delta = -4.8$, -4.5 (2 s, SiMe₂), 17.8, 26.1 (s, q, tBu), 20.4, 22.5 (2 t, DHP), 25.9, 27.0 (2 q, Me), 61.0 (t, NCH₂), 65.4 (t, DHP), 67.9 (t, C-5), 73.6 (d, C-4), 103.2 (d, C-1), 108.8 (s, C-2'), 127.2, 128.0, 130.2, 138.1 (3 d, s, Ph), 148.5 (s, C-2) ppm. IR (film): 3090-2800 cm⁻¹ (=C-H, C-H). ESI-TOF: m/z calc. for [M + Na]⁺ 456.2541, found 456.2523. Anal. calc. for C₂₄H₃₉NO₄Si (433.7): C 66.47, H 9.06, N 3.23; found: C 66.12, H 8.90, N 3.32.

((6S,7S)-7-[Benzyl(tert-butyldimethylsiloxy)amino]-4,4-dimethyl-3,4,6,7-tetrahydro-2H-furo[3,2-c]pyran-6-yl)methanol (27)


To a solution of *syn-25* (1.52 g, 3.62 mmol) in CH₂Cl₂ (15 mL) at -30 °C was added TMSOTf (1.32 mL, 7.24 mmol), and the resulting solution was stirred until it slowly reached rt (6 h). Then the mixture was quenched by water. The resulting mixture was extracted 3 times with CH₂Cl₂. The combined organic phases were dried (MgSO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 6:1) yielded **27** (1.29 g, 85%) as colorless oil. $[\alpha]_D^{22} = -130.0$ (c = 0.61, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ = -0.51, -0.25 (2 s_{br}, 3 H each, SiMe₂), 0.80 (s, 9 H, *t*Bu), 1.26, 1.32 (2 s, 3 H each, Me), 2.53-2.66 (m, 2 H,

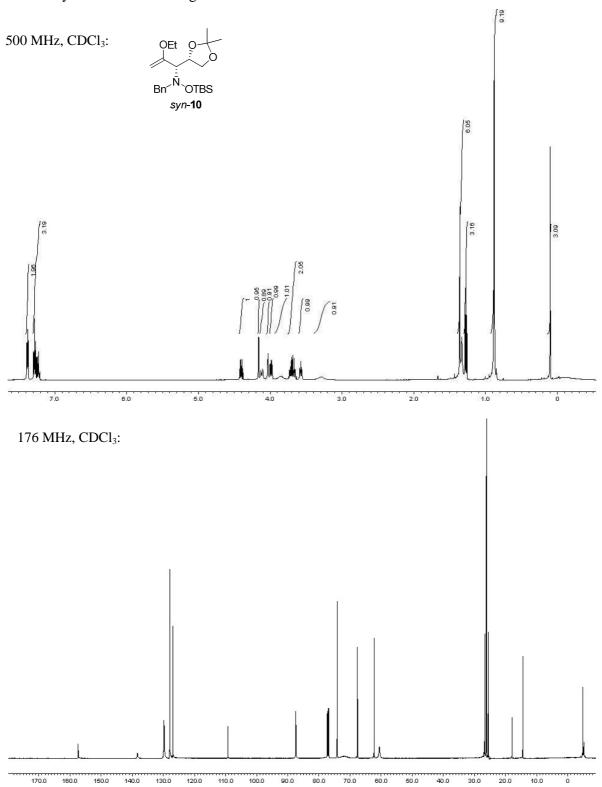
DHF), 3.28 (s_{br} , 1 H, OH), 3.64 (s_{br} , 1 H, 6-H), 3.84 (s_{br} , 1 H, NCH₂), 3.91 (s_{br} , 1 H, 6-CH₂), 3.96 (m_c , 1 H, 4-H), 4.10 (d, J = 13.4 Hz, 1 H, NCH₂), 4.13 (m_c , 1 H, 6-CH₂), 4.37-4.45 (m, 2 H, DHF), 7.17-7.32 (m, 5 H, Ph) ppm. ¹³C-NMR (101 MHz, CDCl₃): $\delta = -5.3$, -5.1 (2 q, SiMe₂), 17.7, 26.0 (s, q, tBu), 23.1, 27.8 (2 q, Me), 29.6 (t, DHF), 60.8 (t, NCH₂), 62.6 (d, C-7), 63.8 (t, 6-CH₂), 69.1 (t, DHF), 73.1 (d, C-6), 74.1 (s, C-4), 117.4 (s, C-3a), 127.1, 127.9, 130.6, 138.6 (3 d, s, Ph), 146.8 (s, C-7a) ppm. IR (film): 3460 cm⁻¹ (OH), 3100-2800 (=C-H, C-H), 1690 (C=C). ESI-TOF: m/z calc. for $C_{23}H_{37}NO_4Si$ [M + Na]⁺ 442.2379, found 442.2377.

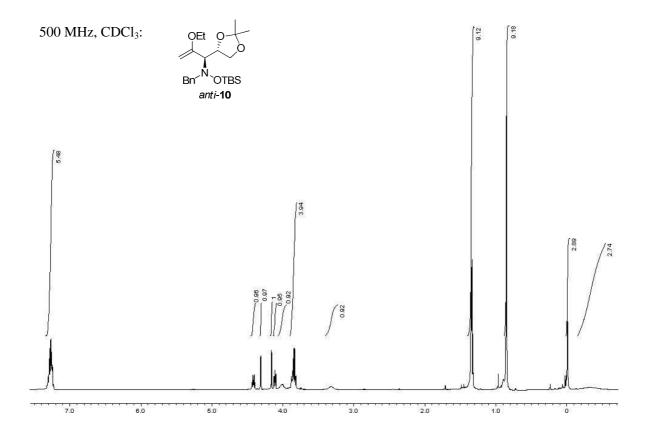
((7*S*,8*S*)-8-[Benzyl(*tert*-butyldimethylsiloxy)amino]-5,5-dimethyl-2,3,4,5,6,7,8-hexahydropyrano[4,3-*b*]pyran-7-yl)methanol (28)

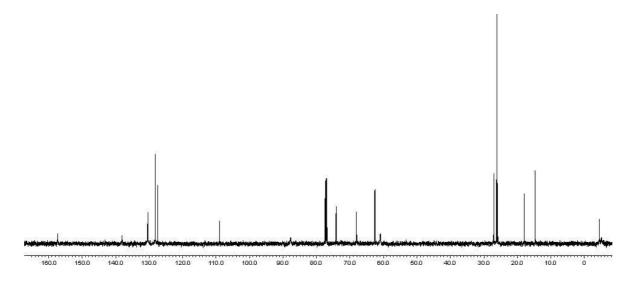

To a solution of *syn-***26** (590 mg, 1.36 mmol) in CH₂Cl₂ (6 mL) at -30 °C was added TMSOTf (501 μ L, 2.72 mmol), and the resulting solution was stirred until it slowly reached rt (6 h). Then the mixture was quenched by water. The resulting mixture was extracted 3 times with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and the solvent was removed in vacuo. Purification by column chromatography (silica gel, hexane/EtOAc = 6:1) yielded **28** (434 mg, 74%) as colorless oil. $[\alpha]_D^{22} = -130.2$ (c = 0.58, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ = -0.37 (s_{br}, 6 H, SiMe₂), 0.79 (s, 9 H, *t*Bu), 1.26, 1.30 (2 s, 3 H each, Me), 1.81-1.92 (m, 3 H, DHP), 2.06 (m_c, 1 H, DHP), 3.49 (s_{br}, 1 H, 8-H), 3.64 (s_{br}, 1 H, 7-CH₂), 3.87-3.97 (m, 3 H, 7-H, 7-CH₂, NCH₂), 4.01-4.18 (m, 3 H, DHP, NCH₂), 7.16-7.32 (m, 5 H, Ph) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ = -5.3 (q, SiMe₂), 17.7, 26.0 (s, q, *t*Bu), 20.6, 22.6 (2 t, DHP), 23.5, 27.7 (2 q, Me), 64.0 (t, 7-CH₂), 65.2 (t, DHP), 72.6 (d, C-7), 75.2 (s, C-5), 115.4 (s, C-4a), 127.0, 127.9, 130.6, 139.2 (3 d, s, Ph), 143.2 (s, C-8a) ppm. IR (film): 3450 cm⁻¹ (OH), 3100-2850 (=C-H, C-H), 1660 (C=C). ESI-TOF: m/z calc. for C₂₄H₃₉NO₄Si [M + H]⁺ 434.2721, found 434.2724.

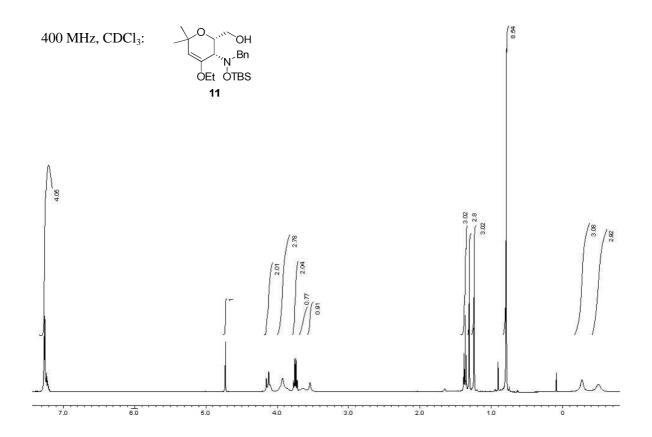
N-Benzyl-N-((7S,8S)-7-(benzyloxymethyl)-5,5-dimethyl-2,3,4,5,6,7,8-hexahydropyrano[4,3-b] pyran-8-yl)-O-(tert-butyldimethylsilyl) hydroxylamine

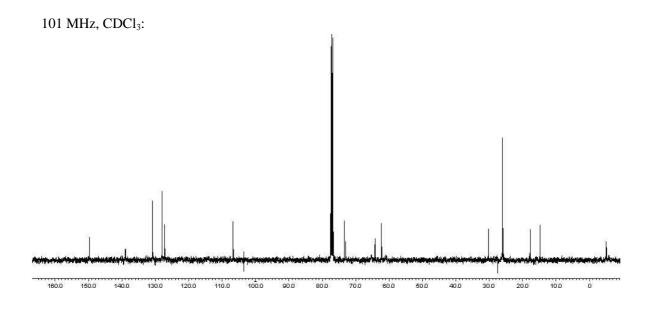
To a solution of 28 (600 mg, 1.38 mmol) in THF (13 mL) was added NaH (60% in paraffin oil, 84 mg, 2.16 mmol) at 0 °C. The reaction mixture was stirred for 1 h at rt, was then cooled to 0 °C and BnBr (247 µL, 1.98 mmol) was added. The mixture was stirred for 12 h at rt. Sat. NH₄Cl solution was added and the mixture was extracted 3 times with CH₂Cl₂. The combined organic phases were dried (MgSO₄) and concentrated. Purification by column chromatography (silica gel, hexane/EtOAc = 15:1) yielded the product (560 mg, 78%) as colorless oil. $[\alpha]_D^{22} = -103.9$ (c = 0.44, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 0.07$, 0.08 (2 s, 3 H each, SiMe₂), 0.91 (s, 9 H, tBu), 1.25, 1.26 (2 s, 3 H each, Me), 1.86-1.97 (m, 3 H, DHP), 2.04-2.13 (m, 1 H, DHP), 3.44 (s_{br}, 1 H, 8-H), 3.69 (dd, J = 10.5, 3.8 Hz, 1 H, 7-CH₂), 3.78-3.89 (m, 3 H, 7-H, 7-CH₂, NCH₂), 3.97 $(m_c, 1 \text{ H}, DHP), 4.11-4.17 \text{ } (m, 2 \text{ H}, DHP, NCH_2), 4.24 \text{ } (d, J = 11.1 \text{ Hz}, 1 \text{ H}, OCH_2Ph), 4.40 \text{ } (d, J = 11.1 \text{ Hz}, 1 \text{ H}, OCH_2Ph), 4.40 \text{ } (d, J = 11.1 \text{ Hz}, 1 \text{ H}, OCH_2Ph), 4.40 \text{ } (d, J = 11.1 \text{ Hz}, 1 \text{ H}, OCH_2Ph), 4.40 \text{ } (d, J = 11.1 \text{ Hz}, 1 \text{ Hz}, 1$ = 11.1 Hz, 1 H, OCH₂Ph), 7.04-7.10 (m, 2 H, Ph), 7.15-7.42 (m, 8 H, Ph) ppm. ¹³C-NMR (126 MHz, CDCl₃): $\delta = -5.1$, -4.9 (2 q, SiMe₂), 18.3, 26.0 (s, q, tBu), 20.5, 22.7 (2 t, DHP), 23.4, 28.0 (2 q, Me), 61.1 (t, NCH₂), 61.6 (d, C-8), 64.1 (t, 7-CH₂), 65.1 (t, DHP), 73.4 (d, C-7), 74.8 (t, OCH₂Ph), 75.6 (s, C-5), 115.3 (s, C-4a), 126.8, 127.3, 127.9, 128.0, 128.8, 129.9, 137.9, 139.4 (6 d, 2 s, Ph), 143.4 (s, C-8a) ppm. IR (film): 3100-2850 cm⁻¹ (=C-H, C-H), 1670 (C=C). ESI-TOF:m/z calc. for $[M + H]^+$ 546.3005, found 546.2981. Anal. calc. for $C_{31}H_{45}NO_4Si$ (523.8): C 71.09, H 8.66, N 2.67, found: C 71.21, H 8.65, N 2.82.

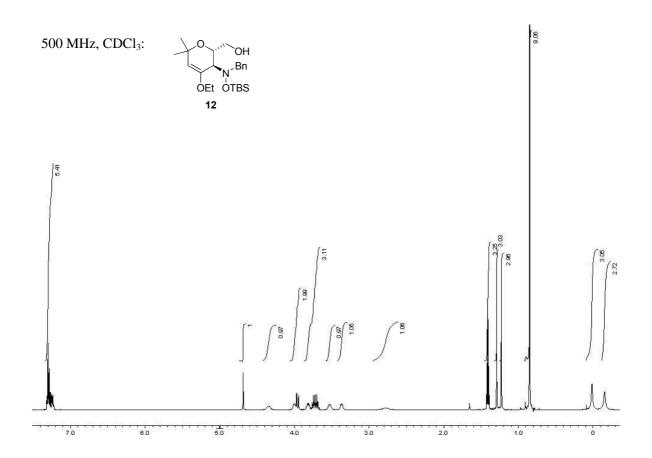

(3*S*,4*S*)-3-[Benzyl(*tert*-butyldimethylsiloxy)amino]-4-(benzyloxymethyl)-6,6-dimethyl-1,5-dioxecane-2,7-dione (29)

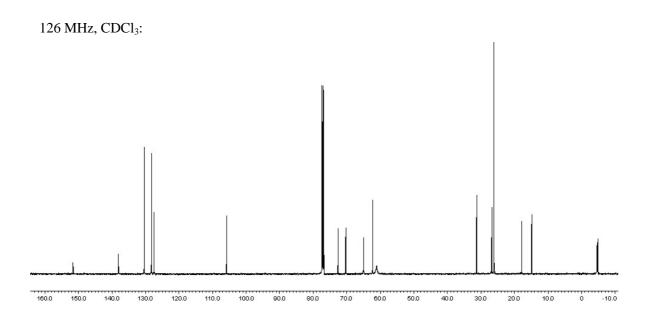


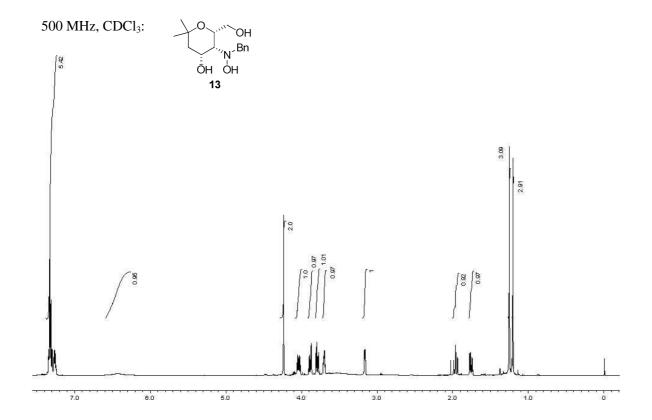

To a solution of the above described compound (100 mg, 0.191 mmol) in H₂O:CCl₄:MeCN (1.5:1:1, 1.4 mL) was added RuCl₃ (0.1M in H₂O, 57 μL, 5.73 μmol) and NaIO₄ (168 mg, 0.783 mmol). The reaction mixture was stirred at rt for 2 h and then quenched by the addition of sat. Na₂S₂O₃ solution. The resulting mixture was extracted 3 times with CH₂Cl₂. The combined organic phases were dried (Na₂SO₄) and concentrated to dryness giving 94 mg of **29** (94 mg, 88%) in analytically pure form as yellow oil. $[\alpha]_D^{22} = -43.8$ (c = 0.96, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 0.10$, 0.11 (2 s, 3 H each, SiMe₂), 0.92 (s, 9 H, tBu), 1.31, 1.35 (2 s, 3 H each, Me), $1.82 \text{ (m}_c, 1 \text{ H}, 9-\text{H}), 2.01 \text{ (ddd}, J = 1.3, 11.6, 16.7 \text{ Hz}, 1 \text{ H}, 8-\text{H}), 2.58 \text{ (m}_c, 1 \text{ H}, 9-\text{H}), 2.94 \text{ (ddd}, J = 1.3, 11.6, 16.7 \text{ Hz}, 1 \text{ H}, 8-\text{H}), 2.58 \text{ (m}_c, 1 \text{ H}, 9-\text{H}), 2.94 \text{ (ddd}, J = 1.3, 11.6, 16.7 \text{ Hz}, 1 \text{ H}, 8-\text{H}), 2.58 \text{ (m}_c, 1 \text{ H}, 9-\text{H}), 2.94 \text{ (ddd}, J = 1.3, 11.6, 16.7 \text{ Hz}, 1 \text{ H$ $= 1.5, 11.6, 16.7 \text{ Hz}, 1 \text{ H}, 8 \text{-H}, 3.72 \text{ (dd, } J = 5.0, 9.4 \text{ Hz}, 1 \text{ H}, 4 \text{-CH}_2), 3.81 \text{ (ddd, } J = 2.0, 7.3, 1.00 \text{ Hz}$ 10.9 Hz, 1 H, 10-H), 3.96 (m_c, 1 H, 4-H), 4.11 (t, J = 9.4 Hz, 1 H, 4-CH₂), 4.22 (d, J = 3.3 Hz, 1 H, 3-H), 4.29-4.40 (m, 3 H, OCH_2Ph , NCH_2), 4.69 (d, J = 13.8 Hz, 1 H, NCH_2), 4.91 (dt, J = 6.0, 10.9 Hz, 1 H, 10-H), 6.98-7.49 (m, 10 H, Ph) ppm. 13 C-NMR (101 MHz, CDCl₃): $\delta = -5.1$ (q, SiMe₂), 18.4, 26.1 (s, q, tBu), 21.7 (t, C-9), 21.8, 26.0 (2 q, Me), 31.4 (t, C-8), 60.0 (t, NCH₂), 61.0 (t, C-10), 62.7 (t, 4-CH₂), 66.7 (d, C-3), 75.7 (t, OCH₂Ph), 75.8 (d, C-4), 80.9 (s, C-6), 127.2, 127.6, 128.1, 128.2, 128.7, 129.8, 137.2, 139.3 (6 d, 2 s, Ph), 169.9 (s, C-2), 209.3 (s, C-7) ppm. IR (film): $3100-2830 \text{ cm}^{-1}$ (=C-H, C-H), 1750, 1710 (C=O). ESI-TOF: m/z calc. for $C_{31}H_{45}NO_6Si$ $[M + Na]^+$ 578.2903, found 578.2911.

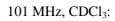

¹H- and ¹³C-NMR spectra:

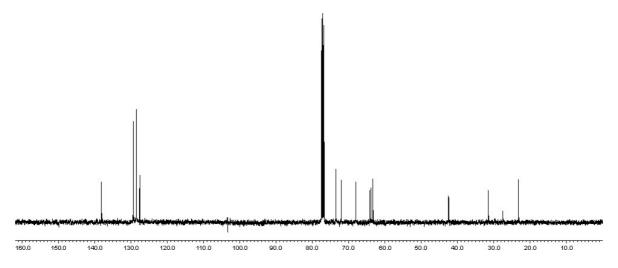

¹³C-NMR spectra recorded at 101 MHz show signals at 27.5, 103.5 and 179.1 ppm, which are caused by external electromagnetic interference.

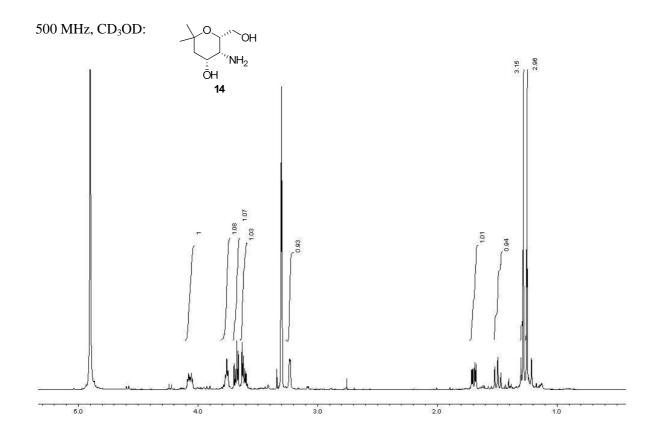


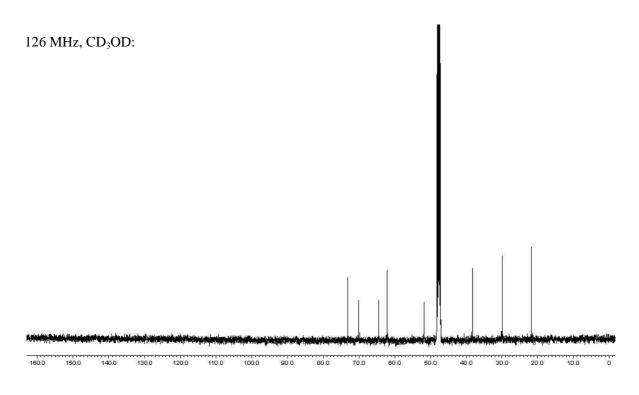


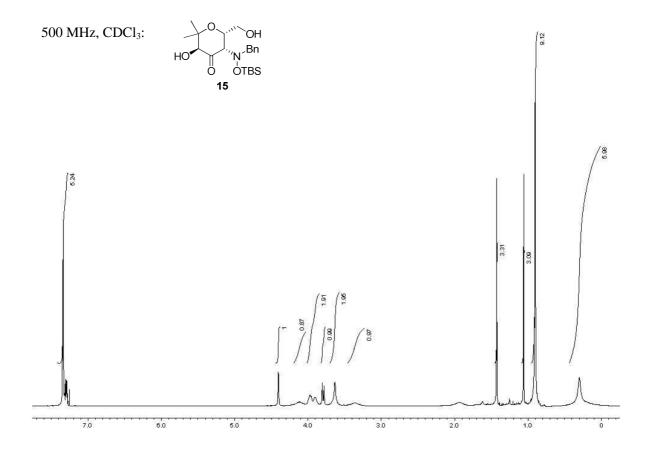


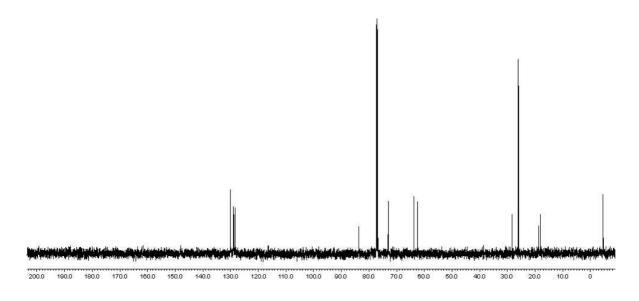


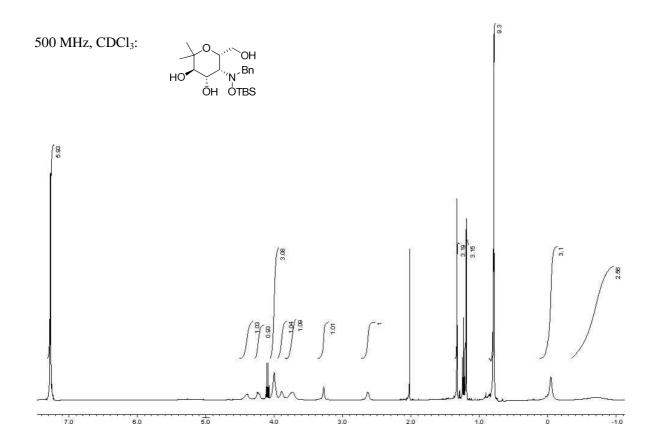


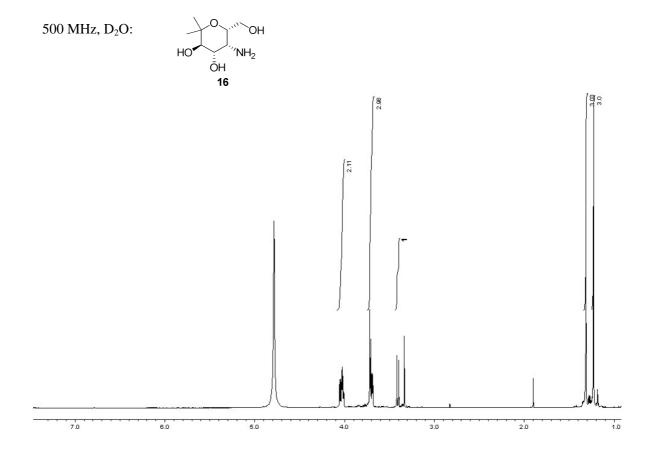


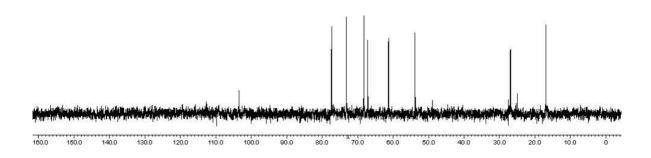


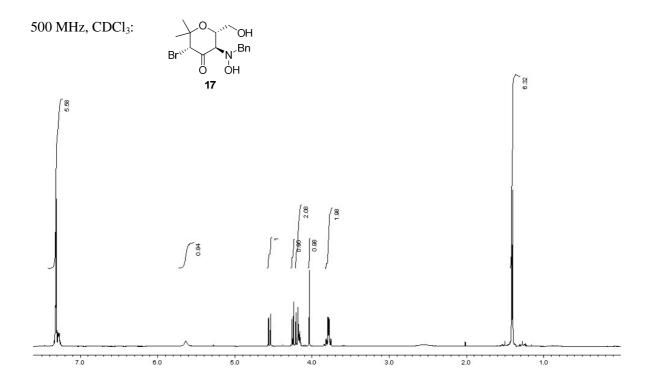


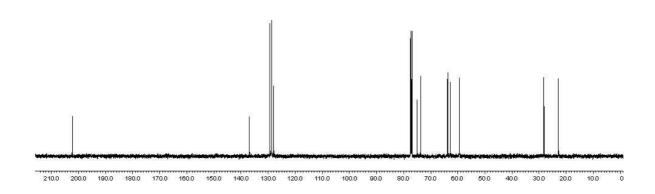


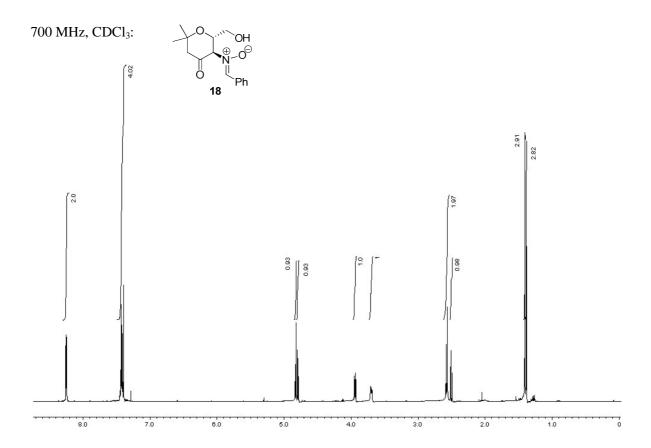


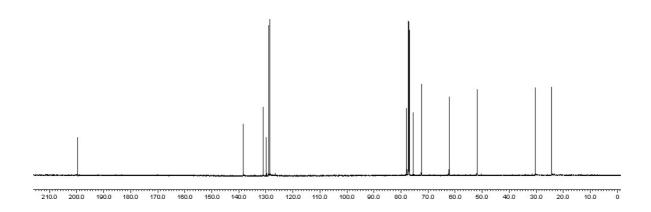


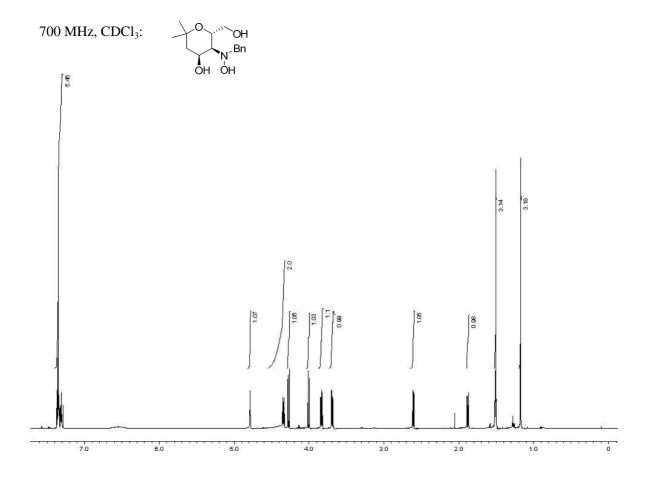


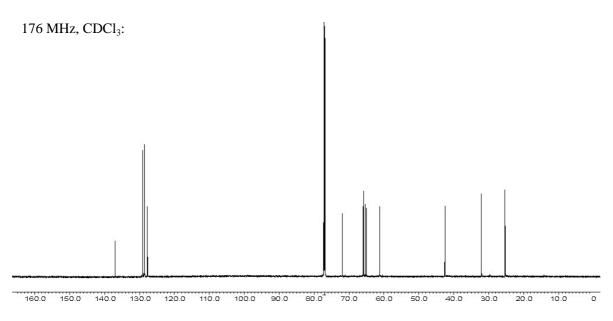


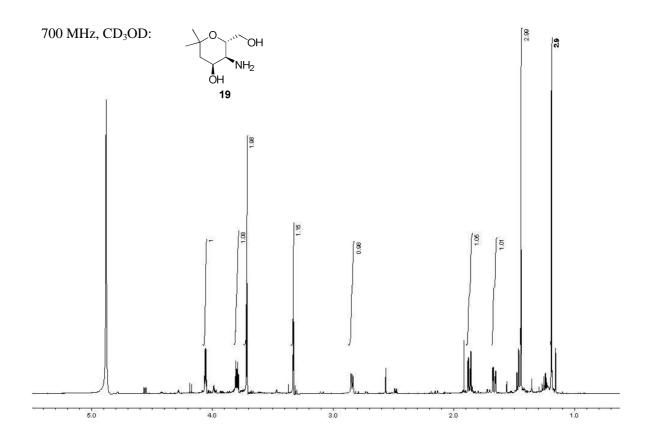


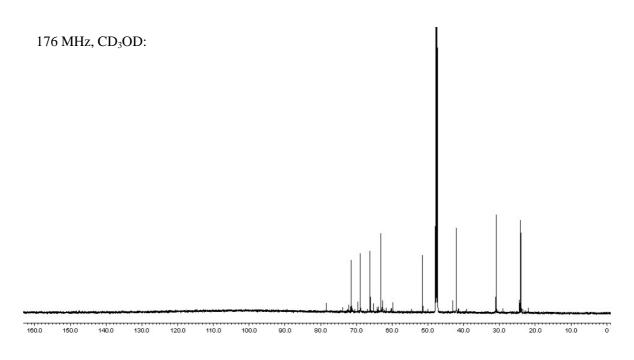


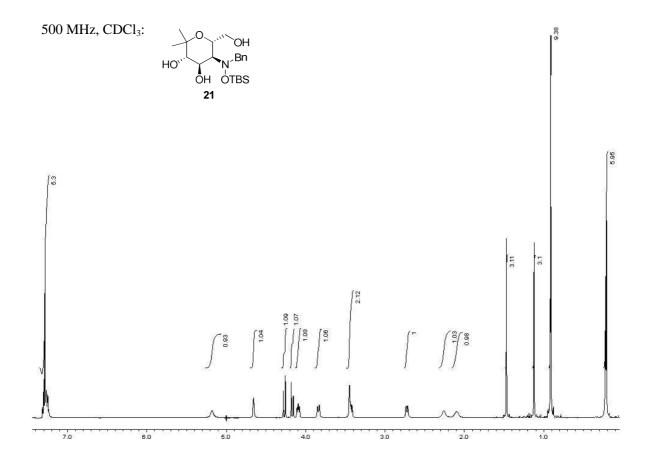

101 MHz, D₂O:

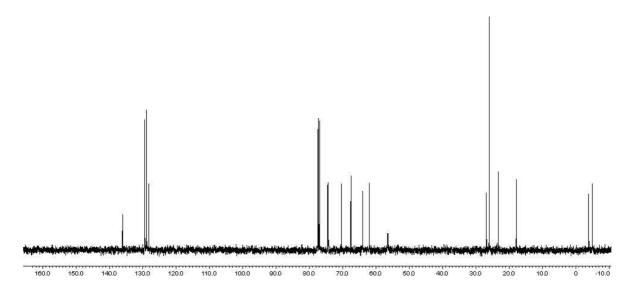


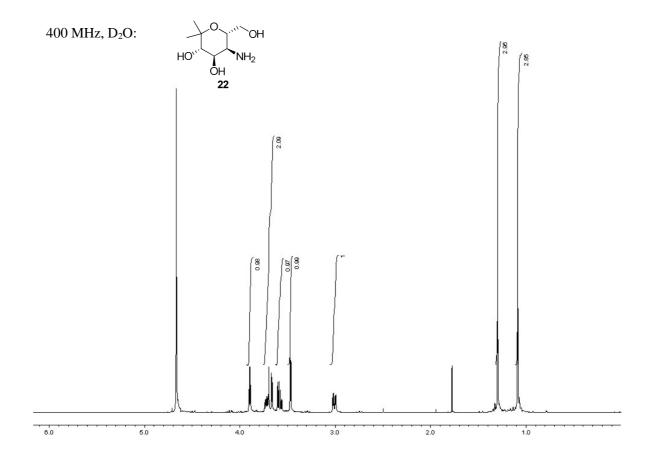


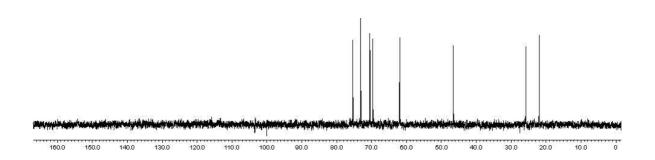


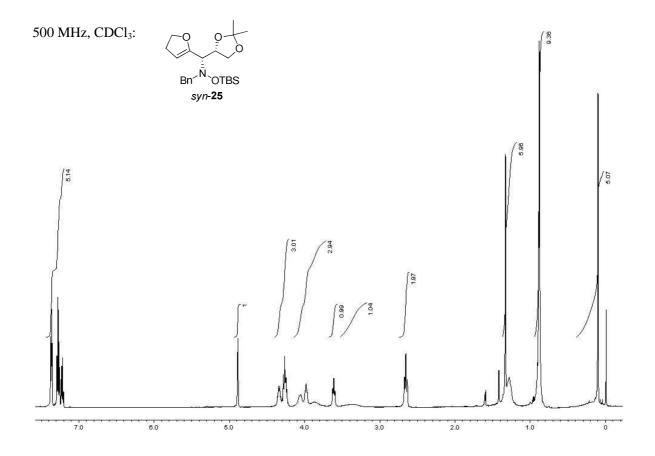


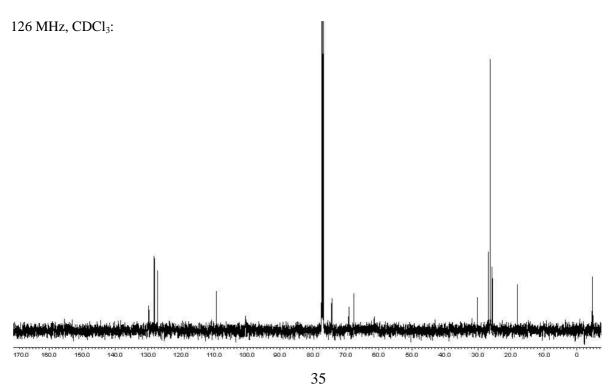


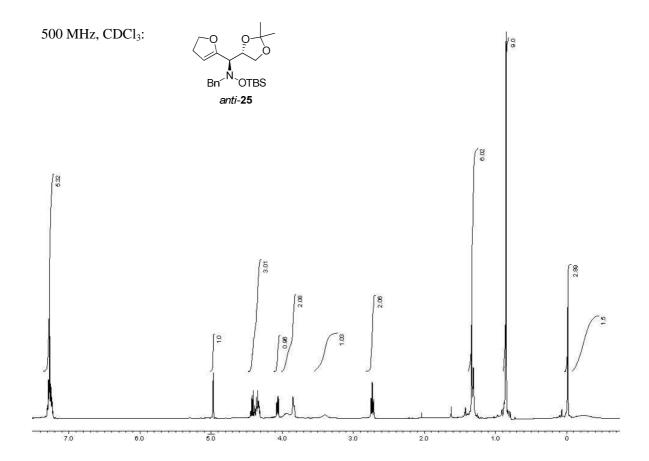


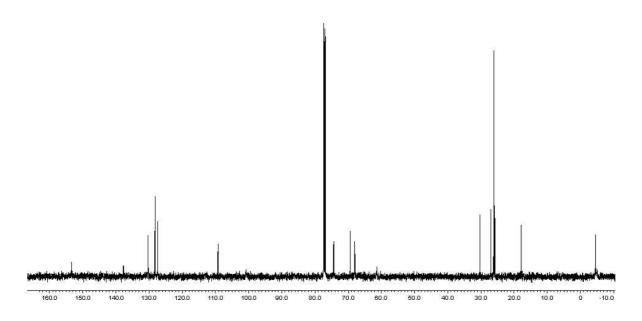











101 MHz, D₂O:

