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1 Charge density motif generation

The rationale behind the use of charge density motifs in the so called charge patching method

(CPM) comes from the observation that in semiconducting systems the charge density around a

given atom depends mainly on its local environment. The motifs corresponding to equilibrium

bond lengths and angles were generated from a charge densitycalculated using DFT in local den-

sity approximation (LDA) (the code PEtot1 with norm conserving pseudopotentials with kinetic

energy cutoff of 60 Ry was used) of small prototype systems in amanner previously described.2

Three unit long oligomers of hexyl-thiophene were used as prototype systems for motif genera-

tion. To properly describe the changes in the atom environment, the so called derivative motifs

were introduced which describe the change of the charge density motif due to a particular bond

length perturbation or due to change of a certain angle in thesystem. Special care is taken to avoid

any double counting, which might take place especially in systems with rings where bond lengths

1



Nenad Vukmirovíc et al.Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

and angles satisfy certain constraints. We find that the derivative motifs are especially important

for a correct description of electron-phonon coupling.

2 Generation of the atomic structure

The details of the procedure are essentially the same as in the previous publication3 and we only

briefly outline it here. The CFF91 force field,4,5 modified to properly account for torsion potentials

that mainly determine the shape of the chains, was used. The MD simulation was performed using

the LAMMPS code.6,7 Five P3HT chains, each 20 units long, (containing 2510 atomsalltogether)

are initially placed in a large cubic box at a high temperature. The size of the box is then gradually

decreased down to 29.286 Å, corresponding to the experimental density of P3HT of 1.1 g/cm3.8–11

Subsequently, the system was cooled down to room temperature and relaxed to a local minimum.

3 Calculation of wave functions and energies

The charge densityρ(r) is calculated by simply adding the precalculated nonspherical charge

density motifs assigned to each of the atoms. After the charge density is obtained, one needs to

solve the single-particle Kohn-Sham equation

(

− h̄2

2m0
∇2 +Vion +VH +VXC

)

ψi(r) = εiψi(r). (1)

to obtain the wave functionsψi(r) and energiesεi of single-particle states. In Eq. 1Vion is the

(nonlocal) potential of ions and core electrons modeled using Troullier Martins norm conserving

pseudopotentials.VH is the Hartree potential of electrons given as

VH(r) =
1

4πε0

∫

dr′
ρ(r′)
|r− r′| , (2)
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VXC(r) is the exchange-correlation potential, which is in LDA a well-known function of charge

densityρ(r) at the same pointr. Therefore, knowing the charge density, one straight-forwardly

constructs the single particle Hamiltonian

H =

(

− h̄2

2m0
∇2 +Vion +VH +VXC

)

. (3)

One can therefore think of the CPM also as the method for constructing the single-particle Hamil-

tonian and not only the charge density.

The Kohn-Sham equation 1 for the several top states in the valence band is then solved using

the folded spectrum method,12 as implemented in the ESCAN code.13 We solve for the 16 top

states in the valence band.

It should be particularly emphasized that the calculation of the electronic structure using the

charge patching method yields the results of the same accuracy as the DFT in LDA (with the

differences in eigenenergies of the order of tens of meV only), as we have demonstrated for the

case of polythiophenes and many other organic systems in ourrecent publications.2,3

4 Calculation of phonon spectrum and electron-phonon cou-

pling

The phonon spectrum is modeled using the same classical force field used in MD simulations.

The energies and eigenvectors of all phonon modes are calculated by diagonalizing the dynamical

matrix defined as

Krs,pq =
1

√
mrmp

∂ 2E
∂xrs∂xpq

, (4)

whereE is the force field energy,mr the mass of ther-th atom andxrs its s-th coordinate (s ∈

{1,2,3}). Angular frequencyωµ of phonon modeµ is given as the square root of the eigenvalue
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of the dynamical matrix

∑
pq

Krs,pqR(µ)
pq = ω2

µR(µ)
rs (5)

and the normal coordinate of modeµ is given as

vµ = ∑
rs

R(µ)
rs (xrs − x0

rs)
√

mr, (6)

where(xrs−x0
rs) is thes-th coordinate of the displacement of atomr from its equilibrium position.

The transition rate from the electronic statei to j due to interaction with phonons is given by the

Fermi Golden rule expression

Wi j = π ∑
µ

∣

∣Mi j,µ
∣

∣

2

ωµ

[(

Nµ +1
)

δ
(

εi − ε j − h̄ωµ
)

+Nµδ
(

εi − ε j + h̄ωµ
)]

, (7)

whereNµ is the phonon occupation number of modeµ given by the Bose-Einstein distribution at

temperatureT , εi the single particle energy of statei and

Mi j,µ =

〈

ψi

∣

∣

∣

∣

∂H
∂vµ

∣

∣

∣

∣

ψ j

〉

(8)

the electron-phonon coupling matrix element between electronic statesi and j (obtained as solu-

tionsψi andψ j of Eq. 1 in a way described in the previous section of this Supporting information)

due to phonon modeµ. H is the single particle Hamiltonian defined in Eq. 3.

To calculate the change∂H/∂vµ of the single particle Hamiltonian due to atom displacements

of the phonon modeµ, it is sufficient to calculate the changes due to displacement of each of the

atomic coordinates∂H/∂xrs and then perform a transformation making use of the equation(6).

∂H/∂xrs can be found by constructing the single-particle Hamiltonian for the initial atomic struc-

ture (as described in the previous section of this Supporting information) and the atomic structure

where atomr is displaced by a small∆xrs in the directions. We note that the CPM is particularly

suitable for the computationally efficient construction ofthese Hamiltonian perturbations∂H/∂xrs

since the only difference in the charge density of the perturbed and initial system comes from the
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charge density motifs of the atom that is displaced and its neighbors. Therefore, the charge density

of the perturbed system can be found simply by adding the above difference to the charge density

of the original system (i.e. one does not have to calculate itfrom the beginning).

With ψi, ψ j and ∂H/∂vµ at hand, we calculateMi j,µ straightforwardly from its definition

(Eq. 8). Technically, this is done first by acting onψ j with operator∂H/∂vµ (using one of the

procedures in the ESCAN code13) and then simply calculating the scalar product of the obtained

vector withψi.

By comparing the results obtained by the described procedureand direct DFT/LDA calcula-

tions for the similar but smaller (∼300 atom) systems, we found that the difference in Hamiltonian

perturbation∂H/∂vµ obtained by the two methods is of the order of 10 %. These testswere per-

formed as follows. The test system chosen consists of 3 chains of polythiophene, each containing

15 rings, which makes 321 atoms alltogether and therefore itis still computationally feasible to

do (a limited number of) DFT calculations on such a system. The atomic structure of this system

was generated from classical MD using a simulated annealingprocedure, in a similar manner as

described in Sec. 2 of this Supporting information, which makes this system disordered and very

similar to the larger 2510 atom P3HT system which is the main subject of this work. We have

performed 22 tests (labeled as T1-T22) as follows. The testswere performed by first constructing

the single-particle HamiltonianHCPM in a way described in Sec. 3, i.e. starting from charge density

ρCPM(r) obtained from charge patching. In tests T1-T19 the atoms arethen displaced according to

phonon modeµ (the energies of the phonon modes in tests T1-T19 that span the entire spectrum

where there are phonon modes is reported in Table 1, while thedisplacements are normalized such

that the largest one is 0.002 Å) and the new single particle Hamiltonian H ′
CPM is constructed in

the same way thatHCPM was constructed. The Hamiltonian perturbation is then obtained simply

asPCPM = H ′
CPM−HCPM. The same steps are then repeated with a difference that one starts with

charge densityρDFT(r) obtained from direct self-consistent DFT calculations andtherefore obtains

HDFT, H ′
DFT andPDFT = H ′

DFT−HDFT. The contribution toP-operators comes only from theVH,

VXC andVion in Eq. 3, since the kinetic energy term does not change. We compare the local parts
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of PCPM andPDFT (which we callPLOC
CPM(r) andPLOC

CPM(r)), since the nonlocal part (that originates

from Vion in Eq. 3) is the same in both cases. We quantify the differencebetweenPLOC
CPM(r) and

PLOC
DFT (r) as

β =

∫

∣

∣PLOC
CPM(r)−PLOC

DFT (r)
∣

∣dr
∫

∣

∣PLOC
DFT (r)

∣

∣dr
×100% (9)

The results obtained for the differenceβ are presented in Table 1.

Table 1: The comparison of Hamiltonian perturbations obtained from DFT/LDA and CPM
test label h̄ωµ (meV) β

T1 10 8.9%
T2 20 8.3%
T3 30 7.4%
T4 40 8.0%
T5 50 10.3%
T6 80 9.3%
T7 90 8.9%
T8 100 8.3%
T9 110 11.1%
T10 120 8.8%
T11 130 12.1%
T12 140 10.5%
T13 160 13.0%
T14 170 12.8%
T15 180 9.9%
T16 190 9.2%
T17 200 8.7%
T18 210 10.7%
T19 390 10.5%

test label β
T20 8.3%
T21 7.9%
T22 8.0%

We further performed the tests (that we label as T20-T22) where we displace atoms not accord-

ing to a particular phonon mode, but randomly (the displacement of each atom in each direction is

drawn from a uniform distribution from the interval -0.002 Åto 0.002 Å). We believe that the error

β obtained in such tests T20-T22 should be similar to a typicalaverageβ for all phonon modes.

From all the results presented in Table 1 one can conclude that the accuracy of the CPM calculated
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Hamiltonian perturbations is of the order of 10%.

In Figure 1, we present the histogram of the appearance of different values of the dimension-

less electron-phonon coupling constantgi j,µ , related toMi j,µ via gi j,µ = Mi j,µ
1

h̄ωµ

√

h̄
2ωµ

. The

histogram includesgi j,µ among all calculated electronic states and all phonon modes, for one real-

ization of the system at theL2 length scale. One can note that practically allgi j,µ are significantly

smaller than 1, which suggests weak coupling among most of the states and therefore gives a first

indication that the use of Eq. 7 based on first order perturbation theory is valid. From Figure 1 one

can also see that there are few coupling constants which are of the order of 1, for which the use of

perturbation theory does not give the transition rates which are quantitatively correct. We however

expect that these transition rates have a very weak influenceon the overall transport (since there

are just a few of them). In what follows we provide two numerical proofs of such an expectation.

1) We repeat the whole mobility calculation, where we set alldimensionless coupling constants

which are larger than 0.1 to zero. The comparison of such a calculation with the previous calcu-

lation where coupling constants were not changed gives an insight into the influence of coupling

constants larger than 0.1 on mobility of the system. Such a comparison is given in Figure 2 and

shows that the coupling constants larger than 0.1 affect themobility by less than 5%.

2) In Figure 3 we show the histogram of contributions of different values of dimensionless

coupling constants to the current. The histogram was obtained in a similar manner as histograms

shown in Figs. 4b and 4d of the main paper. A certain referenceplane is chosen and each tran-

sition rate that contributes to current through that plane was decomposed into contributions from

individual coupling constants in Eq. 7. In such a way the contribution of each coupling constant

to the current is identified. The histogram is then formed by adding the contributions of coupling

constants that fall into specified range of their values. Thefinal histogram is obtained by averaging

such histograms for different reference planes. The histogram presented in Figure 3 shows that the

contribution to current of coupling constants of the order of one is very small.
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Figure 1: The histogram of appearance of different values ofdimensionless electron-phonon cou-
pling constantgi j,µ for one realization of the system at theL2 length scale.
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Figure 2: The comparison of the mobility calculation where all dimensionless coupling constants
less than 0.1 where set to zero (squares) and the original mobility calculation where these constants
were not changed (circles).
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Figure 3: The histogram of contributions of different dimensionless coupling constantsgi j,µ to the
current.

5 The role of polarons

Recent density functional theory calculations14,15have shown that polaron binding energy in long

straight polythiophene chains is of the order of few meVs only. It is on the other hand not clear

whether the same is the case for the state localized on a part of the long disordered chain, i.e.

whether polaron binding energy is mainly determined by the degree of wavefunction localization

or by the length of the whole chain. To gain insight into this problem, we have performed DFT

calculations of polaron binding energy for the VBM state of a 10 unit long chain whose shape is

shown in Figure 4. The chain is disordered except for the fourcentral units which are on the straight

line and the wavefunction is localized there. The calculation was performed using the NWChem

code.16 Polaron binding energy was calculated as the difference between the total energy of the

singly charged chain in the atomic configuration of the neutral chain and the total energy of the

fully relaxed singly charged chain. Interring torsion angles are kept fixed in order to preserve the

shape of the chain, while all other coordinates are allowed to relax. This is a simplified model

keeps the overall shape of the chain unchanged (no torsion angle change) to mimic the effects

of interlocking neghboring polymer chains in a real disordered system. Thus, in a real system,

allowing the torsion angles to relax might increase the polaron binding energy to some extent.
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6-31G basis set was used and LDA or B3LYP density functionals were used. The results for the

disordered chain were compared to the results for straight chains, either 4 or 10 units long and

are presented in Table 2. Polaron binding energy of the disordered chain is closer to the polaron

binding energy of the 10 unit straight chain than to the one ofthe 4 units long straight chain,

which suggests that its value is largely determined by the total chain length. Therefore, one can

conclude that polaron binding energy of a carrier localizedon k units of a long disordered chain is

significantly reduced in comparison to the one of thek units long molecule.

Table 2: Polaron binding energies of polythiophene chains calculated using DFT
disordered chain 10 unit straight chain 4 unit straight chain

LDA 62.8 meV 46.1 meV 89.2 meV
B3LYP 107.5 meV 84.6 meV 138.7 meV

Figure 4: The 10 units long disordered polythiophene chain and its VBM wavefunction.

6 The role of broadening of the delta function

Within all the calculations performed, the delta function in the Fermi’s Golden rule expression was

replaced by a Gaussian with standard deviation of 10 meV. Since the phonon density of states is

continuous one does not expect that the transition rates andconsequently the mobility would heav-

ily depend on the choice of this parameter. To check for this,the mobility at several temperatures

and for the several values of the broadening parameter was calculated. The results are shown in

Figure 5, indicating that our expectations were correct, since the mobility changes by less than

30% when broadening parameter is changed from the one used (10 meV) within the reasonable

limits (increased or decreased within a factor of 2).
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Figure 5: The mobility of the system for several different values of the broadening parameter.

7 Convergence check

One has to check thatm1 = 10 numerical samples at length scaleL2 is sufficient to get convergent

statistical results for the mobility. The results obtainedwhen smaller number of samples was taken

are presented in Figure 6 and demonstrate that the results obtained withm1 = 10 are convergent.
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Figure 6: The dependence of the mobility on the number of numerical samplesm1 used to build
the conductor network.
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8 The procedure for calculating the electron-phonon coupling

elements of the states from neighboring boxes

The electron-phonon coupling matrix elements between states from the same box are available

from the calculation at length scaleL2. However, the matrix elements between states from neigh-

boring boxes are not available. An approximation needs to beintroduced to calculate them as well.

First of all, only the transitions between the states from a certain box and its 26 neighbors (by

neighbors we consider the boxes that have a common side or a common edge or a common corner

with the given box) are considered. The coupling element between statei in box bi and statej

in box b j is calculated as is now described. The distances from the state i to all other states in

box bi and neighboring boxes are calculated and sorted in ascending order. Let the statej be the

k−th state in this array. A periodic system filled with the same samples as boxbi is considered

then. The states in boxbi and its neighboring boxes in this system are also sorted according to

the distance from statei and the state which is thek−th is identified. Let’s call this statej′. The

matrix element of the coupling betweeni and j′ is available from the calculation on length scale

L2 for the sample that fills the boxbi. Next, the same procedure is performed where statesi and

j have exchanged places and the statei′ is found. The matrix element between statesi and j is

then simply approximated asMi j,µ =
(

Mi j′,µ +Mi′ j,µ
)

/2. Although this procedure is simple, it

requires a detailed explanation to avoid any ambiguity in the description. This procedure produces

the same statistical aspects ofMi j,µ in the system as in the periodic system consisting of onlybi

or b j.

9 Calculation of equivalent conductance at length scales L3 and

L4

The equivalent conductance of the conductor network at length scaleL3 is found by solving the

linear equations for the potentials of nodes in the circuit.Periodic boundary conditions are applied
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in two directions (sayy andz) and the voltage is applied in third direction (sayx). This is achieved

by periodically replicating the supercell (of the sizeLx = Ly = Lz = L) to an infinite system and

applying the conditions:Vi −V j = 0 if ri − r j = ±Ley or ri − r j = ±Lez andVi −V j = ±U if

ri − r j = ±Lex (whereri is the position of nodei, Vi its potential andex, ey, ez the unit vectors in

the three directions). The current conservation equationsfor the potentials of the nodes read

Vi ∑
j

Gi j −∑
j

V jG ji = 0.

A closed system of equations is formed by writing the previous equation for all nodesi in a su-

percell except for one whose potential is set to zero. The currentIx through a plane perpendicular

to thex direction is then calculated and the equivalent conductance is found asGx = Ix/U . The

mobility in x−direction is then given byµx = Gx/(neL), wheren is the concentration of carriers.

Since both the conductance in the small carrier density limit and the concentration depend linearly

on the total number of carriers, the mobility is independentof the carrier density.

The continuum system at length scaleL4 is discretized for the numerical simulation by the

simplest possible method where a single node is assigned to the center of each of the boxes, which

transforms the continuum into a discrete conductor networkwith k2×k2×k2 nodes. By comparing

the results with more detailed discretization schemes, it has been checked that such a simplification

does not change the final mobility by more than 30%. The equivalent conductance of the conductor

network is then found in the same manner as described for the network at length scaleL3.
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