Supporting information for: Charge carrier motion in
disordered conjugated polymers: a multiscale
ab-initio study

Nenad Vukmirovi¢,* and Lin-Wang Wang

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA.

E-mail: NVukmirovic@lbl.gov

1 Chargedensity motif generation

The rationale behind the use of charge density motifs in theadled charge patching method
(CPM) comes from the observation that in semiconductingesystthe charge density around a
given atom depends mainly on its local environment. The fiatrresponding to equilibrium
bond lengths and angles were generated from a charge deakityated using DFT in local den-
sity approximation (LDA) (the code PEtbwith norm conserving pseudopotentials with kinetic
energy cutoff of 60 Ry was used) of small prototype systemsriraaner previously described.
Three unit long oligomers of hexyl-thiophene were used asopype systems for motif genera-
tion. To properly describe the changes in the atom enviraryjriee so called derivative motifs
were introduced which describe the change of the chargatganstif due to a particular bond
length perturbation or due to change of a certain angle isystem. Special care is taken to avoid

any double counting, which might take place especially steys with rings where bond lengths
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and angles satisfy certain constraints. We find that thevakare motifs are especially important

for a correct description of electron-phonon coupling.

2 Generation of the atomic structure

The details of the procedure are essentially the same ag iprévious publicatiohand we only
briefly outline it here. The CFF91 force fiefef, modified to properly account for torsion potentials
that mainly determine the shape of the chains, was used. TheiMulation was performed using
the LAMMPS code®’ Five P3HT chains, each 20 units long, (containing 2510 atlitegether)
are initially placed in a large cubic box at a high tempemtdihe size of the box is then gradually
decreased down to 29.286 A, corresponding to the experahgansity of P3HT of 1.1 gem?.8-1L

Subsequently, the system was cooled down to room temperagr relaxed to a local minimum.

3 Calculation of wave functions and energies

The charge density(r) is calculated by simply adding the precalculated nonsphkdharge
density motifs assigned to each of the atoms. After the edemsity is obtained, one needs to
solve the single-particle Kohn-Sham equation

2
(—%DZ-FVion-l-VH +ch) wi(r)=&i(r). (2)

to obtain the wave functiongy(r) and energies; of single-particle states. In Eq.\4o, is the
(nonlocal) potential of ions and core electrons modeledgu3roullier Martins norm conserving

pseudopotentiald/y is the Hartree potential of electrons given as
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Vxc(r) is the exchange-correlation potential, which is in LDA a ikelown function of charge
densityp(r) at the same point. Therefore, knowing the charge density, one straight-fodly
constructs the single particle Hamiltonian

ﬁZ
H= (—EUZ—FVM + Wy +ch) : €))

One can therefore think of the CPM also as the method for agetstg the single-particle Hamil-
tonian and not only the charge density.

The Kohn-Sham equation 1 for the several top states in tlegalband is then solved using
the folded spectrum method,as implemented in the ESCAN cod@We solve for the 16 top
states in the valence band.

It should be particularly emphasized that the calculatibthe electronic structure using the
charge patching method yields the results of the same agcasathe DFT in LDA (with the
differences in eigenenergies of the order of tens of meV)orly we have demonstrated for the

case of polythiophenes and many other organic systems ireoent publicationg:3

4 Calculation of phonon spectrum and electron-phonon cou-

pling

The phonon spectrum is modeled using the same classica fald used in MD simulations.
The energies and eigenvectors of all phonon modes are awduby diagonalizing the dynamical

matrix defined as
1 d%E
KrS»PQ = OX-<0 )
VMiMp 0%:s0Xpq

whereE is the force field energyy, the mass of the-th atom andxs its s-th coordinate § €

(4)

{1,2,3}). Angular frequencyw, of phonon modeu is given as the square root of the eigenvalue
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of the dynamical matrix

z Krs, qug(lq) = wﬁngg) (5)
Pq

and the normal coordinate of moges given as
_ (M) (v 40 6
Vi Z Ris’ (Xrs — Xrs) v/, (6)

where(xs — x%) is thes-th coordinate of the displacement of atorfilom its equilibrium position.
The transition rate from the electronic stat®e j due to interaction with phonons is given by the

Fermi Golden rule expression

;12
Vvlj — n-z "%'L“}

o [((Ny+1) 0 (& — & — hoy ) + Npd (& — €+ hay) | (7)
0

whereNy, is the phonon occupation number of mqagiven by the Bose-Einstein distribution at

temperaturd, & the single particle energy of statand

JoH
Miju = <¢’i 0_VIJ

i > (8)

the electron-phonon coupling matrix element between eleut states and j (obtained as solu-
tions i andy; of Eq. 1 in a way described in the previous section of this $ujpy information)
due to phonon modg. H is the single particle Hamiltonian defined in Eq. 3.

To calculate the chang#H /dv,, of the single particle Hamiltonian due to atom displacemment
of the phonon modeg, it is sufficient to calculate the changes due to displacémiaach of the
atomic coordinategH /dx;s and then perform a transformation making use of the equ#@pn
JdH /dx s can be found by constructing the single-particle Hamikorfor the initial atomic struc-
ture (as described in the previous section of this Supgpmtiformation) and the atomic structure
where atonr is displaced by a smallx;s in the directions. We note that the CPM is particularly
suitable for the computationally efficient constructionttedse Hamiltonian perturbatiod$l /0x;s

since the only difference in the charge density of the pbadrand initial system comes from the

4
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charge density motifs of the atom that is displaced and itghiers. Therefore, the charge density
of the perturbed system can be found simply by adding theealiference to the charge density
of the original system (i.e. one does not have to calculdtent the beginning).

With ¢, ¢ anddH /dv, at hand, we calculatez; , straightforwardly from its definition
(Eg. 8). Technically, this is done first by acting gn with operatordH /dv,, (using one of the
procedures in the ESCAN co#® and then simply calculating the scalar product of the oletzi
vector withyj.

By comparing the results obtained by the described proceshotedirect DFT/LDA calcula-
tions for the similar but smalle~300 atom) systems, we found that the difference in Hamitoni
perturbationdH /dv, obtained by the two methods is of the order of 10 %. These vests per-
formed as follows. The test system chosen consists of 3 slwdipolythiophene, each containing
15 rings, which makes 321 atoms alltogether and therefasesitill computationally feasible to
do (a limited number of) DFT calculations on such a systemne dtomic structure of this system
was generated from classical MD using a simulated annepliogedure, in a similar manner as
described in Sec. 2 of this Supporting information, whichkesathis system disordered and very
similar to the larger 2510 atom P3HT system which is the mabjext of this work. We have
performed 22 tests (labeled as T1-T22) as follows. The teste performed by first constructing
the single-particle HamiltoniaHcpy in @ way described in Sec. 3, i.e. starting from charge dgnsit
pcpm(r) obtained from charge patching. In tests T1-T19 the atomtharedisplaced according to
phonon modeu (the energies of the phonon modes in tests T1-T19 that sgaentire spectrum
where there are phonon modes is reported in Table 1, whildisipgacements are normalized such
that the largest one is 0.002 A) and the new single particlaikianian Hépy is constructed in
the same way thadtlcpy was constructed. The Hamiltonian perturbation is theninbthsimply
asPcpm = Hipy — Hepw: The same steps are then repeated with a difference thatamte\sith
charge densitpprr(r) obtained from direct self-consistent DFT calculations tiedlefore obtains
Hort, Hhpr @ndPort = Hper — Horr. The contribution tdP-operators comes only from thé,

Vxc andVign in EQ. 3, since the kinetic energy term does not change. Weaasrthe local parts
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of Pcpm and Pogr (Which we callPESS(r) andPESS(r)), since the nonlocal part (that originates
from Vion in Eq. 3) is the same in both cases. We quantify the differdretereenPsS5(r) and

PLOS(r) as
 JIPES(r) — PhOS(r)
7 |POS(r)|dr

The results obtained for the differenBeare presented in Table 1.

B x 100% ()

Table 1: The comparison of Hamiltonian perturbations atgdifrom DFT/LDA and CPM

test label| haw, (meV) B
T1 10 8.9%
T2 20 8.3%
T3 30 7.4%
T4 40 8.0%
T5 50 10.3%
T6 80 9.3%
T7 90 8.9%
T8 100 8.3%
T9 110 11.1%

T10 120 8.8%
T11 130 12.1%
T12 140 10.5%
T13 160 13.0%
T14 170 12.8%
T15 180 9.9%
T16 190 9.2%
T17 200 8.7%
T18 210 10.7%
T19 390 10.5%
test label| S

T20 8.3%

T21 7.9%

T22 8.0%

We further performed the tests (that we label as T20-T22yate displace atoms not accord-
ing to a particular phonon mode, but randomly (the displasr@f each atom in each direction is
drawn from a uniform distribution from the interval -0.0020%0.002 A). We believe that the error
B obtained in such tests T20-T22 should be similar to a ty@ealage3 for all phonon modes.

From all the results presented in Table 1 one can concludéthaccuracy of the CPM calculated
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Hamiltonian perturbations is of the order of 10%.

In Figure 1, we present the histogram of the appearance fefelift values of the dimension-
less electron-phonon coupling constant,, related to.#;j ;, via gij.u = '///ijvuh%“ % The
histogram includesi; ;, among all calculated electronic states and all phonon mdolesne real-
ization of the system at the, length scale. One can note that practicallyggll, are significantly
smaller than 1, which suggests weak coupling among mosedtites and therefore gives a first
indication that the use of Eq. 7 based on first order pertiobdbeory is valid. From Figure 1 one
can also see that there are few coupling constants which &éne order of 1, for which the use of
perturbation theory does not give the transition rates whre quantitatively correct. We however
expect that these transition rates have a very weak influendbe overall transport (since there
are just a few of them). In what follows we provide two numatigroofs of such an expectation.

1) We repeat the whole mobility calculation, where we satliaiensionless coupling constants
which are larger than 0.1 to zero. The comparison of suchauledion with the previous calcu-
lation where coupling constants were not changed givessaghninto the influence of coupling
constants larger than 0.1 on mobility of the system. Suchnapewmison is given in Figure 2 and
shows that the coupling constants larger than 0.1 affeanitiality by less than 5%.

2) In Figure 3 we show the histogram of contributions of d#fe values of dimensionless
coupling constants to the current. The histogram was oddaim a similar manner as histograms
shown in Figs. 4b and 4d of the main paper. A certain refer@teee is chosen and each tran-
sition rate that contributes to current through that plaas decomposed into contributions from
individual coupling constants in Eg. 7. In such a way the gbation of each coupling constant
to the current is identified. The histogram is then formed digirag the contributions of coupling
constants that fall into specified range of their values. firtad histogram is obtained by averaging
such histograms for different reference planes. The hiatogresented in Figure 3 shows that the

contribution to current of coupling constants of the ordesrte is very small.



Nenad Vukmirove et al.Charge carrier motion in disordered conjugated pefgna multiscale ab-initio stuc

30000

20000~ N
l |
..... ||||HHH ‘HH““hh

10 -8 -6 -4 -2 0 2 4

Ioglog

Counts

o
'

Figure 1: The histogram of appearance of different valueiraensionless electron-phonon cou-
pling constantjj , for one realization of the system at thglength scale.
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Figure 2: The comparison of the mobility calculation wheltelamensionless coupling constants
less than 0.1 where set to zero (squares) and the originalitpehalculation where these constants

were not changed (circles).
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Figure 3: The histogram of contributions of different dirs@mless coupling constargs , to the
current.

5 Theroleof polarons

Recent density functional theory calculatidfs®have shown that polaron binding energy in long
straight polythiophene chains is of the order of few meVg.oitlis on the other hand not clear
whether the same is the case for the state localized on a fptre dong disordered chain, i.e.
whether polaron binding energy is mainly determined by thgrele of wavefunction localization
or by the length of the whole chain. To gain insight into thiskgem, we have performed DFT
calculations of polaron binding energy for the VBM state ofCauhit long chain whose shape is
shown in Figure 4. The chain is disordered except for thedeutral units which are on the straight
line and the wavefunction is localized there. The calcafatvas performed using the NWChem
codel® Polaron binding energy was calculated as the differencedwst the total energy of the
singly charged chain in the atomic configuration of the reduthain and the total energy of the
fully relaxed singly charged chain. Interring torsion aesgare kept fixed in order to preserve the
shape of the chain, while all other coordinates are allowecklax. This is a simplified model
keeps the overall shape of the chain unchanged (no torsigle ahange) to mimic the effects
of interlocking neghboring polymer chains in a real disoedesystem. Thus, in a real system,

allowing the torsion angles to relax might increase the nooldbinding energy to some extent.
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6-31G basis set was used and LDA or B3LYP density functionaisewsed. The results for the
disordered chain were compared to the results for straighines, either 4 or 10 units long and
are presented in Table 2. Polaron binding energy of the digsed chain is closer to the polaron
binding energy of the 10 unit straight chain than to the onéhef4 units long straight chain,
which suggests that its value is largely determined by the thain length. Therefore, one can
conclude that polaron binding energy of a carrier localiae@ units of a long disordered chain is
significantly reduced in comparison to the one of khenits long molecule.

Table 2: Polaron binding energies of polythiophene chaahsutated using DFT
disordered chain 10 unit straight chain 4 unit straight chain

LDA 62.8 meV 46.1 meV 89.2 meV
B3LYP 107.5 meV 84.6 meV 138.7 meV

Figure 4: The 10 units long disordered polythiophene chathiess VBM wavefunction.

6 Theroleof broadening of the delta function

Within all the calculations performed, the delta functiarthe Fermi’'s Golden rule expression was
replaced by a Gaussian with standard deviation of 10 me\¢eSime phonon density of states is
continuous one does not expect that the transition rates@mskquently the mobility would heav-

ily depend on the choice of this parameter. To check for thes mobility at several temperatures
and for the several values of the broadening parameter Wweslaid. The results are shown in
Figure 5, indicating that our expectations were correcigesithe mobility changes by less than
30% when broadening parameter is changed from the one uBedd¥) within the reasonable

limits (increased or decreased within a factor of 2).

10
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Figure 5: The mobility of the system for several differenies of the broadening parameter.
7 Convergence check

One has to check thaty = 10 numerical samples at length schigis sufficient to get convergent
statistical results for the mobility. The results obtaimdten smaller number of samples was taken

are presented in Figure 6 and demonstrate that the restdtisieth withm, = 10 are convergent.
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Figure 6: The dependence of the mobility on the number of mioalesamplesm used to build
the conductor network.
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8 The procedure for calculating the electron-phonon coupling
elements of the states from neighboring boxes

The electron-phonon coupling matrix elements betweerstbom the same box are available
from the calculation at length scdle. However, the matrix elements between states from neigh-
boring boxes are not available. An approximation needs tatbeduced to calculate them as well.
First of all, only the transitions between the states fronedain box and its 26 neighbors (by
neighbors we consider the boxes that have a common side onmao edge or a common corner
with the given box) are considered. The coupling elemenvéen state in box b; and statej

in box bj is calculated as is now described. The distances from the ista all other states in
box bj and neighboring boxes are calculated and sorted in asagndier. Let the stat¢ be the
k—th state in this array. A periodic system filled with the sarampgles as boxy; is considered
then. The states in bdy and its neighboring boxes in this system are also sortedr@icgpto
the distance from statieand the state which is the-th is identified. Let's call this stat¢. The
matrix element of the coupling betweeand j’ is available from the calculation on length scale
L, for the sample that fills the bdy;. Next, the same procedure is performed where siatesl

j have exchanged places and the state found. The matrix element between statesd | is
then simply approximated a#j , = (.#j , + . ) /2. Although this procedure is simple, it
requires a detailed explanation to avoid any ambiguity éxdéscription. This procedure produces
the same statistical aspects.#f;j , in the system as in the periodic system consisting of tnly

or b;.

9 Calculation of equivalent conductanceat length scalesL; and
L4

The equivalent conductance of the conductor network atthesgalel s is found by solving the

linear equations for the potentials of nodes in the cirdeériodic boundary conditions are applied

12
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in two directions (say andz) and the voltage is applied in third direction (sgy This is achieved
by periodically replicating the supercell (of the size= Ly = L, = L) to an infinite system and
applying the conditionsV; —V; =0 if ri —rj = £Ley orri —rj = £Le, andV; —V; = £U if

ri —rj = xLex (Wherer; is the position of nodg V; its potential andy, ey, &, the unit vectors in

the three directions). The current conservation equaftamnbe potentials of the nodes read

Vi ZGij —ZVjGji =0.
J J

A closed system of equations is formed by writing the presiequation for all nodesin a su-
percell except for one whose potential is set to zero. Theeatly through a plane perpendicular
to thex direction is then calculated and the equivalent conduetasméound asGy = Ix/U. The
mobility in x—direction is then given by, = Gx/(neL), wheren is the concentration of carriers.
Since both the conductance in the small carrier density imil the concentration depend linearly
on the total number of carriers, the mobility is independs#rhe carrier density.

The continuum system at length scalgis discretized for the numerical simulation by the
simplest possible method where a single node is assignée tenhter of each of the boxes, which
transforms the continuum into a discrete conductor netwattk k, x ko x ko nodes. By comparing
the results with more detailed discretization schemesgtdeen checked that such a simplification
does not change the final mobility by more than 30%. The etpnvaonductance of the conductor

network is then found in the same manner as described forettveork at length scales.
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