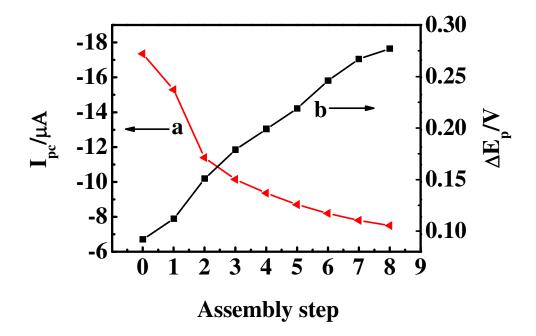
Supporting Information

pH-Sensitive "On-Off" Switching Behavior of
Layer-by-Layer Films Assembled by Concanavalin A
and Dextran toward Electroactive Probes and its
Application in Bioelectrocatalysis

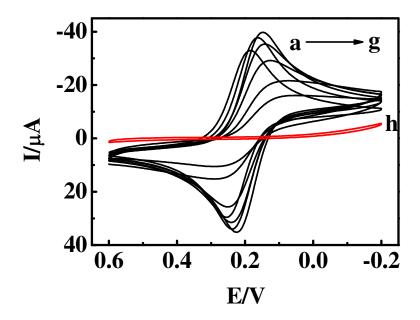
Huiqin Yao^{1,2}, Naifei Hu^{1*}

* Corresponding author:

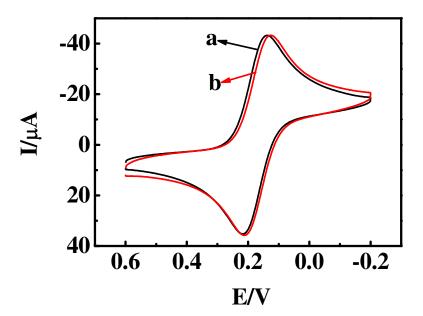
Professor Naifei Hu

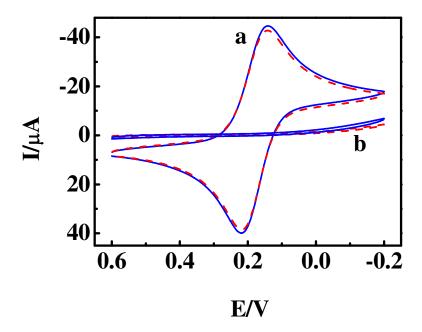

E-mail: hunaifei@bnu.edu.cn.

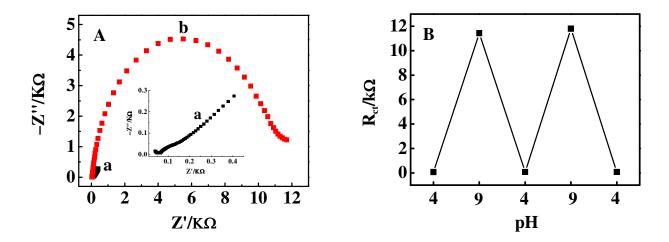
Tel: (+86) 10-5880-5498

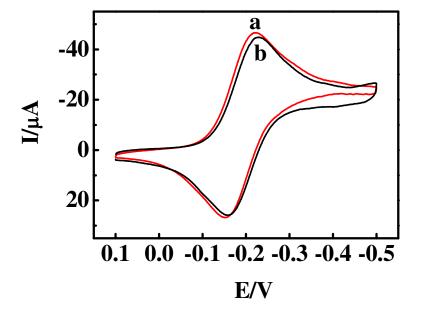

Fax: (+86) 10-5880-2075

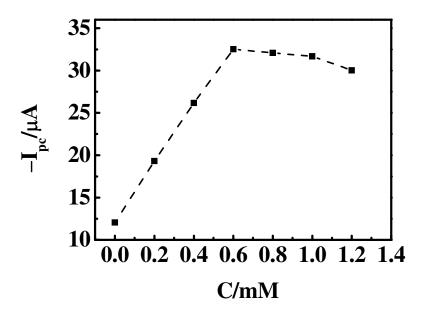
¹ Department of Chemistry, Beijing Normal University, Beijing 100875, P. R. China

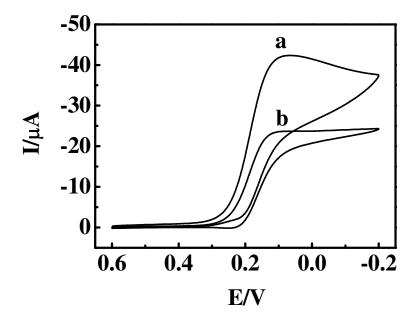

² Department of Chemistry, Ningxia Medical University, Yinchuan 750004, P. R. China

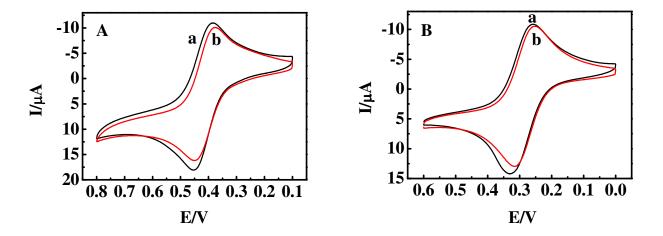

Figure S1. Dependence of CV reduction peak current (I_{pc}) and CV peak separation (ΔE_p) of $Fe(CN)_6^{3-}$ on the assembly step of $\{Con\ A/Dex\}_n$ films.

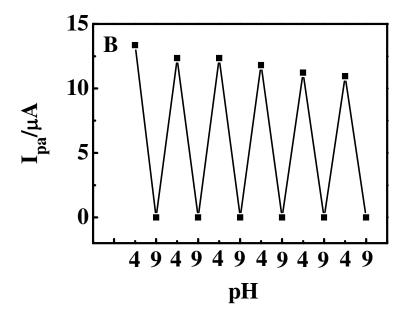

Figure S2. CVs of 1 mM $K_3Fe(CN)_6$ for $\{Con\ A/Dex\}_4$ films at 0.1 V s⁻¹ in buffers at pH (a) 2.0, (b) 3.0, (c) 4.0, (d) 5.0, (e) 6.0, (f) 7.0, (g) 8.0, and (h) 9.0.

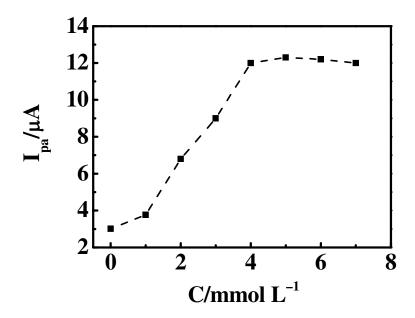

Figure S3. CVs of 1 mM K_3 Fe(CN)₆ at 0.1 V s⁻¹ for bare PG electrodes in buffers at pH (a) 4.0 and (b) 9.0.

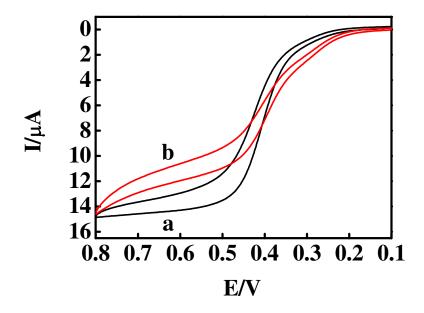

Figure S4. CVs of 1 mM $K_3Fe(CN)_6$ at 0.1 V s⁻¹ for {Con A/Dex}₃/Con A (blue and solid curves) and {Con A/Dex}₄ (red and dashed curves) films in buffers at pH (a) 4.0 and (b) 9.0, respectively.


Figure S5. (A) EIS responses of 5 mM Fe(CN)₆^{3-/4-} at 0.17 V in buffers at pH (a) 4.0 and (b) 9.0 for $\{\text{Con A/Dex}\}_4$ films. Inset is a magnification of curve a. (B) Dependence of R_{ct} of 5 mM Fe(CN)₆^{3-/4-} on solution pH switched between pH 4.0 and 9.0 for the same $\{\text{Con A/Dex}\}_4$ films.


Figure S6. CVs of 1 mM Ru(NH₃)₆Cl₃ at 0.1 V s⁻¹ for bare PG electrodes in buffers at pH (a) 4.0, (b) 9.0.


Figure S7. Dependence of CV electrocatalytic reduction peak/wave current (I_{pc}) at 0.01 V s⁻¹ on concentration of H_2O_2 at {Con A/Dex}₄ film electrodes in pH 4.0 solutions containing 1 mM $K_3Fe(CN)_6$ and 0.5 mg mL⁻¹ HRP and H_2O_2 .


Figure S8. CVs at 0.01 V s⁻¹ for bare PG electrodes in pH (a) 4.0 and (b) 9.0 buffers containing 1 mM $K_3Fe(CN)_6$, 0.5 mg mL⁻¹ HRP and 0.5 mM H_2O_2 .


Figure S9. (A) CVs of 0.5 mM Fc(COOH)₂ at 0.1 V s⁻¹ at bare PG electrodes in buffers at pH (a) 4.0 and (b) 9.0. (B) CVs of 0.5 mM Fc(COOH) at 0.1 V s⁻¹ at bare PG electrodes in buffers at pH (a) 4.0 and (b) 9.0.

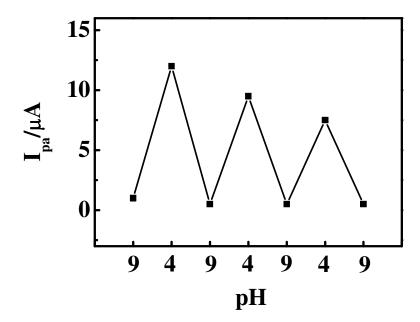

Figure S10. Dependence of CV oxidation peak current (I_{pa}) of 0.5 mM Fc(COOH)₂ at 0.1 V s⁻¹ on solution pH switched between pH 4.0 and 9.0 for the same {Con A/Dex}₄ films.

Figure S11. Dependence of CV oxidation peak/wave current (I_{pa}) at 0.005 V s⁻¹ on concentration of glucose for {Con A/Dex}₄ films in pH 4.0 buffers containing 0.5 mM Fc(COOH)₂, 1.0 mg mL⁻¹ GOD and glucose.

Figure S12. CVs at 0.005 V s^{-1} at bare PG electrodes in pH (a) 4.0 and (b) 9.0 buffers containing 0.5 mM Fc(COOH)₂, 1.0 mg mL⁻¹ GOD and 4.0 mM glucose.

Figure 13. Dependence of CV catalytic oxidation peak/wave current (I_{pa}) at 0.005 V s⁻¹ on solution pH switched between pH 4.0 and 9.0 for the same {Con A/Dex}₄ films. The solution contained 0.5 mM Fc(COOH)₂, 4.0 mM glucose, and 1.0 mg mL⁻¹ GOD.