SUPPORTING INFORMATION

Identification and Structure-Activity Relationships of Chromene-Derived Selective

Estrogen Receptor Modulators for Treatment of Postmenopausal Symptoms

Nareshkumar Jain*, Jiayi Xu, Ramesh M. Kanojia, Fuyong Du, Guo Jian-Zhong, Emmanuel Pacia, Muh-Tsann Lai, Amy Musto, George Allan, Michael Reuman, Xun Li, DoWon Hahn, Martin Cousineau, Sean Peng, David Ritchie, Ronald Russell, Scott Lundeen, and Zhihua Sui

Johnson & Johnson Pharmaceutical Research & Development LLC,

665 Stockton Drive, Exton, PA19341

e-mail address: drnfjain@gmail.com;

Table of Content:	Page
Spectroscopy Data for New compounds:	S2-S30
Protocols for In Vitro assays:	S31-S33
Protocols for In Vivo assays.	S33-S45
1-D and 2-NMRs	S46-67
X -ray Data	S67-S98

General Information. Optical Rotations were measured on a Perkin Elmer model 341 polarimeter. ¹H and ¹³C spectra were measured on either a Bruker 300 MHz, 400 MHz or 500 MHz instrument. In the case of 13 C spectra, these measurements were taken with full proton decoupling. Data for proton spectra were reported as follows: chemical shifts are reported in ppm, utilizing the residual solvent as an internal standard, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, nd = narrow doublet), coupling constants (Hz). Analytical high performance liquid chromatography (HPLC) coupled with MS and UV diodray detectors, was performed on an Agilent 1100 series instrument at 280 nM (UV detector) and mass ranging from 300-1000 (MS detector) using the following conditions: (a) Phenonmenex, luna 5µ, phrnyl-hexyl 150x4.60 mm, Solvent A: H₂O (0.1% TFA), Solvent B: CH₃CN (0.1% TFA), gradient 20-90% of solvent A to B, flow rate: 1ml/min, total run time: 15 min. (b) Phenonmenex, luna 5µ 150x4.60 mm, Solvent A: H₂O (0.1% TFA), Solvent B: CH₃CN (0.1% TFA), gradient 20-90% of solvent A to B, flow rate: 1ml/min, total run time: 15 min. (c) YMC diol 120 100 x 4.6 mm (achiral, normal phase) column, Solvent system 50% IPA in hexanes, Isocratic solvent sytem, flow rate: 1 min / mL, run time: 20 min. and (d) a Diacel ChiralPak AD 250 x 4.6 mm (chiral) column using an isocratic solvent mixture 50:50 IPA/Hexanes, at a flow rate of 1 mL/min.

For thin layer chromatography (TLC) analysis throughout this work, Analtech Uniplate precoated plates were used in conjunction with a variety of developing reagents including phosphomolybdic acid (PMA) and para-anisaldehyde (PAA) in addition to UV light. Purification

of materials was carried out using an ISCO chromatography system with pre-packed silica gel columns. High-resolution mass spectrometry (HRMS) was performed by M-Scan, Inc. and elemental analyses by QTI Technologies. All reagents and solvents were used as received from commercial source.

Following compounds were prepared using Scheme 2

Synthesis of Compound 8a:

[2-(4-iodo-phenoxy)-ethyl]-piperidine (1.5 g , 4.5 mmol) was dissolved in 10 ml THF and cooled to -78 °C. To the solution was added dropwise 1.8 ml n-butyllithium (2.5 M in hexane). The solution was stirred at -78 °C for 30 min before the addition of 0.82g (1.5 mmol) lactal 14 g (X2=X1=OTBS, n=3)⁸ in 5 ml THF, stirred for another 30 min after the addition and quenched with aqueous ammonium chloride, extracted with ethyl acetate, and the organic layer was combined and dried over sodium sulfate.

After removal of the solvent, the crude product was dissolved into 15 ml toluene and was cooled to 0 °C HCl (36.5%, 0.5 ml) was added dropwise. The reaction mixture was stirred at 0 °C for 1 hour. Diluted with ethyl acetate and washed with 5% NaHCO₃, then brine. The organic layer was dried over sodium sulfate and concentrated. The crude product was dissolved into 15 ml THF and was added 3.75 ml 1.0 M TBAF in THF. The reaction mixture was stirred for 1 hour, diluted with ethyl acetate and washed with aqueous ammonium chloride then brine. The organic layer was combined and dried over sodium sulfate. After removal of the solvent, the crude product was purified on HPLC. Purity: 97% by HPLC; LC-MS: R_f =3.791 min, m/z: 500 (M + 1), 522 (M + 23). ¹H NMR (CD₃OD) δ 1.49 (broad s, 2H), 1.69 (broad s, 4H), 1.91 (broad m, 2H), 2.08 (broad m, 2H), 2.71 (broad m, 4H), 2.92 (broad m, 2H), 3.74 (broad s, 1H), 4.12 (broad m, 2H), 4.56 (broad s, 1H), 5.95 (s, 1H), 6.08 ~ 7.65 (m, 10H). HRMS, m/z calcd for C31H34NO5 (M+H⁺) 500.2437, found 500.2439; Anal Calcd for C31H35NO6 (M+H₂O) C, 71.93; H, 6.82; N, 2.71; O, 18.55; found C, 71.92; H, 6.79; N, 2.69;

Preparation 5-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxaof benzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol (1b):To a solution of 4.64 g 1-[2-(4-iodophenoxy)-ethyl]-dimethylamine (15.95 mmol) in 40 ml THF at -78 °C was added dropwise 6.38 ml n-butyllithium (2.5 M in hexane). The solution was stirred at -78 °C for 30 min before the solution of lactal (14a) (2.8g, 5.32 mmol) in 10 ml THF was added slowly, stirred for another 30 min after the addition and quenched with aqueous ammonium chlorideandextracted with ethyl acetate. The organic layer was combined and dried over sodium sulfate. After removal of the solvent the crude product was dissolved into 200 ml toluene and 1.64 ml of TFA was added. The solution was stirred for 1 hour and neutralized with 5% NaHCO₃ and extracted with ethyl acetate. The organic layer was combined and dried over sodium sulfate. The crude product was dissolved into 50 ml acetonitrile and was added 5 ml 70% HF in pyridine at room temperature. The reaction mixture was stirred overnight and diluted with ethyl acetate and washed with 5% NaHCO₃, then brine. The organic layer was dried over sodium sulfate and concentrated. The crude product was purified with flash column chromatography eluted with 5% methanol in dichloromethane. Purity, 97% by HPLC, LC-MS: Rf= 1.98, MS: m/z, 446 (M + 1), 468 (M + 23); ¹HNMR (CD₃OD, 400 MHz) δ (ppm) 7.4 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 1H), 7.02 $(d, J = 8.4 \text{ Hz}, 1\text{H}), 6.85 (d, J = 8.4 \text{ Hz}, 2\text{H}), 6.5 (m, 2\text{H}), 6.35 (dd, {}^{1}J = 8.4 \text{ Hz}, {}^{2}J = 2 \text{ Hz}, 1\text{H}),$ 6.15 (d, J = 2 Hz, 1H), 6.05 (s, 1H), 4.6 (m, 2H), 4.25 (t, J = 4 Hz, 2H), 3.5 (t, J = 4 Hz, 2H), 3.3 (m, 2H), 2.9 (s, 6H). HRMS, m/z calcd for C₂₇H₂₇NO₅ (M+) 445.5070, found 445.5997

The racemic compound **1b** was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 80% IPA and 20% Hexanes at the 150 mL/min flow rate. The two peaks were collected to yield the tow enantiomers as follows: **1b**-(*R*) as peak Peak 1; $[\alpha] = +$ 66°, (c = 0.402, MeOH) and **1b**-(*S*) as peak 2; $[\alpha] = -65^{\circ}$, (c = 0.5, MeOH)

Preparation of 5-[4-(2-Diisopropylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol (1c): Following the procedure described for 1b,lactal 14a (1.5 g, 2.85 mmol) was reacted in sequence with [2-(4-iodo-phenoxy)-ethyl]diisopropyl-amine HCl and then*HF.Py*to yield 1.1g of the title compound as a pink solid. Purity 97%, LC-MS: Rf=2.4, MS (m/z): MH⁺ (502), MH⁻ (500). ¹H NMR (CDOD₃) δ 1.28 (d, 12H, J = 5.3 Hz), 2.78 (m, 2H), 3.25 (m, 2H), 3.52 (m, 2H), 4.05 (m, 2H), 4.56 (m, 2H), 6.05 ~ 7.35 (m, 11H). HRMS, m/z calcd for C₃₁H₃₅NO₅(M⁺) 501.2515, found 501.2515, Anal Calcd for C, 74.23; H, 7.03; N, 2.79; O, 15.95, found C, 74.19; H, 7.04; N, 2.78;

The racemic 5-[4-(2-Diisopropylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol compound (1.4 g) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 80% IPA and 20% Hexanes at the 150 mL/min flow rate. The two peaks were rcollected to yield the two enantiomers as follows: Peak 1: 5R-(+)-[4-(2-Diisopropylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol, **1c**-(*R*); $[\alpha]_D$ = +43(c=0.112, MeOH), MS (m/z): MH⁺ (502), MH⁻ (500) Peak 2: 5S-(-)-[4-(2-Diisopropylamino-ethoxy)-phenyl]-11,12dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol, **1c**-(*S*) $[\alpha]_D$ = -69(c=0.812, MeOH), MS (m/z): MH⁺ (502), MH⁻ (500)

Preparation of 5-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol (**1d**): Following the procedure as described for **1b**, lactal **14a** (1.5 g,2.85 mmol) was reacted in sequence with 1-[2-(4-iodo-phenoxy)-ethyl]azepane, HCl and then *HF.Py* to yield the title 1.1 g of compound (1d) as a light yellow solid. Purity: 95% by LCMS: Rf 2.13, MS (m/z): MH⁺ (500), MH⁻ (498); ¹H NMR (CDOD₃) δ 1.65 (m, 4H), 1.84 (m, 4H), 2.78 (m, 2H), 3.35 (m, 4H), 3.48 (m, 2H), 4.18 (m, 2H), 4.61 (m, 2H), 6.02 (s, 1H), 6.18 ~ 7.35 (m, 10 H) HRMS, m/z calcd for C₃₁H₃₄NO₅(M+H⁺) Exact Mass: 500.2437, found 500.2444.

The racemic compound 5-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol (1d) (1.1 g) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 50% IPA and 50% Hexanes at the 200 mL/min flow rate. The two peaks were recollected to yield the two enantiomers as follows: Peak 1: 1d-(*R*): $[\alpha]_D = + 33(c=0.11, MeOH)$, MS (m/z): MH⁺ (500), MH⁻ (498) and Peak 2: 5S- (-)-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol **1d**-(*S*). $[\alpha]_D = -39(c=0.51, MeOH)MS (m/z): MH^+ (500), MH^- (498)$

Preparation [4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxaof benzo[3,4]cyclohepta[1,2-a]na phthalene-2,8-diol, 1a: Following the procedure as described for **1b**, lactal **14a** (1.5 g,2.85 mmol) was reacted in sequence with 1-[2-(4-iodo-phenoxy)-ethyl]azepane, HCl and then HF.Py to yield the title 1.2 g of compound 1a(96% pure by HPLC). The racemic compound **1a** (1.1 g) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 80% IPA and 20% Hexanes at the 150 mL/min flow rate. The two peaks were collected to yield the tow enantiomers as follows: Peak 1: 5R-(+)-[4-(2-Piperidin-1yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalene-2,8diol 1a-(R): ¹H NMR (CD3OD) δ 1.46 (m, 2H), 1.59 (m, 4H), 2.55 (m, 4H), 2.72 (M, 2H), 2.81 (m, 2H), 4.02 (t, 2H, J = 5.4 Hz). 4.60 (m, 2H), 6.05 (s, 1H), 6.14 \sim 7.34 (m, 10H). m.p. 147 ~149 °C $[\alpha] = +57$ °, (c = 0.302, MeOH). Anal. cacld. for C30H31NO5.0.95 H2O, C, 71.68; H, 6.60; N, 2.79; Found: C, 71.67; H, 6.52; N, 2.57. MS (m/z): MH+ (486). Peak 2: 5S-(-)-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2a]naphthalene-2,8-diol **1a**-(S): $[\alpha] = -59^{\circ}$, (c = 0.41, MeOH). MS (m/z): MH+ (486). HRMS, m/z calcd for C30H32NO5 (M+H⁺) 486.5788, found 486.5783; Anal Calcd for C31H35NO6 (M+MeOH) C, 71.93; H, 6.82; N, 2.71; O, 18.55, found C, 71.92; H, 6.81; N, 2.72

Preparation of 5-[4-(2-Morpholin-4-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol**1f**: To a solution of 2.0 g 1-[2-(4-iodophenoxy)-ethyl]-piperidine (6.1 mmol) in 20 ml THF at <math>-78 °C was added dropwise 2.5 ml nbutyllithium (2.5 M in hexane). The solution was stirred at -78 °C for 30 min before the solution of 1.05 g lactal **14a** (2.0 mmol) in 5 ml THF was added slowly, stirred for another 30 min after the addition, quenched with aqueous ammonium chloride and extracted with ethyl acetate. The

organic layer was combined and dried over sodium sulfate. After removal of the solvent, the crude product was dissolved in 100 ml toluene and 0.67 ml of 36.5% HCl was added. The solution was stirred for 1 hour and neutralized with 5% NaHCO₃ and extracted with ethyl acetate. The organic layer was combined and dried over sodium sulfate. after concentration, the crude product was dissolved in 20 ml acetonitrile and was added 1 ml 70% HF in pyridine at room temperature. The reaction mixture was stirred overnight and diluted with ethyl acetate and washed with 5% NaHCO₃, then brine. The organic layer was dried over sodium sulfate and concentrated. The crude product was purified with flash column chromatography eluted with 5% methanol in dichloromethane. Aslight yellow solid was yielded (0.90 g, 92%). Purity: 97% by LCMS: R_f=2.682 min, m/z: 488 (M + 1); ¹HNMR (DMSO-d₆, 400 MHz) δ (ppm) 9.7 (bs, 1H), 9.55 (bs, 1H), 7.3 (d, J = 8.4 Hz, 2H), 7.2 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 6.8 (d, J= 8.4 Hz, 2H), 6.45 (m, 2H), 6.3 (d, ${}^{1}J$ = 8.4 Hz, ${}^{2}J$ = 2 Hz, 1H), 6.12 (d, J = 2 Hz, 1H), 6.1 (s, 1H), 4.55 (m, 2H), 4.0 (t, J = 8.4 Hz, 2H), 2.9 (m, 8H), 2.7 (m, 2H), 2.6 (t, J = 8.4 Hz, 2H). HRMS, m/z calcd for $C_{29}H_{30}NO_6$ (M+H⁺) 488.2073, found 488.2079 The racemic compound 1f (0.9 g) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 80% IPA and 20% Hexanes at the 150 mL/min flow rate. The two peaks were collected to yield the two enantiomers as follows: 1f-(R) as peak one $[\alpha] = +27^{\circ}$, (c = 0.304, MeOH) and **1f-**(*S*) as peak two $[\alpha] = -28^{\circ}$, (c = 0.41, MeOH)

Preparation of 5-[4-(2-Pyrrolidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol,**1e**: To a solution of 1.9 g 1-[2-(4-iodophenoxy)-ethyl]- pyrrolidine(6.0 mmol) in 20 ml THF at <math>-78 °C was added dropwise 2.5 ml nbutyllithium (2.5 M in hexane). The solution was stirred at -78 °C for 30 min before the solution of 1.05 g lactal **14a** (2.0 mmol) in 5 ml THF was added slowly. The reactin mixture was stirred for another 30 min after the addition and then quenched with aqueous ammonium chloride and extracted with ethyl acetate. The organic layer was combined and dried over sodium sulfate. After removal of the solvent the crude product was dissolved into 100 ml toluene and 0.67 ml of 36.5% HCl was added. The solution was stirred for 1 hour and neutralized with 5% NaHCO₃ and extracted with ethyl acetate. The organic layer was dried over sodium sulfate. after removal of the solvent, the crude product was dissolved in 20 ml acetonitrile and was added 1 ml of 70% HF in pyridine at room temperature. The reaction mixture was stirred overnight and diluted with ethyl acetate and washed with 5% NaHCO₃, then brine. The organic layer was dried over sodium sulfate and concentrated. The crude product was purified with flash column chromatography eluted with 5% Methanol in dichloromethane. 0.90 g slight yellow solid was yielded (95% Pure). LCMS: Rf = 2.701 min, >97%, m/z: 472 (M + 1); ¹H NMR (CD₃OD) δ 1.46 (m, 2H), 1.54 (m, 2H), 2.55 (m, 4H), 2.72 (M, 2H), 2.79 (m, 2H), 4.04 (t, 2H, J = 5.4 Hz). 4.60 (m, 2H), 6.15 (s, 1H), 6.14 ~ 7.34 (m, 10H). HRMS, m/z calcd for C₂₉H₃₀NO₅ 472.2124, found 472.2119. The racemic compound **1e** (0.9 g) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 80% IPA and 20% Hexanes at the 150 mL/min flow rate. The two peaks were collected to yield the tow enantiomers as follows: **1e**-(*R*) as peak one [α] = + 29 °, (c = 0.41, MeOH) and **1e**-(*S*) as peak one [α] = - 31 °, (c = 0.21, MeOH)

Preparation 5-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxaof benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, 3d: Following the procedure described for 2b, Lactal 14b was reacted with 1-[2-(4-iodo-phenoxy)-ethyl]-piperidine (Scheme 2, X₂=H, Y₂=OTBS, NR₂= -NC₅H₁₀^c) to yield 2-(8-(tert-Butyl-dimethyl-silanyloxy)-5-{hydroxy-[4-(2piperidin-1-yl-ethoxy)-phenyl]-methyl}-2,3-dihydro-benzo[b]oxepin-4-yl)-phenol 16d, which was then treated with HCl (12N, 4 eq., 0.67 mL) in toluene (100 mL) to yield 1-(2-{4-[2-(tert-Butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2a]naphthalen-5-yl]-phenoxy}-ethyl)-piperidine as a crude oil. The crude unsubstituted piperidine was then treated with HF • Pyridine (70% HF, 30% Py, 0.5 mL) in CH₃CN (20 mL) at room temperature for 30 min. The reaction mixture was diluted with ethyl acetate: THF (1:1) and then washed with 5% NaHCO₃ and brine. The reaction mixture was dried, concentrated and purified by flash chromatograph eluted with 5% MeOH in DCM to yield the title compound as a slightly yellow solid. Purity 95% by LC-MS: Rf=2.1, MS (m/z): MH⁺ (470). ¹H NMR (Acetone- d_6) δ 1.35 (m, 2H), 1.49 (m, 4H), 2.42 (br s, 4H), 2.64 (m, 2H), 2.71 ~ 2.98 (m, 3H), 3.91 (m, 2H), $4.59 \sim 4.74$ (m, 2H), 6.21 (s, 1H), $6.55 \sim 7.45$ (m, 11H), ¹H NMR (DMSO-d6) δ 1.36 (m, 6H), 2.28 ~ 2.59 (m, 6H), 2.65 (m, 1H), 2.89 (m, 1H), 3.91 (t, 2H, J = 6.6 Hz), 4.59 (m, 2H), 6.16 ~ 7.38 (m, 12H), 9.65 (s, 1H) HRMS, m/z calcd for C₃₀H₃₁NO₄ 469.2253, found 469.2249.

The racemic 5-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol **3d** compound (800 mg) was loaded was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 100% IPA at the 150 mL/min flow rate. The two peaks were collected to yield the enantiomers as follows: Peak 1: 5R-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol as **3d**-(R): MS (m/z): MH⁺ (470); $[\alpha]D = +39$ (c = 0.23, MeOH) and Peak 2: 5S-(+)-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, **3d**-(S): MS (m/z): MH⁺ (470); $[\alpha]D = -37$ (c = 0.43, MeOH)

Preparation of 5-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, 3c: Following the procedure described for 1b, the lactal 14 (1.89 g, 2.0 mmol) was reacted with 1-[2-(4-Iodo-phenoxy)-ethyl]-azepane to yield the 950 mg of title compound **3c** as a yellow solid, Purity 97% by LC-MS, Rf= 3.1, MS (m/z): MH^+ (484) ¹H NMR (Acetone- d_6) δ 1.54 (m, 8H), 2.58 ~2.95 (m, 8H), 3.95 (m, 2H), 4.59 ~ 4.74 (m, 2H), 6.21 (s, 1H), 6.51 ~ 7.45 (m, 11H); ¹H NMR (DMSO- d_6) δ 1.51 (broad s, 8H), 2.45 (broad m, 4H), 2.70 (broad m, 2H), 3.22 (broad s, 2H), 3.91 (t, 2H, J = 6.6 Hz), 4.56 (m, 2H), 6.15 (s, 1H), $6.39 \sim 7.36$ (m, 11H), 9.67 (s, 1H) HRMS m/z calcd for C₃₁H₃₃NO₄(M+) 483.2410, found 483.2415. The racemic 5-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol compound (950 mg) was loaded was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 100% IPA at the 150 mL/min flow rate. The two peaks were collected to yield the enantiomers as follows: Peak 2: 5S-(-)-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol 3c-(S) [α]_D= -28(c=0.12, MeOH); MS (m/z): MH⁺

(484) and Peak 1: 5R-(+)-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, 3c-(R), $[\alpha]_D$ = +38 (c=0.25, MeOH). MH⁺ (484).

Preparation of 5-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, **3a:** Following the procedure described for **1b**, lactal **14b** was reacted in sequence with [2-(4-iodo-phenoxy)-ethyl]-dimethyl-amine HCl and then *HF.Py* to yield the title compound as a yellow solid. Purity 96% by LC-MS, Rf= 2.93, MS (m/z): MH⁺ (430); ¹H NMR (CDCl₃) δ 2.28 (s, 6H), 2.72 (m, 2H), 2.82 (m, 2H), 3.95 (m, 2H), 4.59 (m, 2H), 6.02 (s, 1H), 6.41 ~ 7.29 (m, 11H); ¹H NMR (DMSO-d6) δ 2.13 (s, 6H), 2.43 ~ 2.92 (m, 4H), 3.95 (t, 2H, J = 6.6 Hz), 4.59 (m, 2H), 6.15 (s, 1H), 6.38 ~ 7.39 (m, 11H), 9.69 (s, 1H). HRMS m/z calcd for C₂₇H₂₈NO₄ (M+H⁺) 430.2018, found 430.1998

The racemic 5-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol compound (890 mg) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 20% MeOH and 80% IPA at the 150 mL/min flow rate. The two peaks were collected to yield the enantiomers as follows: Peak 1: 5R-(+)-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol,**3a**-(*R* $): [<math>\alpha$]_D = +38(C=0.3, MeOH) MS (m/z): MH⁺ (430) and Peak 2 as 5S-(-)-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, **3a**-(*S*): [α]_D = -36(C=0.32, MeOH) MS (m/z): MH⁺ (430)

Preparation of 5-[4-(2-Diethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol, **3b:** Following the procedure described for **1b**, lactal **14b** was reacted in sequence with [2-(4-iodo-phenoxy)-ethyl]-diethyl-amine HCl and then *HF.Py* to yield the title compound as a yellow solid. Purity: 96% by LC-MS: Rf 2.41, MS (m/z): MH⁺ (458). ¹H NMR (CDCl₃) δ 1.1(m, 6H) 2.71 (m, 4H), 2.72 (m, 2H), 2.82 (m, 2H), 3.95 (m, 2H), 4.59 (m, 2H), 6.02 (s, 1H), 6.41 ~ 7.29 (m, 11H).; HRMS m/z calcd for C₂₉H₃₂NO₄ 458.2331, found 458.2336. The racemic 5-[4-(2-Diethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol compound (1.1 g) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 20% MeOH and 80% IPA at the 150 mL/min flow rate. The two peaks were collected to yield the enantiomers as follows: Peak 1: 5R-(+)-[4-(2-Diethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, **3b**-(*R*): $[\alpha]_D = +42$ (C=0.3, MeOH) MS (m/z): MH⁺ (458) and Peak 2 as 5S-(-)-[4-(2-Diethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, **3b**-(*S*): $[\alpha]_D = -41$ (C=0.31, MeOH) MS (m/z): MH⁺ (458)

5-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-8-fluoro-11,12-dihydro-5H-6,13-dioxa-Preparation of benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, 3f: The title compound was prepared according to the procedure described for **1b** starting from lactal **14**d (1.1 g). Purity 97% by LC-MS MS (m/z): M+H= 501; ¹H NMR (CDCl₃) δ 1.61 (m, 8H), 2.71 ~ 2.99 (m, 8H), 3.92 (t, 2H, J = 6.6 Hz), 4.66 (m, 2H), 6.08 (s, 1H), 6.46 ~ 7.36 (m, 10H) HRMS m/z calcd for $C_{31}H_{32}FNO_4$ 501.2315 found 501.2326. The racemic 5-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-8-fluoro-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol compound 3f (700 mg) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 80% IPA and 20% Hexanes at the 150 mL/min flow rate. The two peaks were collected to yield the two enantiomers as follows: Peak 1: 5R-(+)-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-8-fluoro-11,12dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, 3f-(R): $[\alpha]D=$ +24.2(c=0.305, MeOH) MS (m/z): M+H=501 and Peak 2: 5S-(-)-[4-(2-Azepan-1-yl-ethoxy)phenyl]-8-fluoro-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, 3f-(S): $[\alpha]D = -28.2(c=0.5, MeOH), MS (m/z): M+H=501.$

Preparation of 5-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **4a**:

Following the same three-step sequence described for preparation of **1b**, lactal **14c** was reacted in sequence with [2-(4-Iodo-phenoxy)-ethyl]-dimethyl-amine HCl and then *HF.Py* to yield the title compound as a **4a** as brown solid, Purity 97%, MS (m/z): MH⁺ (430) ¹H NMR (DMSO-d6) δ 2.12 (s, 6H), 2.49 ~ 2.90 (m, 4H), 3.95 (t, 2H, J = 6.6 Hz), 4.61 (m, 2H), 6.09 ~ 7.23 (m, 11H), 9.54 (s, 1H) HRMS m/z calcd for C₂₇H₂₈NO₄ (M+H⁺) 430.2018, found 430.1998

The racemic 5-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **4a**, compound (800 mg) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 100% IPA at the 150 mL/min flow rate. The two peaks were collected to yield the two enantiomers as follows:

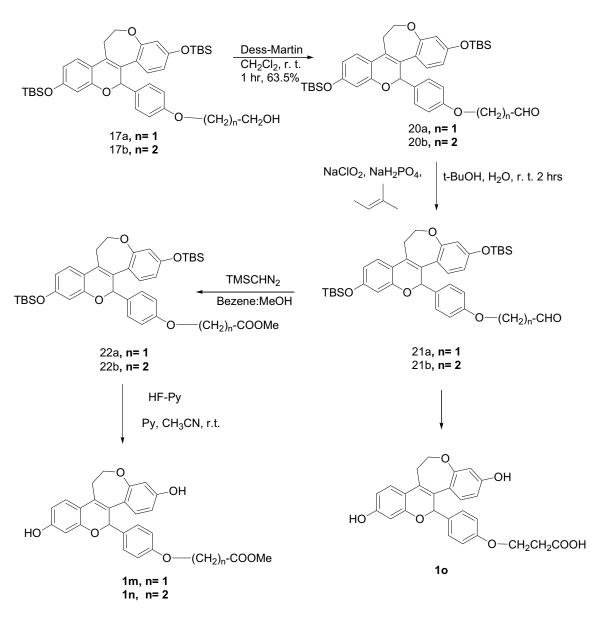
Peak 1: 5R-(+)-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa benzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol,**4a** $-(R): <math>[\alpha]_D = +42(c= 0.34, MeOH)$. MS (m/z): MH⁺ (430) and Peak 2: 5S-(-)-[4-(2-Dimethylamino-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa benzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **4a**-(S): $[\alpha]_D = -42(c= 0.34, MeOH)$, MS (m/z): MH⁺ (430)

5-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **4b**:

Following the same three-step sequence described for preparation of **1b**, lactal **14c** was reacted in sequence with 1-[2-(4-iodo-phenoxy)-ethyl]-azepane, HCl and then *HF.Py* to yield the title compound **4b** as a yellow solid. Purity: 95% by LC-MS: Rf= 2.9, MS (m/z) =483.¹ H NMR (Acetone- d_6) $\delta \delta 1.54$ (m, 8H), 2.68 ~2.95 (m, 8H), 3.98 (m, 2H), 4.74 (m, 2H), 6.18 (s, 1H), 6.21 ~ 7.39 (m, 11H). ¹H NMR (DMSO-d6) $\delta 1.55$ (broad s, 8H), 2.68 ~ 2.92 (m, 8H), 3.92 (t, 2H, J = 6.6 Hz), 4.61 (m, 2H), 6.14 ~ 7.38 (m, 12H). 9.56 (s, 1H) HRMS m/z calcd for C₃₁H₃₃NO₄(M+) 483.2410, found 483.2421. The racemic 5-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **4b**, compound (840 mg) was loaded onto a ChiralPak AD chiral HPLC column (5 cm I.D. x 50 cm L) and eluted with 40% MeOH and 60% IPA at the 100 mL/min flow rate. The two peaks were collected to yield the two enantiomers: Peak 1: 5R-(+)-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **4b**-(*R*) $[\alpha]D=+37(c=0.11, MeOH)$ MS (m/z): MH⁺ (483) and Peak 2: 5S-(-)-[4-(2-Azepan-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **4b**-(*S*). $[\alpha]D=-39(c=0.51, MeOH)$. MS (m/z): MH⁺ (483)

5-[4-(3-Hydroxy-propoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-

a]naphthal ene-2,8-diol, 11: 1.28 g tert-Butyl-[3-(4-iodo-phenoxy)-propoxy]-dimethyl-silane (3.26 mmol) was dissolved into 10 ml THF and cooled to $-78 \text{ }^{\circ}\text{C}$ before the slow addition of 1.2 ml 2.5 M n-butyllithium in hexane (3 mmol). After 1 hour the lactol, 14a (400 mg) in 5 ml THF was added slowly into the solution. The reaction mixture was stirred for another 30 min quenched with aqueous ammonium chloride, extracted with ethyl acetate and dried over sodium sulfate. The crude material was dissolved into 40 ml toluene and cooled to 0 °C, 0.15 ml TFA (2 mmol) was added and the reaction was kept at 0 °C for 1 hour. The reaction mixture was transferred into a separation funnel and washed with 5% aqueous sodium bicarbonate and brine in sequence. The organic layer was dried over sodium sulfate and concentrated. The crude material was dissolved in 10 ml THF and 4 ml 1.0 M tetrabutyl ammonium fluoride in THF (4 mmol) was added slowly. The solution was stirred at room temperature for 1 hour and worked up by washing with brine. The organic layer was dried over sodium sulfate and concentrated. Flash column chromatography yield a slight orange solid 260 mg, 60% of 11. ¹HNMR (CD₃OD, 300 MHz) δ (ppm) 7.3 (d, J = 9 Hz, 2H), 7.15 (d, J = 9 Hz, 1H), 7.0 (d, J = 9 Hz, 1H), 6.75 (d, J = 9Hz, 2H), 6.5 (m, 2H), 6.35 (dd, ${}^{1}J = 9$ Hz, ${}^{2}J = 2$ Hz, 1H), 6.2 (d, J = 2 Hz, 1H), 6.0 (s, 1H), 4.6 (m, 2H), 3.95 (t, J = 6 Hz, 2H), 3.7 (t, J = 6 Hz, 2H), 2.8 (m, 2H), HPLC (Luna, 5 μ C18 (2), Acetonitrile-water with 0.05% TFA) RT = 5.749, over 97% pure. HRMS m/z calcd for C26H24O6 432.1573, found 432.1567


Preparation of 5-[4-(2-Hydroxy-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol, 1k: tert-Butyl-[3-(4-iodo-phenoxy)ethanoxy]-dimethyl-silane (10.87 g, 30 mmol) was dissolved in 100 ml THF and cooled to -78 ^oC before the slow addition of 12 ml 2.5 M *n*-butyllithium in hexane (30 mmol). After 1 hour the lactol in 20 ml THF was added slowly into the solution, stirred for another 30 min, quenched with aqueous ammonium chloride, extracted with ethyl acetate and dried over sodium sulfateafter removal of the solvent, the crude material was dissolved in 200 ml toluene and cooled to 0 °C, 0.77 ml TFA (30 mmol) was added. The reaction mixture was kept at 0 °C for 1 hour and transferred into a separation funnel and washed with 5% aqueous sodium bicarbonate and brine in sequence. The organic layer was dried over sodium sulfate and concentrated. The crude material was dissolved into 100 ml THF and 30 ml 1.0 M tetrabutyl ammonium fluoride in THF (30 mmol) was added slowly. The solution was stirred at room temperature for 1 hour and worked up by washing with brine. The organic layer was dried over sodium sulfate and concentrated. Flash column chromatography yield slight pink crystals 2.3 mg, 55%. ¹HNMR (DMSO-*d*₆, 400 MHz) δ (ppm) 9.6 (s, 1H), 9.45 (s, 1H), 7.3 (d, *J* = 9 Hz, 2H), 7.2 (d, *J* = 9 Hz, 1H), 7.05 (d, J = 9 Hz, 1H), 6.8 (d, J = 9 Hz, 2H), 6.45 (m, 2H), 6.3 (dd, ${}^{1}J = 9$ Hz, ${}^{2}J = 2$ Hz, 1H), 6.1 (m, 2H), 4.8 (t, J = 6 Hz, 1H), 4.45 (m, 2H), 3.9 (t, J = 6 Hz, 2H), 3.7 (m, 2H), 2.8 (m, 2H), MS: 783.3 (M + 23), 761.3 (M + 1). HPLC (Luna, 5 µ C18 (2), Acetonitrile-water with 0.05% TFA) RT = 5.749, over 97% pure. HRMS m/z calcd for $C_{25}H_{22}O_6$ 418.1416 found 418.1434.

2-{4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxa-

benzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy}-ethanol **17a**: 2-(4-Iodo-phenoxy)ethanol (20 g , 75.8 mmol) was dissolved into 200 ml THF at -10 °C before the slowly addition of 152 ml 1 M *iso*-propylmagnesium bromide in THF (152 mmol). The reaction was allowed to warm to room temperature. After 30 minutes 8 g (15.2 mmol) of lactol **14a** in 20 ml THF was added slowly into the solution. After stirring for another 30 min the reaction was quenched with aqueous ammonium chloride, extracted with ethyl acetate, dried over sodium sulfate and concentrated. The crude material was dissolved in 300 ml toluene and cooled to 0 °C. TFA (1.17 ml , 15.2 mmol) was added and the reaction was kept at 0 °C for 1 hour. The reaction mixture was transferred into a separation funnel and washed with 5% aqueous sodium bicarbonate and brine in sequence. The organic layer was dried over sodium sulfate and concentrated. Flash column chromatography yielded white crystals 5.61 mg (57%) of **17a**. Chiral separation on preparation HPLC yielded eluted with 10% iso-propanol in hexane 2.4 g and 2.2 g of each enantiomers as pink crystals.

¹HNMR (CDCl₃, 300 MHz) δ (ppm) 7.38 (d, J = 9 Hz, 2H), 7.1 (d, J = 9 Hz, 1H), 7.0 (d, J = 9 Hz, 1H), 6.9 (d, J = 9 Hz, 2H), 6.6 (d, J = 2 Hz, 1H), 6.5 (dd, ¹J = 9 Hz, ²J = 2 Hz, 1H), 6.4 (dd, ¹J = 9 Hz, ²J = 2 Hz, 1H), 6.3 (d, J = 2 Hz, 1H), 6.0 (s, 1H), 4.7 (t, J = 6 Hz, 2H), 4.0 (t, J = 6 Hz, 2H), 3.9 (m, 2H), 2.85 (t, J = 6 Hz, 2H), 1.96 (t J = 6 Hz, 1H), 0.97 (s, 9H), 0.94 (s, 9H), 0.2 (s, 6H), 0.16 (s, 6H); MS: 669 (M + 23), 647 (M + 1); HPLC: RT = 5.101, >99% pure; Anal Calcd for C₃₇H₅₀O₆Si₂: C, 68.69; H, 7.79, Si: 8.68. Found: C: 68.47, H: 7.67, Si: 9.32; Peak 1 as 17-(R): $[\alpha]_D$ (CHCl₃, c = 0.30) = + 33.5° and Peak 2 as 17a-(S): $[\alpha]_D$ (CHCl₃, c = 0.36) = - 33.5°;

Scheme 4a

Preparation of {4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy} acetaldehyde, **20a**: The alcohol **17a** (158 mg , 0.244 mmol) and Dess-Martin reagent (114 mg , 0.268 mmol) were dissolved in 3 ml of dichloromethane. The solution was stirred at room temperature for one hour, and then worked up by washing continuously with 5% sodium bicarbonate and brine. The organic layer was dried over anhydrous sodium sulfate and concentrated. Flash column chromatography on silica gel eluted with 30% ethyl acetate in hexane yield a slight yellow solid 100 mg (63.5%) of **20a**.

¹HNMR (CDCl₃, 300 MHz) δ (ppm) 9.8 (s, 1H), 7.4 (d, J = 9 Hz, 2H), 7.1 (d, J = 9 Hz, 1H), 7.0 (d, J = 9 Hz, 1H), 6.75 (d, J = 9 Hz, 2H), 6.6 (d, J = 2 Hz, 1H), 6.55 (dd, ¹J = 9 Hz, ²J = 2 Hz, 1H), 6.4 (dd, ¹J = 9 Hz, ²J = 2 Hz, 2H), 6.3 (d, J = 2 Hz, 1H), 6.05 (s, 1H), 4.65 (t, J = 6 Hz, 2H), 4.5 (s, 2H), 2.95 (t, J = 6 Hz, 2H), 1.0 (s, 9H), 0.95 (s, 9H), 0.25 (s, 6H), 0.15 (s, 6H). MS: 645 (M + 1), 677 (M + 23). HRMS m/z calcd for C₃₇H₄₈O₆Si₂ 644.2989 found 644.2911

{4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxa-

benzo[3,4]cyclohepta[1, 2-a]naphthalen-5-yl]-phenoxy}-acetic acid: **21a**: To a solution of sodium dihydrogen phosphate (680 mg , 5.67 mmol) in 6.8 ml water was added 16.7 ml of *t*-butyl alcohol and 5.2 ml of 2-methyl-2-butene. Aldehyde **20a** (524 mg , 0.81 mmol) was dissolved in the solution and sodium chlorite (670 mg , 7.4 mmol) was added slowly. The mixture was stirred at room temperature for 2 hours, worked up by washing with aqueous sodium hydrogensulfite, 0.1 N HCl, and brine in sequence. The organic layer was dried over anhydrous sodium sulfate and concentrated. The crude product was used for the next step without purification. MS: 661.2 (M + 1).

Preparation of {4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy}-acetic acid methyl ester, **22a**: The crude acid, **21a**, was dissolved into a mixture of 7 ml of benzene and 2 ml of methanol at room temperature followed by the addition of 1 ml of 2 M TMSCHN₂ in hexane. after concentration of the solvent flash column chromatography yielded 371 mg **22a** as a colorless oil (68% for two steps). ¹HNMR (CDCl₃, 300 MHz) δ (ppm) 7.4 (d, *J* = 9 Hz, 2H), 7.1 (d, *J* = 9 Hz, 1H), 7.0 (d, *J* = 9 Hz, 1H), 6.75 (d, *J* = 9 Hz, 2H), 6.6 (d, *J* = 2 Hz, 1H), 6.55 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 2H), 6.3 (d, *J* = 2 Hz, 1H), 6.05 (s, 1H), 4.65 (t, *J* = 6 Hz, 2H), 4.5 (s, 2H), 3.75 (s, 3H), 2.95 (t, *J* = 6 Hz, 2H), 1.0 (s, 9H), 0.95 (s, 9H), 0.25 (s, 6H), 0.15 (s, 6H). MS: 697 (M + 23), 675 (M + 1). HPLC: Rf = 5.182, >99% HRMS m/z calcd for C₃₈H₅₀O₇Si₂ 674.3095 found: 674.2998

Preparation of [4-(2,8-Dihydroxy-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2a]naphthalen-5-yl)-phenoxy]-acetic acid methyl ester **1m**: di-TBS methyl ester **22a** (371 mg, 0.55 mmol) was dissolved into a mixture of 1 ml pyridine and 5 ml of acetonitrile at room temperature. 0.5 ml of 70% hydrogen fluoride in pyridine was added and stirred overnight. The reaction mixture was diluted with ethyl acetate and washed with 5% aqueous sodium bicarbonate and brine. The organic layer was dried over anhydrous sodium sulfate and concentrated. Flash column chromatography on silica gel eluted with 50 to 100% ethyl acetate in hexane yielded **1m** asa solid (223 mg , 91%). ¹HNMR (DMSO-*d*₆, 300 MHz) δ (ppm) 9.5 (s, 1H), 9.36 (s, 1H), 7.2 (d, *J* = 9 Hz, 2H), 7.07 (d, *J* = 9 Hz, 1H), 6.95 (d, *J* = 9 Hz, 1H), 6.67 (d, *J* = 9 Hz, 2H), 6.35 (m, 2H), 6.2 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.0 (d, *J* = 2 Hz, 2H), 4.6 (s, 2H), 4.4 (m, 2H), 3.55 (s, 3H), 2.6 (m, 2H). MS: 469 (M + 23). HPLC: RT = 3.039, >97% pure HRMS m/z calcd for C₂₆H₂₂O₇ (M+H⁺) 446.1366, found: 446.1368

3-{4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxa-

benzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy}-propan-1-ol, **17b**: 3-(4-Iodo-phenoxy)propanol (2.78 g , 10 mmol) was dissolved into 20 ml THF at room temperature before the slow addition of 20 ml 1 M iso-propylmagnesium bromide in THF (20 mmol). After 30 min the lactol (1.05 g, 2 mmol) in 5 ml THF was added slowly into the solution. The mixture was stirred for another 30 min the reaction was guenched with aqueous ammonium chloride, extracted with ethyl acetate, dried over sodium sulfate and concentrated. The crude material was dissolved into 40 ml toluene and cooled to 0 °C. 0.15 ml TFA (2 mmol) was added and the reaction was kept at 0 °C for 1 hour. The reaction mixture was transferred into a separation funnel and washed with 5% aqueous sodium bicarbonate and brine in sequence. The organic layer was dried over sodium sulfate and concentrated. Flash column chromatography yield white crystals 610 mg, (46% for two steps). Chiral separation on preparation HPLC eluted with 10% iso-propanol in hexane gave each enantiomers 17b-(R) as peak 1 and 17b-(S) as peak 2. ¹HNMR (CDCl₃, 300 MHz) δ (ppm) 7.38 (d, J = 9 Hz, 2H), 7.1 (d, J = 9 Hz, 1H), 7.0 (d, J = 9 Hz, 1H), 6.9 (d, J = 9 Hz, 2H), 6.6 (d, J = 9 J = 2 Hz, 1H), 6.5 (dd, ${}^{1}J = 9$ Hz, ${}^{2}J = 2$ Hz, 1H), 6.4 (dd, ${}^{1}J = 9$ Hz, ${}^{2}J = 2$ Hz, 1H), 6.3 (d, J = 2Hz, 1H), 6.0 (s, 1H), 4.66 (t, J = 6 Hz, 2H), 4.05 (t, J = 6 Hz, 2H), 3.8 (m, 2H), 2.87 (t, J = 6 Hz, 2H), 4.05 (t, J = 6 Hz, 2H), 4.05 (t, J = 6 Hz, 2H), 5.8 (2H), 2.0 (m, 2H), 1.7 (t, J = 6 Hz, 1H), 0.97 (s, 9H), 0.94 (s, 9H), 0.2 (s, 6H), 0.16 (s, 6H);

MS: 683 (M + 23), 661 (M + 1); HPLC: RT = 5.101, >97% pure Anal Calcd for $C_{38}H_{52}O_6Si_2$: C, 69.05; H, 7.93, Si: 8.50. Found: C: 68.68, H: 8.00; Si: 8.90; Peak 1 [α]_D (CHCl₃, c = 0.36) = + 29.5°; Peak 2 [α]_D (CHCl₃, c = 0.36) = - 29.5°

Preparation of 3-{4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy}-propionaldehyde, **20b**: To the flask with 560 mg of the starting alcohol **17b** (0.847 mmol), 539 mg Dess-Martin reagent (1.27 mmol) and 142 mg sodium bicarbonate (1.69 mmol) were added 10 ml of dichloromethane. The solution was stirred at room temperature for one hour, and then worked up by washing continuously with 5% sodium bicarbonate and brine. The organic layer was dried over anhydrous sodium sulfate and concentrated. Flash column chromatography on silica gel eluted with 30% ethyl acetate in hexane yield slight yellow solid 384 mg (69%) of **20b**. ¹HNMR (CDCl₃, 300 MHz) δ (ppm) 9.8 (s, 1H), 7.4 (d, *J* = 9 Hz, 2H), 7.1 (d, *J* = 9 Hz, 1H), 7.0 (d, *J* = 9 Hz, 1H), 6.75 (d, *J* = 9 Hz, 2H), 6.6 (d, *J* = 2 Hz, 1H), 6.55 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 2H), 6.3 (d, *J* = 2 Hz, 1H), 6.05 (s, 1H), 4.65 (t, *J* = 6 Hz, 2H), 4.2 (t, *J* = 6 Hz, 2H), 2.8 (m, 4H), 0.97 (s, 9H), 0.92 (s, 9H), 0.20 (s, 6H), 0.10 (s, 6H).

Preparation of 3-{4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy}-propionic acid, **21b**: To a solution of 487 mg sodium dihydrogen phosphate (4.06 mmol) in 4.8 ml water was added 12 ml *t*-butyl alcohol and 4 ml 2-methyl-2-butene. Aldehyde **20b** (384 mg , 0.58 mmol) was dissolved in the solution and 477 mg sodium chlorite (5.2 mmol) was added slowly. The mixture was stirred at room temperature for 2 hoursand worked up by washing with aqueous sodium hydrogensulfite, 0.1 N HCl, and brine in sequence. The organic layer was dried over anhydrous sodium sulfate and concentrated. Flash column chromatography on silica gel eluted with 20-80% ethyl acetate in hexane yielded 359 mg slight pink solid (92%) of **21b**. ¹HNMR (DMSO-*d*₆, 300 MHz) δ (ppm) 12.3(s, 1H), 7.3 (m, 3H), 7.1 (d, *J* = 9 Hz, 1H), 6.8 (d, *J* = 9 Hz, 2H), 6.6 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.55(d, *J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.2 (d, *J* = 2 Hz, 2H), 4.57 (m, 2H), 4.07 (t, *J* = 6 Hz, 2H), 2.9-2.7 (m, 2H), 2.6 (t, *J* = 6 Hz, 2H), 0.93 (s, 9H), 0.90 (s, 9H), 0.18 (s, 6H), 0.14 (s, 6H); HPLC: 4.987 min, >95% pure; MS: 675 (M + 1); Anal Calcd for $C_{38}H_{50}O_7Si_2$: C, 67.62; H, 7.47; Si, 8.32. Found: C: 67.05, H: 7.49; Si: 8.29; HRMS m/z calcd for $C_{38}H_{50}O_7Si_2$ 674.3095, found 674.3112

Preparation of 3-{4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy}-propionic acid methyl ester, **22b**: 187 mg of the acid (0.277 mmol) was dissolved into a mixture of 3.5 ml of benzene and 1 ml of methanol at room temperature followed by the addition of 0.21 ml of 2 M TMSCHN₂ in hexane. Concentrated and purified by flash column chromatography. ¹HNMR (CDCl₃, 300 MHz) δ (ppm) 7.4 (d, *J* = 9 Hz, 2H), 7.1 (d, *J* = 9 Hz, 1H), 7.0 (d, *J* = 9 Hz, 1H), 6.75 (d, *J* = 9 Hz, 2H), 6.6 (d, *J* = 2 Hz, 1H), 6.55 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 2H), 6.3 (d, *J* = 2 Hz, 1H), 6.05 (s, 1H), 4.65 (t, *J* = 6 Hz, 2H), 4.17 (t, *J* = 6 Hz, 2H), 3.69 (s, 3H), 2.86 (t, *J* = 6 Hz, 2H), 2.75 (t, *J* = 6 Hz, 2H), 0.97 (s, 9H), 0.93 (s, 9H), 0.20 (s, 6H), 0.16 (s, 6H); MS: 711 (M + 23), 689 (M + 1); HPLC: RT = 5.280, >97% pure. HRMS m/z calcd for C39H53O7Si2: 689.3330 found 689.3328.

3-[4-(2,8-Dihydroxy-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-5yl)-phenoxy]-propionic acid, **1o**: 90 mg of the starting di-TBS acid (0.13 mmol) was dissolved into a mixture of 0.4 ml pyridine and 2 ml of acetonitrile at room temperature. 0.2 ml of 70% hydrogen fluoride in pyridine was added and stirred overnight. Diluted with ethyl acetate-THF (1:1) and washed with 5% aqueous sodium bicarbonate and brine. The organic layer was dried over anhydrous sodium sulfate and concentrate. Flash column chromatography on silica gel eluted with 10% methanol in dichloromethane yielded 57 mg of slight pink solid (98%). ¹HNMR (Acetone-*d*₆, 300 MHz) δ (ppm) 9 (bs, 1H), 7.4 (d, *J* = 9 Hz, 2H), 7.25 (d, *J* = 9 Hz, 1H), 7.1 (d, *J* = 9 Hz, 1H), 6.86 (d, *J* = 9 Hz, 2H), 6.58 (m, 2H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.27 (d, *J* = 2 Hz, 1H), 6.1 (s, 1H), 4.65 (m, 2H), 4.2 (t, *J* = 6 Hz, 2H), 2.9 (m, 2H), 2.75 (t, *J* = 6 Hz, 2H); MS: 469 (M + 23), 447 (M + 1); HPLC: RT = 2.891, >97% pure. HRMS m/z calcd for C26H23O7: 447.1444, found 447.14443. 1-(2-{4-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxa-

benzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy}-ethyl)-pyrrolidine-2,5-dione, **19i**: In a flask 49.5 mg succinimide (0.5 mmol) and 131.2 mg triphenylphosphine (0.5 mmol) were dissolved into 5 ml THF. The starting alcohol **17b-(S)** (323 mg, 0.5 mmol) in 1 ml THF and 0.079 ml DEAD in 1 ml THF were added into the flask at the same rate by syringes. The reaction was stirred overnight at room temperature. After concentration of the solvent, flash column chromatography gave a white powder of **19i-**(*S*) (0.28 g ,77%). ¹HNMR (CDCl₃, 400 MHz) δ (ppm) 7.3 (d, *J* = 9 Hz, 2H), 7.1 (d, *J* = 9 Hz, 1H), 7.0 (d, *J* = 9 Hz, 1H), 6.9 (d, *J* = 9 Hz, 2H), 6.6 (d, *J* = 2 Hz, 1H), 6.5 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.3 (d, *J* = 2 Hz, 1H), 6.0 (s, 1H), 4.64 (t, *J* = 6 Hz, 2H), 4.1 (t, *J* = 6 Hz, 2H), 3.5 (m, 2H), 2.85 (t, *J* = 6 Hz, 2H), 2.43 (m, 4H), 0.96 (s, 9H), 0.93 (s, 9H), 0.19 (s, 6H), 0.15 (s, 6H); MS: 727 (M + 23); [α]_D (CHCl₃, c = 0.32) = -35.5°; HRMS m/z calcd C₄₁H₅₄NO₇Si₂ (M+H⁺): 728.3439 found: 728.3440

1-{2-[4-(2,8-Dihydroxy-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-5yl)-phenoxy]-ethyl}-pyrrolidine-2,5-dione, **1i-(S)**, 220 mg of the **19i-(S)** (0.30 mmol) was dissolved into a mixture of 1 ml pyridine and 10 ml of acetonitrile at room temperature, 0.5 ml of 70% hydrogen fluoride in pyridine was added and stirred overnight. The reaction mixture was diluted with ethyl acetate-THF (1:1) and washed with 5% aqueous sodium bicarbonate and brine. The organic layer was dried over anhydrous sodium sulfate and concentrated. Flash column chromatography on silica gel eluted with 20-100% ethyl acetate in hexane yielded 145 mg of slight pink solid (97%) of **1i**. ¹HNMR (DMSO-*d*₆, 400 MHz) δ (ppm) 9.6 (s, 1H), 9.48 (s, 1H), 7.3 (d, *J* = 9 Hz, 2H), 7.2 (d, *J* = 9 Hz, 1H), 7.05 (d, *J* = 9 Hz, 1H), 6.75 (d, *J* = 9 Hz, 2H), 6.6 (m, 2H), 6.3 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.1 (m, 2H), 4.55 (m, 2H), 4.05 (m, 2H), 3.68 (t, *J* = 6 Hz, 2H), 2.86 (m, 1H), 2.7 (m, 1H) 2.5 (m, 4H); HPLC: RT = 8.861 >95%; HPLC: RT = 3.158 >95%; [α]_D (CHCl₃, c = 0.22) = -35.5°; HRMS m/z calcd C₂₉H₂₆NO₇ (M+H⁺): 500.1709, found: 500.1712

Preparation of 1-{2-[4-(2,8-Dihydroxy-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl)-phenoxy]-ethyl}-pyrrolidine-2,5-dione, **1i**-(*R*): Same procedure as of for 1i-(S) and starting from alcohol **17a**-(R). $[\alpha]_D$ (CHCl₃, c = 0.31) = +35.5°

1-{3-[4-(2,8-Dihydroxy-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-5yl)-phenoxy]-propyl}-pyrrolidine-2,5-dione, **1j**-(*R*): The title compound was prepared according to the procedure described for **1i** starting from alchohol **17b**-(*R*): ¹HNMR (DMSO-*d*₆, 400 MHz) δ (ppm) 9.6 (s, 1H), 9.48 (s, 1H), 7.3 (d, *J* = 9 Hz, 2H), 7.2 (d, *J* = 9 Hz, 1H), 7.05 (d, *J* = 9 Hz, 1H), 6.75 (d, *J* = 9 Hz, 2H), 6.6 (m, 2H), 6.3 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.1 (m, 2H), 4.55 (m, 2H), 4.05 (m, 2H), 3.68 (t, *J* = 6 Hz, 2H), 2.86 (m, 1H), 2.7 (m, 1H) 2.5 (s, 4H); HPLC: RT = 2.905 >97%; HRMS m/z calcd C30H30NO8 (M+H+): 532.1971, found: 532.1973, [α]_D (CHCl₃, c = 0.61) = +25.3°

1-{3-[4-(2,8-Dihydroxy-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-5yl)-phenoxy]-propyl}-pyrrolidine-2,5-dione, **1j**-(*S*): The title compound was prepared according to the procedure described for **1i** starting from alchohol **17b**-(*S*): ¹HNMR (DMSO-*d*₆, 400 MHz) δ (ppm) 9.6 (s, 1H), 9.48 (s, 1H), 7.3 (d, *J* = 9 Hz, 2H), 7.2 (d, *J* = 9 Hz, 1H), 7.05 (d, *J* = 9 Hz, 1H), 6.75 (d, *J* = 9 Hz, 2H), 6.6 (m, 2H), 6.3 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.1 (m, 2H), 4.55 (m, 2H), 3.87 (t, *J* = 6 Hz, 2H), 3.47 (t, *J* = 6 Hz, 2H), 2.86 (m, 1H), 2.7 (m, 1H) 2.56 (s, 4H), 1.85 (m, 2H); HPLC: RT = 3.232 >99%; HRMS m/z calcd C₃₀H₃₀NO₈ (M+H+): 532.1971, found: 532.1969, (CHCl₃, c = 1) = -29.3°.

Preparation of (S)-2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-5-[4-(3-iodo-propoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalene **18b**-(*S*): To the solution of the starting alchol **17b**-(*S*) (370 mg, 0.572 mmol) in 5 ml DMF was added 517 mg (1.14 mmol) of methyltriphenoxyphosphonium iodide at ambient temperature and stirred for 30 minutes, diluted with ethyl acetate and washed with water, and then brine. The organic layer was dried over sodium sulfate and concentrated. 400 mg of white solid was yielded after purification on silica gel eluted with 10% ethyl acetate in hexane (94%). ¹HNMR (CDCl₃, 300 MHz) δ (ppm) 7.38 (d, *J* = 9 Hz, 2H), 7.1 (d, *J* = 9 Hz, 1H), 7.0 (d, *J* = 9 Hz, 1H), 6.9 (d, *J* = 9 Hz, 2H), 6.6 (d, *J* = 2 Hz, 1H), 6.5 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.3 (d, *J* = 2 Hz, 1H), 6.0 (s, 1H), 4.66 (t, *J* = 6 Hz, 2H), 3.96 (t, *J* = 6 Hz, 2H), 3.33 (t, *J* = 6.6 Hz, 2H), 2.85 (m, 2H), 2.2 (m, 2H), 0.98 (s, 9H), 0.95 (s, 9H), 0.21 (s, 6H), 0.17 (s, 6H); MS: 793 (M + 23); 771 (M + 1); HPLC: RT = 5.620, >98% pure, Anal Calcd for $C_{38}H_{51}IO_5Si_2$: C: 59.21, H: 6.67; I: 16.46. Found: C: 59.17, H: 6.67; I: 17.13; $[\alpha]_D$ (CHCl₃, c = 0.36) = +28.7°;

Preparation of (S)-2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-5-[4-(3-iodo-propoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalene **18b**-(*R*): The title compound was prepared according to the procedure described for **18**-(S) sarting from alchohol **17b**-(*R*): $[\alpha]_D$ (CHCl₃, c = 0.39) = -29°;

Preparation of 5-[4-(3-Piperidin-1-yl-propoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol, **1p**-(*S*):

Step 1: To a flask was added the starting iodide **18b**-(*S*) (220 mg ,0.285 mmol), potassium bicarbonate (42.8 mg , 0.428 mmol), 42.3 µl piperidine (0.428 mmol) and 3 ml of acetonitrile. The reaction was kept at 60 °C overnight, diluted with 100 ml ethyl acetate and washed with brine twice, the organic layer was dried over sodium sulfate and concentrated. Flash column chromatography yielded 172 mg white powder (83%). **19p-(S)**: ¹HNMR (CDCl₃, 300 MHz) δ (ppm) 7.38 (d, *J* = 9 Hz, 2H), 7.1 (d, *J* = 9 Hz, 1H), 7.0 (d, *J* = 9 Hz, 1H), 6.9 (d, *J* = 9 Hz, 2H), 6.6 (d, *J* = 2 Hz, 1H), 6.5 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.3 (d, *J* = 2 Hz, 1H), 6.0 (s, 1H), 4.66 (t, *J* = 6 Hz, 2H), 3.96 (t, *J* = 6 Hz, 2H), 2.85 (m, 2H), 2.4 (m, 6H), 1.9 (m, 2H), 1.55 (m, 4H), 1.42 (m, 2H), 0.97 (s, 9H), 0.94 (s, 9H), 0.20 (s, 6H), 0.16 (s, 6H); MS: 728 (M + 1); HPLC: RT = 4.609, >99% pure Anal Calcd for C₄₃H₆₁NO₅Si₂: C, 70.93; H, 8.44; N, 1.92. Found: C: 70.62, H: 8.68; N: 1.82; [α]_D (CHCl₃, c = 0.30) = - 24°;

Step 2: The starting material (150 mg, 0.21 mmol) was dissolved into a mixture of 1 ml pyridine and 3 ml of acetonitrile at room temperature, 0.5 ml of 70% hydrogen fluoride in pyridine was added and stirred overnight, diluted with ethyl acetate-THF (1:1) and washed with 5% aqueous sodium bicarbonate and brine. The organic layer was dried over anhydrous sodium sulfate and concentrated. Flash column chromatography on silica gel eluted with 0-5% methanol in dichloromethane yielded slight pink solid of 1p-(*S*).

¹HNMR (CD₃OD, 300 MHz) δ (ppm) 7.38 (d, J = 9 Hz, 2H), 7.1 (d, J = 9 Hz, 1H), 7.0 (d, J = 9 Hz, 1H), 6.9 (d, J = 9 Hz, 2H), 6.6 (d, J = 2 Hz, 1H), 6.5 (dd, ¹J = 9 Hz, ²J = 2 Hz, 1H), 6.4 (dd, ¹J = 9 Hz, ²J = 2 Hz, 1H), 6.3 (d, J = 2 Hz, 1H), 6.0 (s, 1H), 4.6 (m, 2H), 3.96 (t, J = 6 Hz, 2H), 2.8 (m, 8H), 2.0 (m, 2H), 1.67 (m, 4H), 1.53 (m, 2H); MS: 500 (M + 1); HPLC: RT = 5.226, >97% pure ; HRMS m/z calcd C₃₀H₃₀NO₈ (M+H+): C31H34NO5 (M+H+): 500.2437, found: 500.2539 Anal Calcd for C, 74.53; H, 6.66; N, 2.80; O, 16.01 found C, 74.48; H, 6.85; N, 2.78. $[\alpha]_D$ (MeOH, c = 0.20) = - 14°

Preparation of 5-[4-(3-Piperidin-1-yl-propoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol, **1p**-(*S*): The title compound was prepared according to the procedure described for **1p**-(S) starting from iodide **18b**-(*R*): $[\alpha]_D$ (MeoH, c = 0.24) = + 17°;

Preparation of (R)- 5-[4-(2-Thiomorpholin-4-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol, **1g**-(*R*): The title compound was prepared according to the procedure described for **1p**-(S) starting from iodide **18a**-(*R*): : ¹HNMR (DMSO-*d*₆, 400 MHz) δ (ppm) 9.65 (bs, 1H), 9.53(bs, 1H), 7.25-7.1 (m, 3H), 6.85 (m, 2H), 6.70 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.60 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.45-6.32 (m, 2H), 6.15 (m, 2H), 4.65 (m, 2H), 3.95 (t, *J* = 6 Hz, 2H), 2.75 (m, 1H), 2.76 (m, 5H), 2.65 (t, *J* = 6 Hz, 2H), 2.57 (m, 4H). LCMS: 2.819 min, >97%, m/z: 504 (M + 1); HRMS m/z calcd C29H30NO5S: 504.1845, found 504.1865; Anal Calcd for C, 69.16; H, 5.80; N, 2.78; O, 15.88; S, 6.37 found C, 69.28; H, 5.79; N, 2.79; [α]_D (MeOH, c = 0.24) = + 66°

Preparation of (S)- 5-[4-(2-Thiomorpholin-4-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol, **1g**-(*S*): The title compound was prepared according to the procedure described for **1p**-(S) starting from iodide **18a**-(*S*): $[\alpha]_D$ (CHCl₃, c = 1.1) = -50.5° Preparation of R-5-{4-[2-(4-Methyl-piperazin-1-yl)-ethoxy]-phenyl}-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta [1,2-a]naphthalene-2,8-diol, **1h-(R)**: The title compound was prepared according to the procedure described for **1p**-(S) starting from iodide **18a**-(R) and

¹HNMR (DMSO-*d*₆, 300 MHz) δ (ppm) 9.95 (bs, 1H), 9.83(bs, 1H), 7.65-7.18 (m, 3H), 6.95 (m, 2H), 6.80 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.80 (m, 2H), 6.32 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.15 (m, 2H), 4.55 (m, 2H), 3.95 (t, *J* = 6 Hz, 2H), 2.85 (m, 1H), 2.70 (m, 1H), 2.60 (t, *J* = 6 Hz, 2H), 2.40 (m, 4H), 2.40 (m, 4H)2.15 (s, 3H). LCMS: 2.514 min, >97%, m/z: 501 (M + 1); : $[\alpha]_D$ (MeOH, c = 0.21) = + 66° LCMS: R_f= 2.819 min, >97% pure, , m/z: 501 (M + 1); HRMS m/z calcd for C₃₀H₃₃N₂O₅(M+H+) 501.2389 found : 501.2411.

Preparation of *R*-5-{4-[2-(4-Methyl-piperazin-1-yl)-ethoxy]-phenyl}-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta [1,2-a]naphthalene-2,8-diol, **1h**-(*S*): $[\alpha]_D$ (MeOH, c = 0.61) = - 59°

2-{3-[2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-11,12-dihydro-5H-6,13-dioxa-

benzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy}-ethanol, **23**: 3-(3-Iodo-phenoxy)propanol (6 g , 22.7 mmol) was dissolved into 100 ml THF at room temperature before the slow addition of 45 ml 1 M *iso*-propylmagnesium bromide in THF (20 mmol). After 30 min lactol **14a** (2.37 g, 4.5 mmol) in 30 ml THF was added slowly into the solution. After stirring for another 30 min the reaction was quenched with aqueous ammonium chloride, extracted with ethyl acetate, dried over sodium sulfate and concentrated. The crude material was dissolved into 200 ml toluene and cooled to 0 °C. TFA (0.4 ml , 4.5 mmol) was added and the reaction was kept at 0 °C for 1 hour. The reaction mixture was transferred into a separation funnel and washed with 5% aqueous sodium bicarbonate and brine in sequence. The organic layer was dried over sodium sulfate and concentrated. Flash column chromatography yield white crystals 1.13 g, (77% for two steps) of **23**.

¹HNMR (CDCl₃, 300 MHz) δ (ppm) 7.17-7.0 (m, 5H), 6.75 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.6 (d, *J* = 2 Hz, 1H), 6.55 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.35 (d,

J = 2 Hz, 1H), 6.05 (s, 1H), 4.66 (t, J = 6 Hz, 2H), 4.0 (t, J = 6 Hz, 2H), 3.85 (m, 2H), 2.87 (m, 2H), 2.0 (t, J = 6 Hz, 1H), 0.97 (s, 9H), 0.94 (s, 9H), 0.2 (s, 6H), 0.16 (s, 6H); MS: 647 (M + 1), 669 (M + 23); HPLC: RT = 10.740, Purity > 97% pure, HRMS cacld for C₃₇H₅₁O₆Si₂: 647.3224 found 647.3290.

Chiral separation on preparation HPLC eluted with 10% iso-propanol in hexane gave each enantiomers as crystals. Peak 1 as 23-(R) : $[\alpha]_D$ (CHCl₃, c = 0.30) = + 51°; and Peak 2 as 23-(S); $[\alpha]_D$ (CHCl₃, c = 0.31) = - 51°;

(R)-2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-5-[3-(2-iodo-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalene, **24**-(R): To a solution of the starting material **23**-(*R*) (370 mg, 0.572 mmol) in 5 ml DMF was added (517 mg, 1.14 mmol) of methyltriphenoxyphosphonium iodide at ambient temperature and stirred for 30 minutes, diluted with ethyl acetate and washed with water, and then brine. The organic layer was dried over sodium sulfate and concentrated. Awhite solid was yielded after purification on silica gel eluted with 10% ethyl acetate in hexane (380 mg, 89%). ¹HNMR (CDCl₃, 400 MHz) δ (ppm) 7.15-7.0 (m, 5H), 6.75 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.6 (d, *J* = 2 Hz, 1H), 6.53 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.4 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.3 (d, *J* = 2 Hz, 1H), 6.05 (s, 1H), 4.6 (m, 2H), 4.15 (t, *J* = 6 Hz, 2H), 3.3 (m, 2H), 2.85 (m, 2H), 0.97 (s, 9H), 0.94 (s, 9H), 0.2 (s, 6H), 0.16 (s, 6H); [α]_D (CHCl₃, c = 0.33) = + 53°. HRMS cacld for C₃₇H₅₀IO₅Si₂(M+H⁺): 757.2242, found 757.2199.

(S)-2,8-Bis-(tert-butyl-dimethyl-silanyloxy)-5-[3-(2-iodo-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalene, **24**-(S): $[\alpha]_D$ (CHCl₃, c = 0.31) = -53.5°.

5R-[3-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]na phthalene-2,8-diol, **2a-**(*R*): The title compound was prepared according to the procedure described for **1p**-(S) starting from iodide **24**-(*R*) and piperidine: ¹HNMR (DMSO-*d*₆, 400 MHz) δ (ppm) 9.63(s, 1H), 9.5 (s, 1H), 7.25-7.1 (m, 3H), 6.95 (m, 2H), 6.8 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.5(dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.45 (d, *J* = 2 Hz, 1H), 6.3 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.2 (m, 2H), 4.55 (m, 2H), 4.0 (m, 2H), 2.8 (m, 2H), 2.7 (m, 2H), 2.4 (m, 4H), 1.5 (m, 4H), 1.4 (m, 2H); LCMS: 2.705 min, >97%, m/z: 486 (M + 1). [α]_D (MeOH, c = 0.4) = + 44.8°). HRMS, m/z calcd for C30H32NO5 (M+H⁺) 486.5788, found 486.5793; Anal Calcd for C31H35NO6 (M+MeOH) C, 71.93; H, 6.82; N, 2.71; O, 18.55, found C, 71.96; H, 6.86; N, 2.77

5S-[3-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]na

phthalene-2,8-diol, **2a-(***S*): The title compound was prepared according to the procedure described for **1p-(**S) starting from iodide **24-(***S*) and piperidine: $[\alpha]_D$ (MeOH, c = 0.31) = - 46°

5R-[3-(2-Thiomorpholin-4-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-

benzo[3,4]cyclohepta[1,2-]naphthalene-2,8-diol, **2c**-(*R*): The title compound was prepared according to the procedure described for **1p**-(S) starting from iodide **24**-(*R*) and thiomorpholine: ¹HNMR (DMSO-*d*₆, 400 MHz) δ (ppm) 9.65 (bs, 1H), 9.53(bs, 1H), 7.25-7.1 (m, 3H), 6.95 (m, 2H), 6.80 (dd, ${}^{1}J = 9$ Hz, ${}^{2}J = 2$ Hz, 1H), 6.50 (dd, ${}^{1}J = 9$ Hz, ${}^{2}J = 2$ Hz, 1H), 6.45 (d, J = 2 Hz, 1H), 6.32 (dd, ${}^{1}J = 9$ Hz, ${}^{2}J = 2$ Hz, 1H), 6.15 (m, 2H), 4.65 (m, 2H), 3.95 (t, J = 6 Hz, 2H), 2.85 (m, 1H), 2.70 (m, 5H), 2.65 (t, J = 6 Hz, 2H), 2.57 (m, 4H). LCMS: 2.719 min, Purity >97%, m/z: 504 (M + 1); HRMS m/z calcd C29H30NO5S: 504.1845, found 504.1865; Anal Calcd for C, 69.16; H, 5.80; N, 2.78; O, 15.88; S, 6.37 found C, 69.31; H, 5.77; N, 2.77; [α]_D (MeOH, c = 0.24) = + 56° Preparation of 5S-[3-(2-Thiomorpholin-4-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol,**2c**-(*S*): The title compound was preparedaccording to the procedure described for**1p**-(S) starting from iodide**24**-(*S*) and thiomorpholine: $<math>[\alpha]_D$ (MeOH, c = 0.43) = - 56°

Preparation of $5R-\{3-[2-(4-Methyl-piperazin-1-yl)-ethoxy]-phenyl\}-11,12-dihydro-5H-6,13$ dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol,**2b**-(*R*): The title compound wasprepared according to the procedure described for**1p**-(S) starting from iodide**24**-(*R*) and 1methyl-piperazine: ¹HNMR (DMSO-*d* $₆, 300 MHz) <math>\delta$ (ppm) 9.65 (bs, 1H), 9.53(bs, 1H), 7.25-7.1 (m, 3H), 6.95 (m, 2H), 6.80 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.50 (m, 2H), 6.32 (dd, ¹*J* = 9 Hz, ²*J* = 2 Hz, 1H), 6.15 (m, 2H), 4.55 (m, 2H), 3.95 (t, *J* = 6 Hz, 2H), 2.85 (m, 1H), 2.70 (m, 1H), 2.60 (t, *J* = 6 Hz, 2H), 2.40 (m, 4H), 2.30 (m, 4H)2.15 (s, 3H). LCMS: 2.514 min, >97%, m/z: 501 (M + 1); :); HRMS m/z calcd for C₃₀H₃₃N₂O₅(M+H+) 501.2389 found : 501.2459. [α]_D (MeOH, c = 0.21) = + 56°

Preparation of 5S-{3-[2-(4-Methyl-piperazin-1-yl)-ethoxy]-phenyl}-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta 1,2-a]naphthalene-2,8-diol, **2b**-(*S*): The title compound was prepared according to the procedure described for **1p**-(S) starting from iodide **24**-(*S*) and 1-Methyl-piperazine: $[\alpha]_D$ (MeOH, c = 0.31) = - 53°

Preparation of $5S-(-)-1-\{2-[4-(2,8-Dimethoxy-11,12-dihydro-5H-6,13-dioxa$ $benzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl)-phenoxy]-ethyl}-piperidine 7-($ *S*): <math>5S-(-)-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2a]naphthalene-2,8-diol, **1a**-(*S*) (1 g) was dissolved in CH₃CN/MeOH (3:1) (28 mL). TMSCH₂N₂ (2M in hexane, 10 mL, excess) and was stirred overnight. The reaction mixture was concentrated to dryness and purified on SiO₂ using 5% MeOH in CH₂Cl₂ to yield the title compound as a yellow solid ¹H NMR (CDCl₃) δ 1.40 (m, 2H), 1.59 (m, 4H), 2.49 (broad s, 4H), 2.72 (m, 2H), 2.91 (m, 2H), 3.71 (s, 3H), 3.78 (s, #H), 4.05 (m, 2H), 4.69 (m, 2H), 6.05 (s, 1H), $6.36 \sim 7.39$ (m, 10H); 97 % Pure by LC-MS: Rf 4.1 MS (m/z): MH+ (514). HRMS: m/z cacld for C₃₂H₃₆NO₅ (M+H+) 514.2593, found 514.2603. [α] = -7.9 (c = 0.6 g/100 mL, CHCl₃, 25 °C)

Preparation of 5R-(-)-1-{2-[4-(2,8-Dimethoxy-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-5-yl]-phenoxy]-ethyl}-piperidine 7-(R): 5S-(-)-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cvclohepta[1,2a]naphthalene-2,8-diol, 1a-(R) (1.1 g) was dissolved in CH₃CN/MeOH (3:1) (30 mL). TMSCH₂N₂ (2M in hexane, 11.3 mL, excess) and was stirred overnight. The reaction mixture was concentrated to dryness and purified on SiO2 using 5% MeOH in CH2Cl2 to yield the title compound as a yellow solid ¹H NMR (CDCl₃) δ 1.40 (m, 2H), 1.59 (m, 4H), 2.49 (broad s, 4H), 2.72 (m, 2H), 2.91 (m, 2H), 3.71 (s, 3H), 3.78 (s, #H), 4.05 (m, 2H), 4.69 (m, 2H), 6.05 (s, 1H), 6.36 ~ 7.39 (m, 10H), MS (m/z): MH+ (514). ¹³C NMR (400 MHz, DMSO-d6): 160.08, 159.35, 158.6, 157.3, 152.32, 130.68, 129.33, 128.85, 128.17, 125.36, 124.14, 123.19, 128.85, 128.17, 125.36, 124.14, 123.19, 117.00, 114.18, 109.67, 107.37, 106.04, 102.27, 77.84, 76.58, 65.38, 57.29, 55.18, 55.29, 54.19, 27.95, 25.5, 23.88. Anal calcd C, 74.68; H, 7.05; N, 2.72; O, 15.54; found C, 74.71; H, 7.09; N, 2.69; % Purity: >98% by LC-M:, Rf=4.4, MS (m/z): MH+ (514) ; $[\alpha] = +7.2 \ (c = 0.38 \ g/100 \ mL, CHCl_3, 25 \ ^{\circ}C)$

Preparation of 2-Methoxy-5S-(-)-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **6**-(*S*) and 8-Methoxy-5S-(-)-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, **5**-(S): 5S-(-)-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol (10 g) **1a**-(*S*) was dissolved in CH₃CN/MeOH (3:1) (280 mL) and 1.1 equivalent of TMSCH₂N₂ (2M in hexane 10.2 mL) and was stirred overnight. The reaction mixture was concentrated to dryness and purified on SiO₂ using 5-10% MeOH in CH₂Cl₂. to yield a mixture of the title compounds as yellow foam. The mixture of compounds (2.9g) was loaded onto a ChiralPak AD chiral HPLC column 5 cm I.D. x 50 cm L) and eluted with 100% IPA at the 150 mL/min flow rate. The two peaks were collected to yield the two title compounds as follows:

Peak 1: 2-Methoxy-5S-(-)-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **6**-(*S*): ¹H NMR (DMSO-d6) δ 1.42 (s, 2H), 1.61 (s, 4H), 2.41 ~ 3.14 (m, 8H), 3.67 (s, 3H), 4.24 (s, 2H), 4.59 (m, 2H), 6.14 ~ 7.28 (m, 11H). Purity: >97 by LC-MS: R_f= 2.9, MS (m/z): MH+ (500) HRMS calcd for C31H34NO5 (M+H+) 500.2437 found 500.1987 Anal calcd for C, 74.38; H, 6.85; N, 2.80; O, 15.98; found C, 74.41; H, 6.91; N, 2.77

Peak 2 as 8-Methoxy-5S-(-)-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, **5-**(S) ¹H NMR (CD₃OD) δ 1.41 (broad s, 2H), 1.59 (broad s, 4H), 2.50 (broad s, 4H0, 2.68 (m, 2H), 2.81 (m, 2H), 3.78 (m, 2H), 4.61 (t, 2H, J = 6.0 Hz), 6.02 (s, 1H), 6.22 ~ 7.29 (m, 10H). MS (m/z): MH+ (500). HRMS calcd for C31H34NO5 (M+H+) 500.2437 found 500.1687; Purity: >96 by LC-MS: R_f= 2.88, MS (m/z): MH+ (500)

Preparation of 2-Methoxy-5R-(-)-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, 7-(R) And 8-Methoxy-5R-(-)-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol, **6**-(R): 5R-(-)-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13-dioxabenzo[3,4]cyclohepta[1,2-a]naphthalene-2,8-diol **1a**-(R) (5 g) was dissolved in CH₃CN/MeOH (3:1) (150 mL) and 1.1 equivalent of TMSCH₂N₂ (2M in hexane, 5 mL) and was stirred overnight. The reaction mixture was concentrated to dryness and purified on SiO₂ using 5-10% MeOH in CH₂Cl₂ to yield a mixture of the title compounds as yellow foam. The mixture of compounds (1.4g) was loaded onto a ChiralPak AD chiral HPLC column 5 cm I.D. x 50 cm L) and eluted with 100% IPA at the 150 mL/min flow rate. The two peaks were collected to yield the two title compounds as follows: Peak 1: 2-Methoxy-5R-(-)-[4-(2-piperidin-1-yl-ethoxy)- phenyl]-11,12-dihydro-5H-6,13-dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-8-ol, **6**-(*R*): ¹H NMR (DMSO-d6) δ 1.42 (s, 2H), 1.61 (s, 4H), 2.41 ~ 3.14 (m, 8H), 3.67 (s, 3H), 4.24 (s, 2H), 4.59 (m, 2H), 6.14 ~ 7.28 (m, 11H). ¹3C NMR(DMSO, 400 MHz): 159.92, 158.18, 157.78, 157.42, 152.29, 130.75, 129.35, 128.14, 125.66, 123.97, 121.67, 117.18, 111,15, 110.95, 108.75, 106.87, 102.27, 77.58, 76.53, 65.37, 57.29, 55.09, 54.29, 29.00, 25.50, 23.88 (m, 10H). Purity: >96% by LC-MS: R_f= 2.9, MS (m/z): MH+ (500); HRMS calcd for C₃₁H₃₄NO₅ (M+H+) 500.2437 found 500.1987; Anal calcd for C, 74.38; H, 6.85; N, 2.80; O, 15.98; found: C, 74.46; H, 6.97; N, 2.79; [α] = +78.2 (c = 0.88 g/100 mL, MeOH, 25 °C).

and Peak 2 as 8-Methoxy-5R-(-)-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-11,12-dihydro-5H-6,13dioxa-benzo[3,4]cyclohepta[1,2-a]naphthalen-2-ol,

6-(*R*) ¹H NMR (CD₃OD) δ 1.41 (broad s, 2H), 1.59 (broad s, 4H), 2.50 (broad s, 4H0, 2.68 (m, 2H), 2.81 (m, 2H), 3.78 (m, 2H), 4.61 (t, 2H, J = 6.0 Hz), 6.02 (s, 1H), 6.22 ~ 7.29 (m, 11H). ¹³C-NMR (DMSO, 400 MHz) 159.21, 158.45, 158.41, 157.39, 152.29, 130.37, 129.29, 129.10, 128.9, 124.39, 124.131, 123.36, 116.69, 111.73, 109.11, 108.55, 107.30, 103.64, 77.74, 76.40, 65.37, 57.30, 55.17, 54.30, 28.00, 25.51, 23.88.); HRMS calcd for C₃₁H₃₄NO₅ (M+H+) 500.2437 found 500.2217; Anal calcd for C, 74.38; H, 6.85; N, 2.80; O, 15.98; found: C, 74.56; H, 6.88; N, 2.91; [α] = +36 (c = 0.38 g/100 mL, MeOH, 25 °C).

Alkaline Phosphatase Assay in Human Endometrial Ishikawa Cells

This assay was run according to the procedure described by Albert et a., *Cancer Res*, (9910), 50(11), 330-6-10, with minor modification.

Ishikawa cells (from ATCC) were maintained in DMEM/F12 (1:1) phenol red free medium (Gibco) supplemented with 10% calf serum (Hyclone). 24 hours prior to testing, the medium was changed to DMEM/F12 (1:1) phenol red free containing 2% calf serum.

Compounds to be tested in the agonist mode were added to the culture media at varying concentrations. Compounds to be treated in the antagonist mode were prepared similarly, and 10 nM 17 β -estradiol was also added to the culture media. The cells were then incubated at 37°C for 3 days. On the fourth day, the media was remove, 1 volume of 1X Dilution Buffer (Clontech) was added to the well followed by addition of 1 volume of Assay Buffer (Clontech). The cells were then incubated at room temperature for 5 minutes. 1 volume of freshly prepared Chemiluminescence Buffer (1 volume of chemiluminescent substrate (CSPD) in 19 volume Chemiluminescent Enhancer with final concentration of CSPD at 1.25 mM; Sigma Chemical Co.) was added. The cells were incubated at room temperature for 10 minutes and then quantified on a luminometer. The increase of chemiluminescence over vehicle control was used to calculate the increase in alkaline phosphatase activity.

MCF-7 Cell Proliferation Assay

This assay was run according to the procedure described by Welshons, et al., (*Breast Cancer Res. Treat.*, **1987**, 10(2), 169-75), with minor modification. Briefly, MCF-7 cells (from Dr. C. Jordan, Northwestern University) were maintained in RPMI 1640 phenol red free medium (Gibco) in 10% FBS (Hyclone), supplemented with bovine insulin and non-essential amino acid (Sigma). The cells were initially treated with 4-hydoxyltamoxifen (10^{-8} M) and let stand at 37° C for 24 hours. Following this incubation with tamoxifen, the cells were treated with compounds at various concentrations. Compounds to be tested in the agonist mode were added to the culture media at varying concentrations. Compounds to be treated in the antagonist mode were prepared similarly, and 10 nM 17 β -estradiol was also added to the culture media. The cells were incubated

for 24 hours at 37°C. Following this incubation, 0.1 Ci of ¹⁴C-thymidine (56mCi/mmol, Amersham) was added to the culture media and the cells were incubated for an additional 24 hours at 37°C. The cells were then washed twice with Hank's buffered salt solution (HBSS) (Gibco) and counted with a scintillation counter. The increase in the ¹⁴C-thymidine in the compound treated cells relative to the vehicle control cells were reported as percent increase in cell proliferation.

Estrogen Receptor β Fluorescence Polarization Assay

This assay monitors binding of a fluorescent analog of estrogen (Fluormone ES2, Panvera) to the estrogen receptor. Plates are read in a fluorometer that can be set to polarization mode. A decrease in fluorescence relative to vehicle control is an indication of binding of a compound to the receptor.

It is crucial to avoid introduction of air bubbles into the reaction in each well of the 96 well plate throughout this procedure. (Bubbles on the surface of the reaction disrupt light flow, affecting the polarization reading.) However, it is also crucial to effectively mix the reaction components upon addition to the well.

On ice, a 2X standard mixture of Assay Buffer (Panvera), 10 nM DTT and 40 nM ES2 was prepared. On ice, a 2X reaction mixture of Assay Buffer (Panvera), and 20 nM hER- β (Panvera) and 40 nM ES2 was also prepared.

Dilutions of test compound were prepared in 30% (v/v) dimethyl sulfoxide/50 mM HEPES, pH 7.5. At this point, the dilutions were 40X the final required concentration.

The standard mixture at 50 μ L was then added to each well. The reaction mixture at 48 μ L was added to all wells. The compound dilution at 2.5 μ L was added to the appropriate wells. The reaction mixtures were mixed using a manual pipette, a roll of aluminum foil adhesive cover was placed on the plate and the plate incubated at room temperature for 1 hour.

Each well on the plate was then read in an LjL Analyst with an excitation wavelength of 265 nm and an emission wavelength of 538.

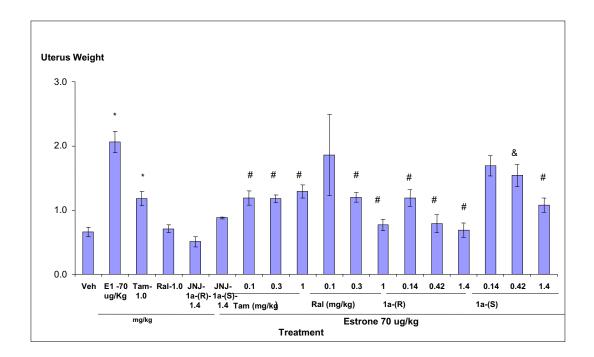
Estrogen Receptor a Flash Plate Assay

This assay monitors binding of radiolabeled estrogen to the estrogen receptor. It is performed on a BioMek 2000 (Beckman). Plates are read in a scintillation counter (Packard TopCount), with decreased counts an indication of binding of a compound to the receptor. The assay was run according to the procedure described by Allan, et al., *Anal. Biochem.* (1999), 275(2), 243-247.

On day one, 100 L of Estrogen Screening Buffer (ESB, Panvera) containing 5mM dithiothreitol (DTT, Panvera), 0.5 μ g mouse anti-estrogen receptor monoclonal antibody (SRA-1010, Stressgen) and 50 ng purified human estrogen receptor α (Panvera) were added to each well of a 96 well FlashPlate Plus plate crosslinked with goat anti-mouse antibodies (NEN Life Sciences). The plate was sealed and incubated at 4°C overnight.

On day two, each well was washed three times with 200 μ L PBS, pH 7.2, at room temperature. To each well was then added 98 μ L radiolabeled estrogen (0.5 nM, which equals 6 Ci for a 120 Ci/mmol batch, Amersham), diluted in ESB and 5mM dithiothreitol (DTT). To individual wells were then added 2.5 μ L test compound diluted in 30% (v/v) dimethyl sulfoxide/50 mM HEPES, pH 7.5. The wells were mixed three times by aspiration, the plate sealed and incubated at room temperature for one hour. The wells were then counted for 1 min in a TopCount scintillation counter (Packard)

Protocol for immature rat uterotropic study


Introduction

Selective Estrogen Receptor Modulators (SERM) act as estrogen agonist or antagonist on uterus. It is well established that estrogens are known for their uterotropic activities to stimulate uterine growth. The immature rat uterotropic model (Reference 1-3) is used to get a rapid and accurate assessment of the activity of a compound in the uterus. This can be used in either the agonist mode (compound alone) or antagonist mode (compound + estrogen). Because the animals have not matured sexually, there is minimal endogenous estrogen to complicate the evaluation. Immature rats which are unexposed to estrogen, are administered with an estrogen, Estrone for three days. The uteri grow rapidly, and the weight of uterus increases sharply in three days. Co-treatment with estrogen antagonist could block the stimulation, whiles estrogen agonist synergistically enhances the stimulation. The difference between the weight of uterus from vehicle control animals and that from treated animals is a sensitive indicator of estrogen agonist or antagonist activity. This model has been used as a classical measure to evaluate activities of estrogen agonists and antagonists including SERMs. The affects of these compounds in this model have been predictive of the clinical responses in reported women.

Materials and methods

Eighteen Nineteen days old immature rats (45-55 gm) are obtained from Charles River Laboratories (Wilmington, MA). They are housed in groups of three in wire-mesh cages at an ambient temperature of 21 to 23 °C with an automated 12/12 hour light/dark cycle and access to water and a commercial rodent food ad libitum. The rats are treated daily for three consecutive days with Estrone (Sigma, St. Louise, MO), at 70 μ g/kg/day (in 0.1 ml of sesame oil, s.c..) alone or along with testing compounds with oral administration by gavaging. There are three animals per group. The rats are euthanized 24 hours after the final dose, and their uteri are were excised, cleaned of surrounding fat and connective tissue, incised slightly to release luminal fluid, blotted on filter paper, and weighed. The ratio of uterine weight and body weight is expressed as an indicator of uterotropic activity.

Effect of **1a**-(*R*) and **1a**-(*S*) on Uterine Weight in Immature

Note: *: significant difference compared to Veh control (p<0.001);

#: significant difference compared to E1-70 ug/kg (p<0.001);

&: significant difference compared to E1-70 ug/kg (p<0.05);

Tam: Tamoxifen; Ral: Raloxifene; E1: Estrone

1. REFERENCES

- Lerner, Leonard J.; Hilf, Russell; Turkheimer, A. Robert; Michel, Inge; Engel, Stanford L. Effects of hormone antagonists on morphological and biochemical changes induced by hormonal steroids in the immature rat uterus. Endocrinology 1966: 78, 111-24.
- Gabbard, R. Bruce; Hamer, Leslie F.; Segaloff, Albert. Structure-activity relationships of four 11-hydroxyestrones isomeric at the C-9 and C-11 positions. Steroids 1981: 37, 243-55.

- McKim, James M., Jr.; Wilga, Paul C.; Breslin, William J.; Plotzke, Kathy P.; Gallavan, Robert H.; Meeks, Robert G. Potential estrogenic and antiestrogenic activity of the cyclic siloxane octamethylcyclotetrasiloxane (D4) and the linear siloxane hexamethyldisiloxane (HMDS) in immature rats using the uterotrophic assay. Toxicological Sciences 2001: 63, 37-46.
- Ashby, J.; Odum, J.; Foster, J. R. Activity of raloxifene in immature and ovariectomized rat uterotrophic assays. Regulatory Toxicology and Pharmacology 1997: 25, 226-231.
- (a) Ke, H. Z.; Brown, T. A.; Thompson, D. D. Lasofoxifene (CP-336,156), a novel selective estrogen receptor modulator, in preclinical studies. Journal of the American Aging Association 2002: 25, 87-99 (b) Riggs, Lawrence; Hartmann, Lynn C. Selective estrogen-receptor modulators mechanisms of action and application to clinical practice. New England Journal of Medicine 2003: 348, 618-629.

Pharmacokinetics and Drug Metabolism Pharmacokinetics

The pharmacokinetic properties of JNJ-19398990 = 7-R were evaluated in both female rats and monkeys. The primary metabolites, JNJ26529126 = 5-(R) JNJ-26529152 as 6-(R) and JNJ-17148066 as 1a-(R) were also measured in these animals.

Methods of Analysis

Blood samples (0.5 ml) were collected into heparinized tubes post dose via orbital sinus puncture. Blood samples were centrifuged for cell removal, and precisely 200 μ L of

plasma supernatant is then transferred to a clean vial, placed on dry ice, and subsequently stored in a -70°C freezer prior to analysis.

Plasma samples were prepared as follows. Four hundred microliters of acetonitrile containing internal standard is added to 200 uL of plasma to precipitate proteins. Samples were centrifuged at 5000 x G for 3 minutes and supernatant removed for analysis by LC-MS-MS. Calibration standards were prepared by adding appropriate volumes of stock solution directly into plasma and treated identically to collected plasma samples. Calibration standards are typically prepared in the range of 0.1 to 10 μ M for quantitation. LC-MS-MS analysis is performed using either multiple reaction or selected ion monitoring for detection of characteristic ions for each drug candidate and internal standard used was Propranolol. Results were calculated by WinNonlin Pro version 3.1.

Single dose pharmacokinetics in rats

Plasma concentrations of JNJ-19398990 and its metabolites, JNJ-26529126, JNJ-26529152, and JNJ-17148066 were determined following a single administration of JNJ-19398990 (i.v. 2 mg/kg, p.o. 10 mg/kg) to adult female rats. The compound was formulated for both IV and oral dosing as a solution in a vehicle of 20% w/v cyclodextrin in 0.1 N citric acid.

The parent compound, JNJ-19398990, and the metabolites reached detectable blood levels following both oral and intravenous administrations (Table 8, Figure 115). The parent and the pooled monomethoxy intermediates reached blood levels that were approximately equivalent and the dihydroxy metabolite (JNJ-17148066) was present at very low levels (Figure 16). The bioavailability of JNJ-19398990 was determined to be 30.8%.

Glucuronidation and sulfation of the three metabolites were also examined. Sulfation products of JNJ-26529126 (or JNJ-26529152) and JNJ-17148066 were detected at very low levels. No glucuronidation products were found.

Table 8. Pharmacokinetic parameters of JNJ-19398990 and JNJ-26529126^a, JNJ-26529152^a, and JNJ-17148066^a in female rats.

Compound	Formulation	Route	Dose (mg/kg)	C _{max} (ng/mL)	t _{max} (hr)	t _{1/2} (hr)	AUC (ng·hr/mL)	F (%)
JNJ-19398990	20% cyclodextrin in 0.1N citric acid	i.v.	2	1035	0.08	5.82	1392	-
JINJ-19398990	0.5% methocel	p.o.	10	168	5.0	7.2	2268	30.8
JNJ-26529126		i.v.	-	15.2	8.0	-	-	-
JINJ-20329120		p.o.	-	91.4	8.0	-	-	-
JNJ-26529152		i.v.	-	7.6	8.0	-	-	-
JINJ-20329132		p.o.	-	33.3	8.0	-	-	-
JNJ-17148066		i.v.	-	1.6	8.0	-	-	-
JINJ-1/148000		p.o.	-	3.9	6.0	-	-	-

^aConcentrations determined in animals dosed with JNJ-19398990.

Figure 15. Plasma concentrations of JNJ-19398990 following a single dose administration in female rats

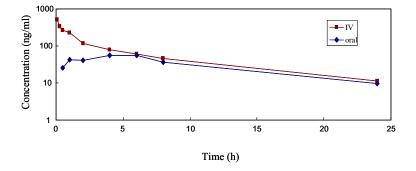
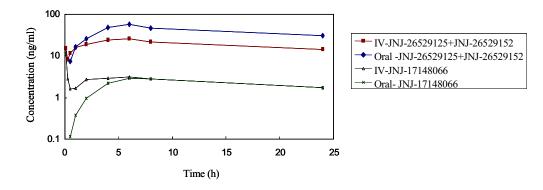
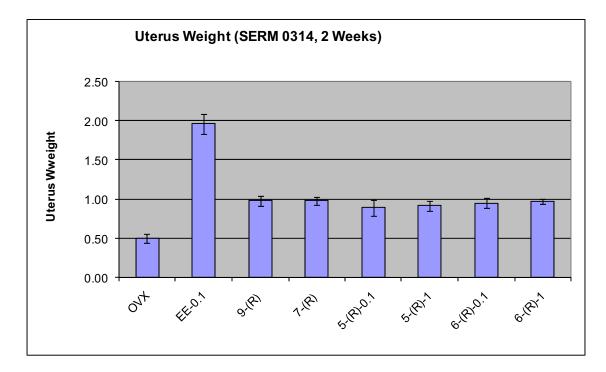
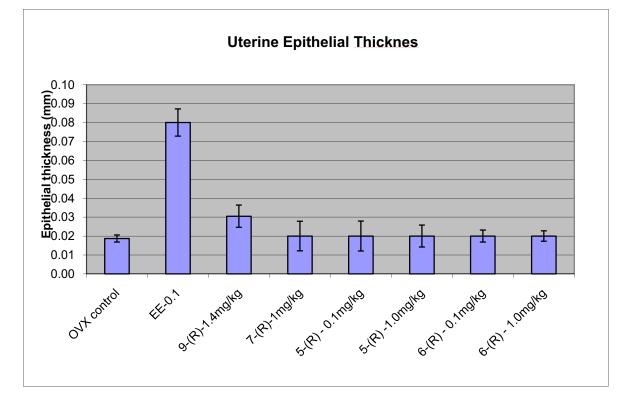



Figure 16. Plasma concentrations of JNJ-26529126, JNJ-26529152, and JNJ-17148066 following a single dose administration of JNJ-19398990 in female rats


Protocol for in vivo ovariectomized rat model

Introduction:


The adult ovariectomized estrogen-deficiency rat model is applied to evaluate the tissue selective effects of Selective Estrogen Receptor Modulators (SERM). The model is useful because the responses in several tissues can be used to evaluate the tissue selective properties of SERM compounds. It provides information on ovariectomy-induced bone loss, and plasma lipids, uterine and vaginal effects, as well as other pathological changes in cardiovascular system, and reproductive system. This model has been used to characterize many estrogen agonist and antagonist activities of SERMs (1). The treatment of testing compounds can be adjusted for 2 weeks or 6 weeks. Bone density measurement on isolated bones is conducted in the 6-weeks animal model. The affects of these compounds in this model have been in line with the clinical responses in reported women (2).

Materials and methods

Adult female animals (> 6 months old, Charles River Laboratories, Wilmington, MA) are used. The rats are housed individualy in wire-mesh cages at an ambient temperature of 21 to 23 °C with an automated 12/12 hour light/dark cycle and access to water and a commercial rodent food ad libitum. Each treatment group consisted of 6-14 animals. The animals are ovariectomized under sterile condition and anesthesia. Twenty four hours after the surgery, testing compounds are administered daily by gavaging for 6 weeks. Other reference treatment groups include sham-

operated control, and ovariectomized control, ethanylestradiol (EE, 5 mg/kg/day), and raloxifene (1 mg/kg/day). 0.5% Methocel is used as the vehicle for all compounds.

1.1.1. Measurement of serum total cholesterol levels

Blood samples are collected orbitally, after 2 weeks of treatment and or at the end of study. Serum samples are shipped to LarCorp LabCorp (Burlington, NC) and analyzed with a Roche Hitachi 717 Chemistry Analyzer. All reagents are obtained from Roche Diagnostics.

1.1.2. Vaginal cytology

Vaginal smear is taken by flushing the vagina with water using a pipette. The water containing vaginal epithelial cells is put on to a slide followed by examination of cytology of the epithelial cells under microscope to determine the cycling stage of the animal.

Measurement of uterine weight

Animals are euthanatized at the end of study with CO_2 . The uteri are excised, cleaned of surrounding fat and connective tissue, incised slightly to release luminal fluid, blotted on filter paper, and weighed.

1.1.3. Measurement of uterine epithelial thickness

1. Immunohistochemistry

Immunohistochemistry is performed as described in Reference 5. All incubations are performed at room temperature. After microwaving the slides in Target (Dako, Carpenturia, CA), the slides are placed in PBS, then 3% H2O2, rinsed in PBS and then appropriate blocking serum was added for 10 minutes. Subsequently, the primary antibodies (cocktail: pan-cytokeratin (1:25, Sigma, St. Louis, MO) and smooth muscle actin (1:100, Dako) are applied to the slides for 30 minutes. Proper species isotype antibody (Vector Labs, Burlingham, CA) is substituted as the primary antibody for the negative control. After several PBS washes, a biotinylated secondary antibody (Vector Labs) is placed on the slides for 30 minutes. Subsequently, the slides are washed in PBS and then the avidin-biotin complex (ABC, Vector Labs) was applied to the cells for 30 minutes.

The presence of the primary antibodies is detected by adding DAB (3'-diaminobenzidine HCl; Biomeda, Foster City, CA) for 2 times 5 minutes. Slides are briefly exposed to Mayer's hematoxylin for 1 minute, dehydrated and coverslipped.

2. Image analysis methods

Image analysis is applied to count the thickness of the epithelium, which is easily identified by the antibody labeling. The image analysis is performed using an Olympus BX50 light microscope, Sony 3CCD digital camera interfaced with a IBM 350PC using Image Pro (v 3.0) analysis software (Phase 3 Imaging Systems, Glen Mills, PA). A special tool is used to draw a line at the base of the epithelial cells of the uterus, while another line is draw along the apical, luminal surface of the epithelial cells. The computer calculates average distance between the two traced lines.

1.1.4. Measurement of bone mineral density

After euthanatization, the left tibia is removed from the animal, and is defleshed and fixed in 10% of Formalin. Ex-Vivo pQCT is conducted at Dr. Jee's laboratory at the Radiobiology Division, University of Utah, Salt Lake City, UT. The trabecular and cortical BMD and BMC measurements are carried out using a XCT 960A peripheral quantitative computerized tomography system (pQCT, Norland Medical Systems, Fort Atkinson, WI) on the proximal tibial metaphysis at 5 mm and 6 mm distal to the knee joint. A voxel size of 0.148 mm is used and a threshold of 0.600cm 1 for cancellous bone is used.

References

1. Frolik C A; Bryant H U; Black E C; Magee D E; Chandrasekhar S Time-dependent changes in biochemical bone markers and serum cholesterol in ovariectomized rats: effects of raloxifene HCl, tamoxifen, estrogen, and alendronate. BONE 1996: 18, 621-7.

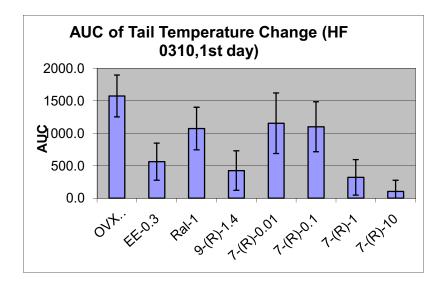
2. Ma, Yanfei L.; Bryant, Henry U.; Zeng, Qingqiang; Palkowitz, Alan; Jee, Webster S. S.; Turner, Charles H.; Sato, Masahiko. Long-term dosing of arzoxifene lowers cholesterol, reduces bone turnover, and preserves bone quality in ovariectomized rats. Journal of Bone and Mineral Research. 2002: 17, 2256-2264.

3. Ke, H. Z.; Brown, T. A.; Thompson, D. D. Lasofoxifene (CP-336,156), a novel selective estrogen receptor modulator, in preclinical studies. Journal of the American Aging Association. 2002: 25, 87-99.

4. Walsh BW, Kuller LH, Wild RA, Paul S, Farmer M, Lawrence JB, Shah AS, Anderson PW. Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. JAMA 1998: 279, 1445-1451.

 D'Andrea MR, Derian CK, Leturcq D, Baker SM, Brunmark A, Ling P, Darrow AL, Santulli RJ, Brass LF, Andrade-Gordon P. Characterization of protease activated receptor (PAR-2) immunoreactivity in normal human tissues. J Histochem Cytochem 1998: 46, 157-164.

1.1.4.1.1. Protocol for ovariectomized rat hot flush model


Introduction

Selective estrogen receptor modulators (SERM) have divergent activities depending on the tissue it is acting upon. That is it has agonist properties in some tissues and antagonist properties in another. One of the important activities of SERM compounds is the ability to increase or reduce the incidence and severity of the hot flush, a symptom that frequently occurs in postmenopausal women (Reference 1). This activity is rested in a rodent model for hot flush.

In the ovariectomized rat hot flush model, morphine-addicted rats undergo morphine withdrawal, after which they experience a "hot flush" that can be measured by their tail skin temperature. Estrogens have been shown to block this hot flush (2-6). This model has been used to characterize several SERMs including raloxifene and bazedoxifene (6). The affects of these compounds in this model have been predictive of the clinical responses in reported women (2, 7-9).

Materials and methods

Adult female Sprague-Dawley rats (3 months old, Charles River Laboratories, Wilmington, MA) are used. Each treatment group consisted of 8 to 25 animals. They are housed individually in wire-mesh cages at an ambient temperature of 21 to 23 °C with an automated 12/12 hour light/dark cycle and access to water and a commercial rodent food ad libitum. The rats are ovariectomized under anesthesia. Six days after ovariectomy, treatment of the rats is initiated. All compounds are administered either testing compounds or vehicle (sesame oil), ethinyl estradiol (EE), and raloxifene orally by gavage. The rats are injected (s.c.) with a suspension containing 75 mg and 150 mg of morphine (freebase) on day 3 and day 5 of treatment, respectively. On the last day of treatment, the animals are lightly anesthetized with ketamine (80 mg/kg, i.m.). Following the anesthesia, a thermistor (YSI 400 series, YSI Precision Temperature Group, Dayton, OH), connected to a data acquisition system (Acquisition interface Model ACQ-10, Gould 6600 Amplifier, Gould Instrument System Inc. Valley view, OH), is placed on the tail of the animals. Following the measurement of the baseline tail skin temperature for about 20 minutes, naloxone (2.0 mg/kg, s.c. Sigma, St. Louis, MO) is administered to induce the morphine withdrawal. Tail skin temperature is then measured for an additional 60 minutes. Multiple comparisons among the treatment groups at each time point are used for analysis. The values of maximal temperature change (ΔT) are reported. Statistical analysis (t-test) is conducted by Preclinical Biostatistics, JJPRD with an analysis program of Wilcoxon Ranl Sum Test from Statxact (Version 4, Statistical Solutions, Saugus, MA).

OVX vs EE-0.3: p=0.025 ; OVX vs 9-(*R*)-1.4: p=0.015

References

1. Berendsen H H; Weekers A H; Kloosterboer H J, Effect of tibolone and raloxifene on the tail temperature of oestrogen-deficient rats. European Journal of Pharmacology 2001, 419, p47-54.

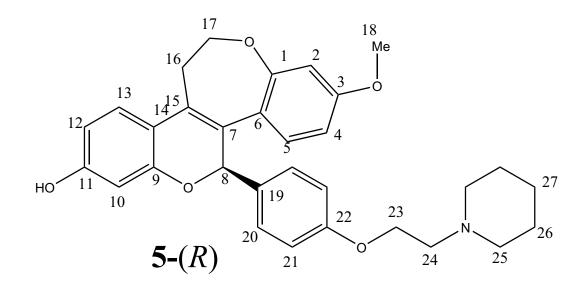
2. Merchenthaler I, Funkhouser JM, Carver JM, Lundeen SG, Ghosh K, Winneker RC. The effect of estrogens and antiestrogens in a rat model for hot flush. Maturitas 1998: 30, 307-316.

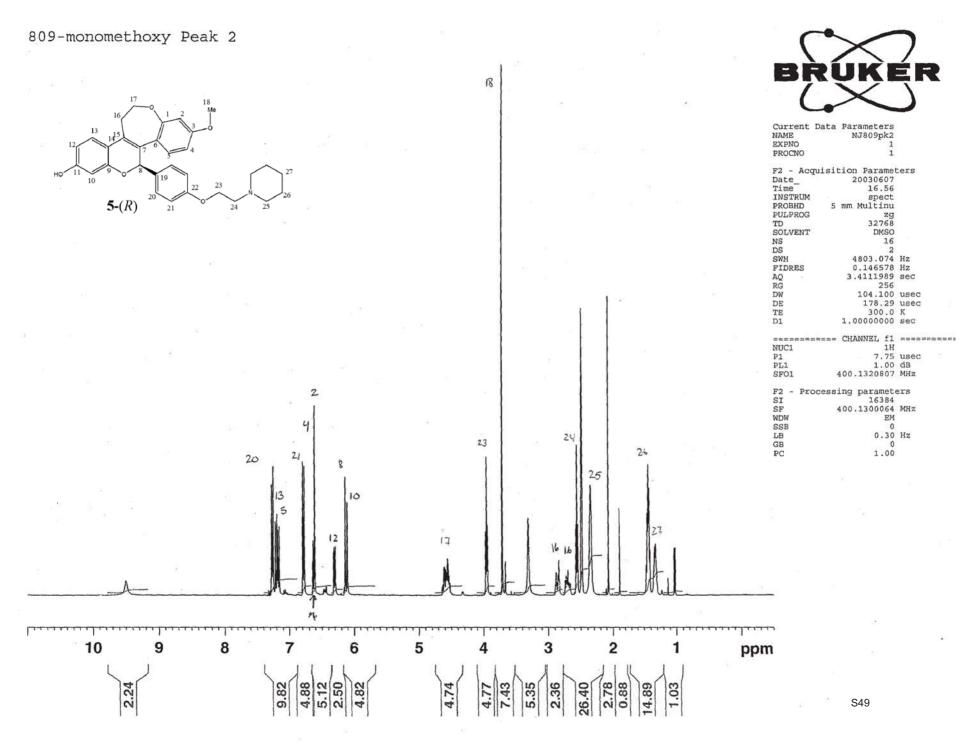
3. Kobayashi T, Tamura M, Hayashi M, Katsuura Y, Tanabe H, Ohta T, Komoriya K. Elevation of tail skin temperature in ovariectomized rats in relation to menopausal hot flushes. Am. J. Physiol. 2000: 278(4, Pt. 2), R863-R869.

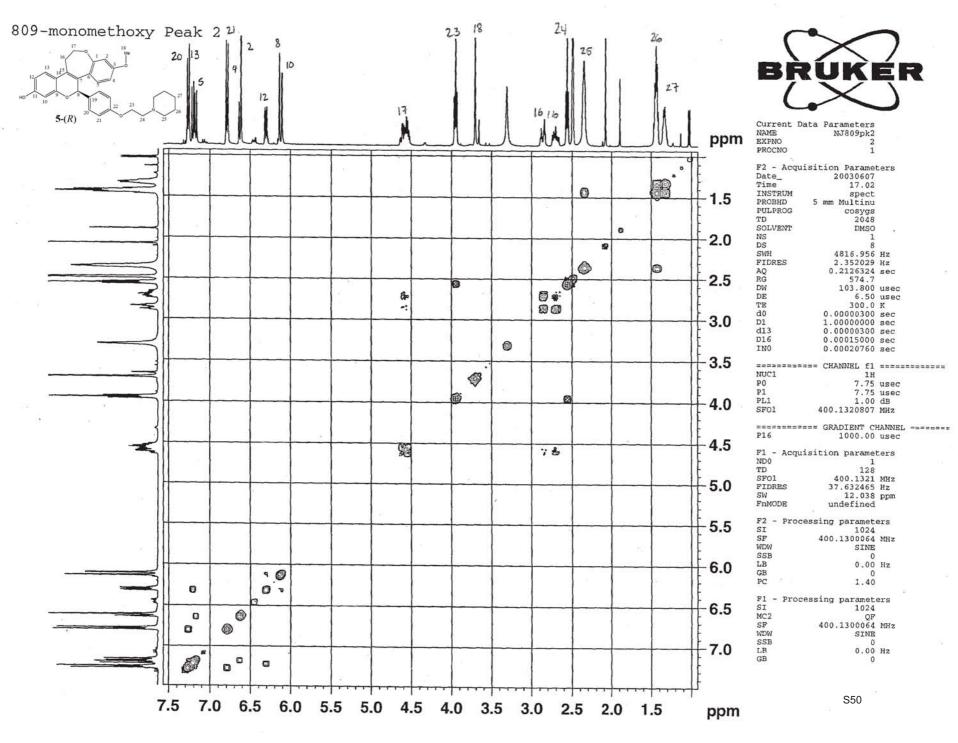
4. Berendsen HHG, Weekers AHJ, Kloosterboer HJ. Effect of tibolone and raloxifene on the tail temperature of oestrogen-deficient rats. Eur. J. Pharmacol. 2001, 419: 47-54.

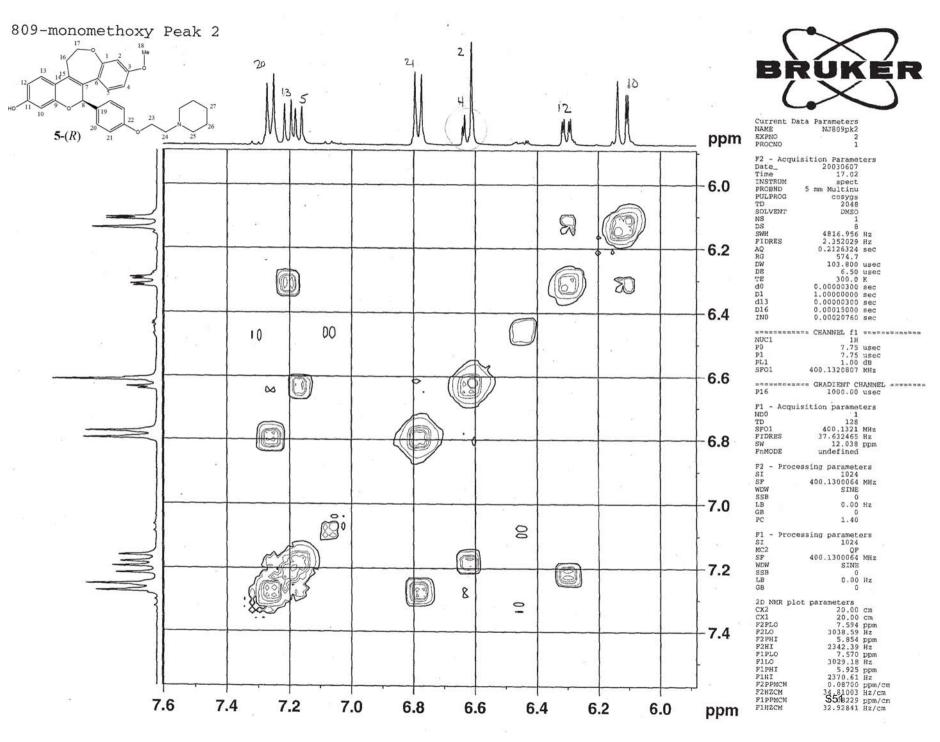
5. Hosono T, Chen X-M, Miyatsuji A, Yoda T, Yoshida K, Yanase-Fujiwara M, Kanosue K. Effects of estrogen on thermoregulatory tail vasomotion and heat-escape behavior in freely moving female rats. Am. J. Physiol. 2001: 280(5, Pt. 2), R1341-R1347.

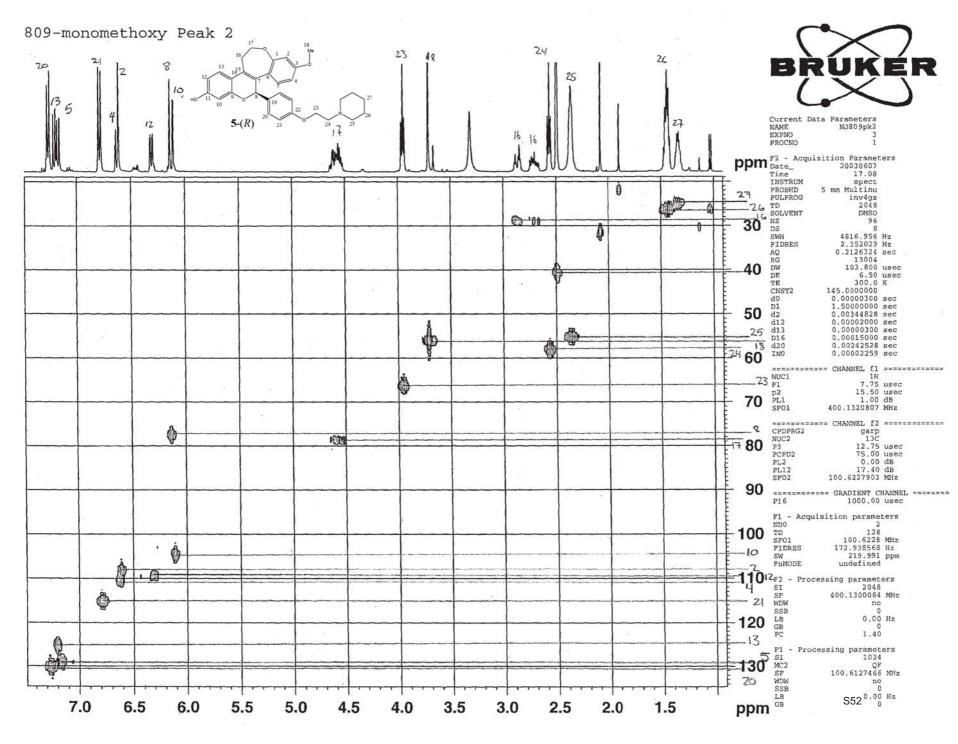
6. Komm BS, Lyttle CR. Developing a SERM: stringent preclinical selection criteria leading to an acceptable candidate (WAY-140424) for clinical evaluation. NY Acad. Science. 2001: 949:317-326.

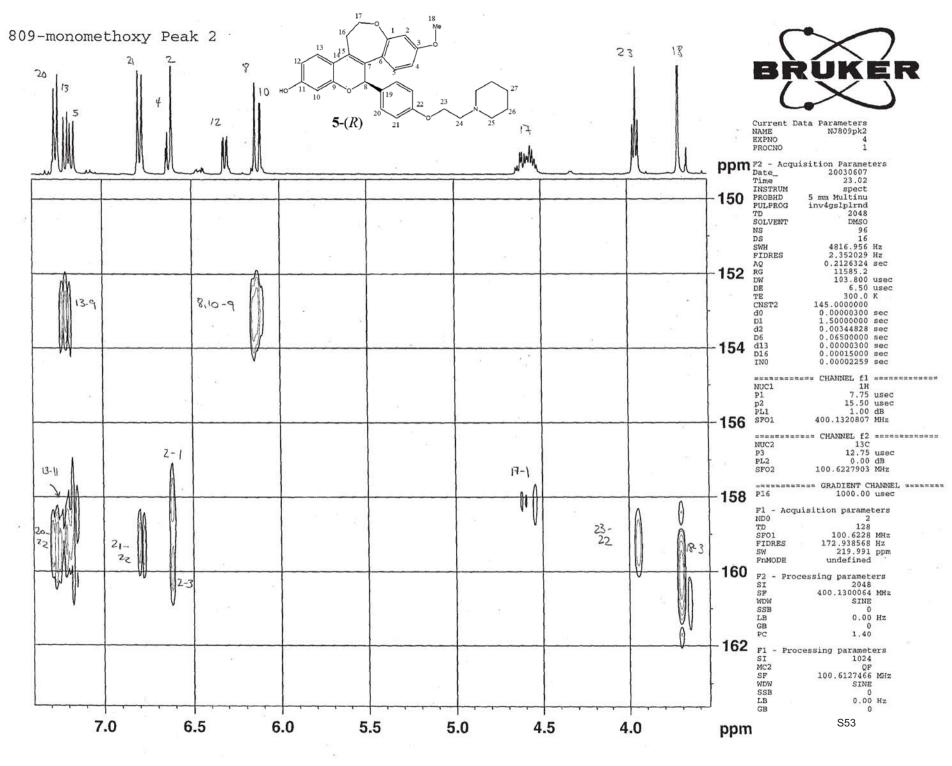

7. Katovich MJ and O'Meara J, Effect of chronic estrogen on the skin temperature response to naloxone in morphine-dependent rats. Can J Physiol Pharmacol, 1987, 65, p563–567.

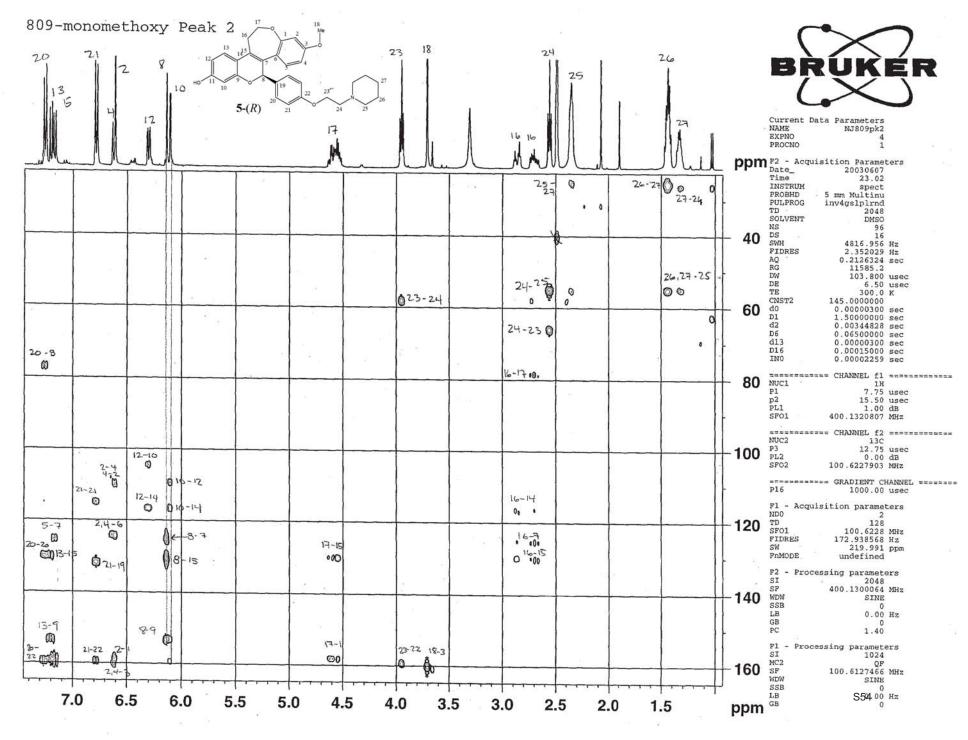

8. Simpkins, JW, Katovich, MJ and Song, Similarities between morphine withdrawal in the rat and the menopausal hot flush. Life Sciences, 1983, 32, p1957–1966.

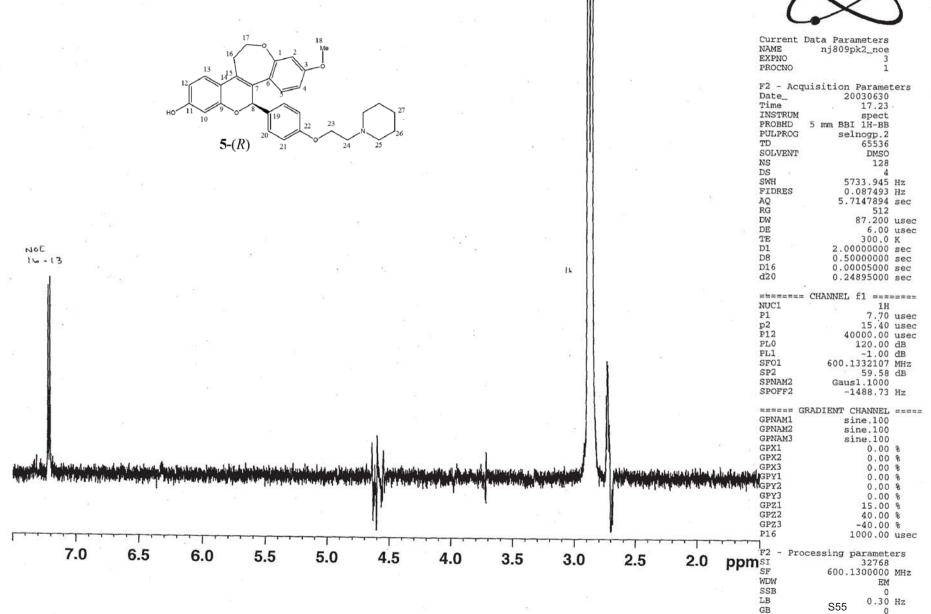

9. MJ Katovich, JW Simpkins, LA Berglund and J. O'Meara, I-C, Regional skin temperature changes in a rat model for the menopausal hot flush. Maturitas, 1986, 8, p67–76.

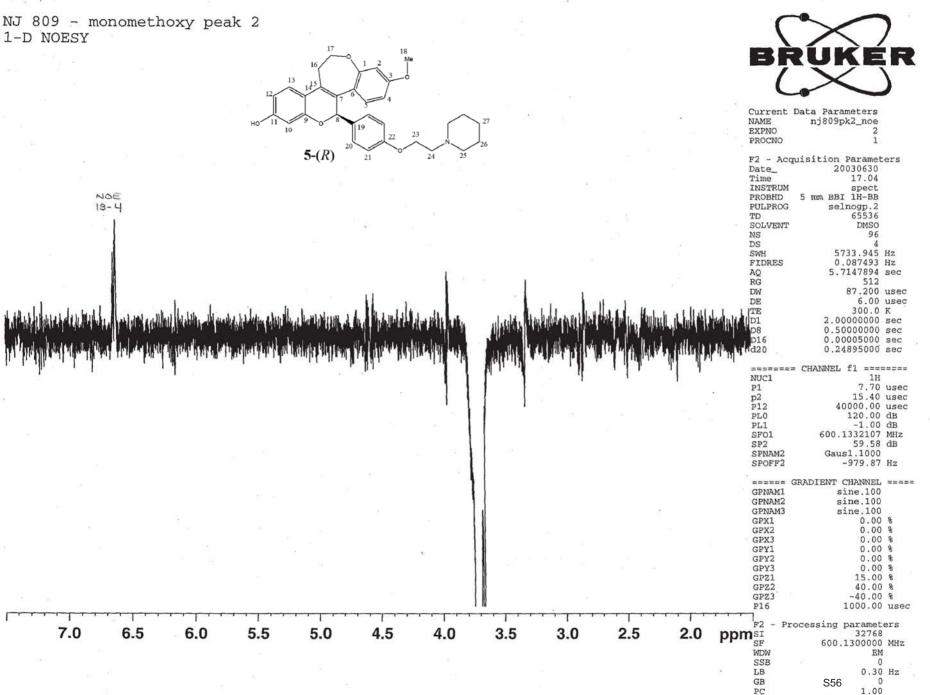

Structure Determination of **5**-(R)


(Peak2)





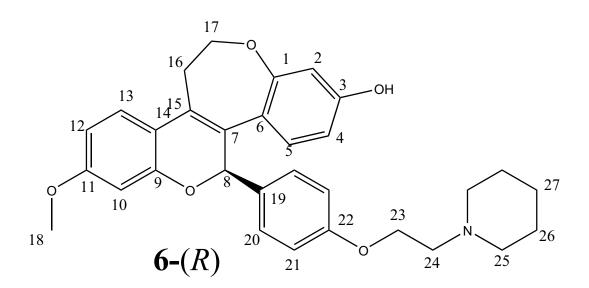


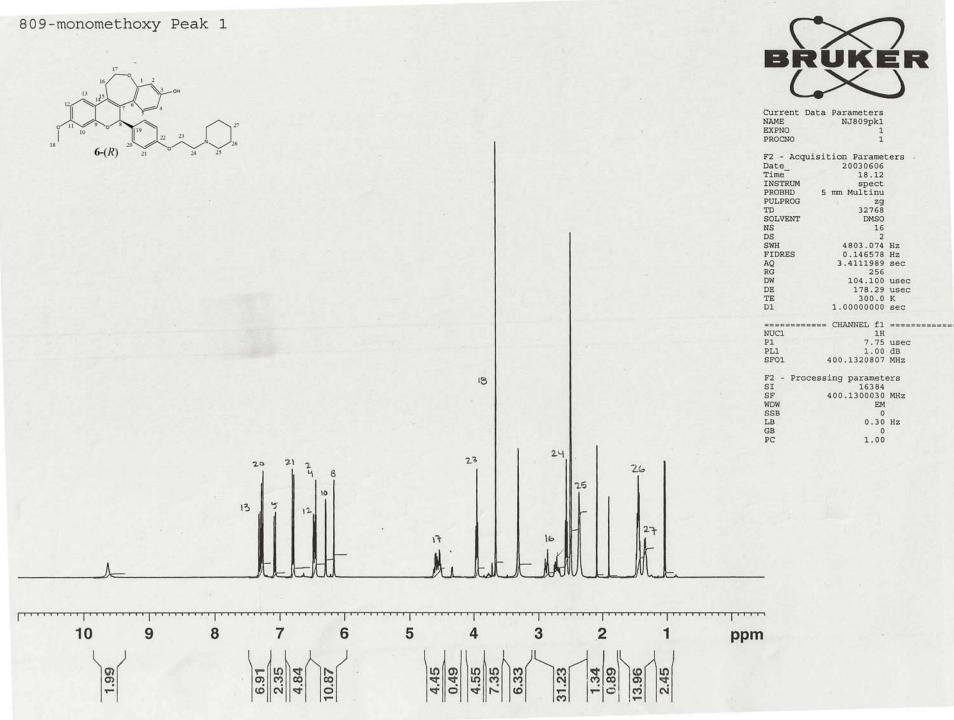

NJ 809 - monomethoxy - peak 2 1-D NOESY

BRUKER

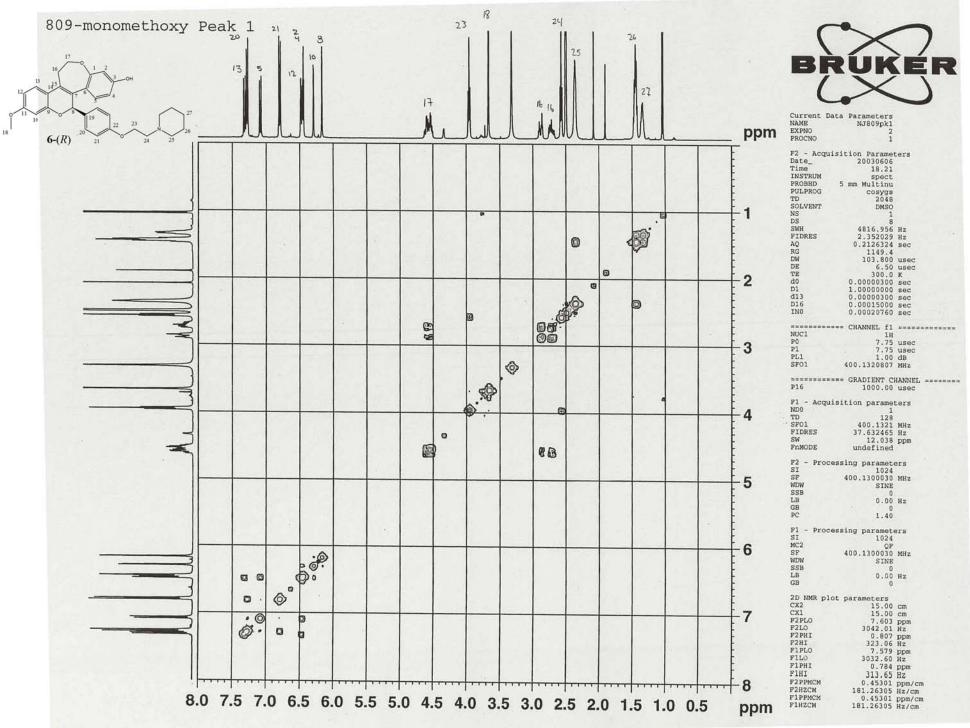
PC

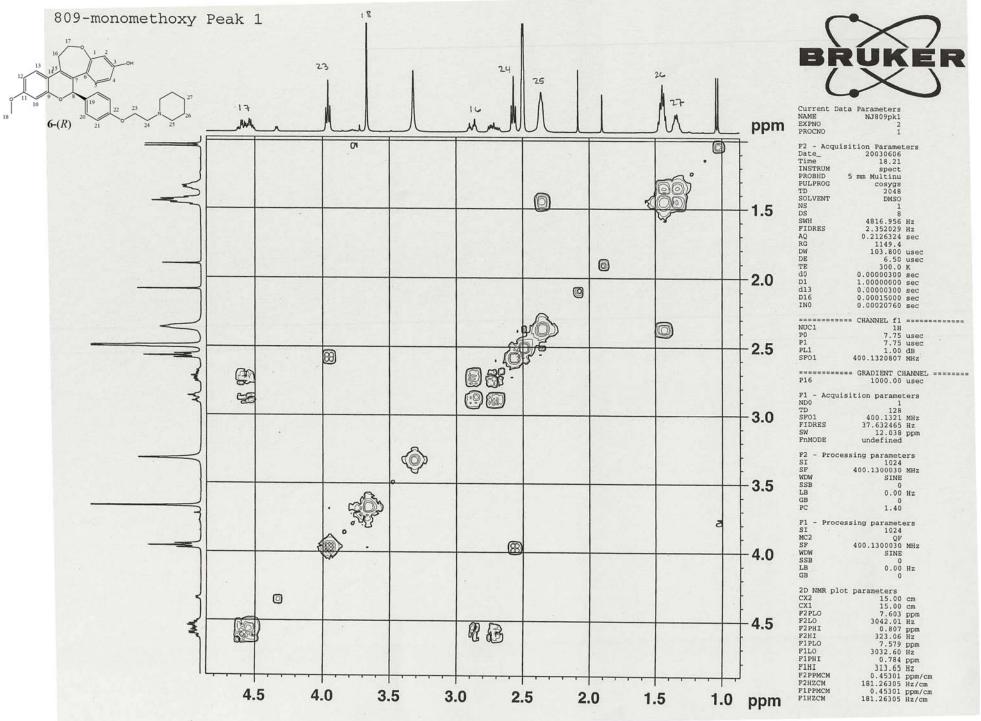
1.00

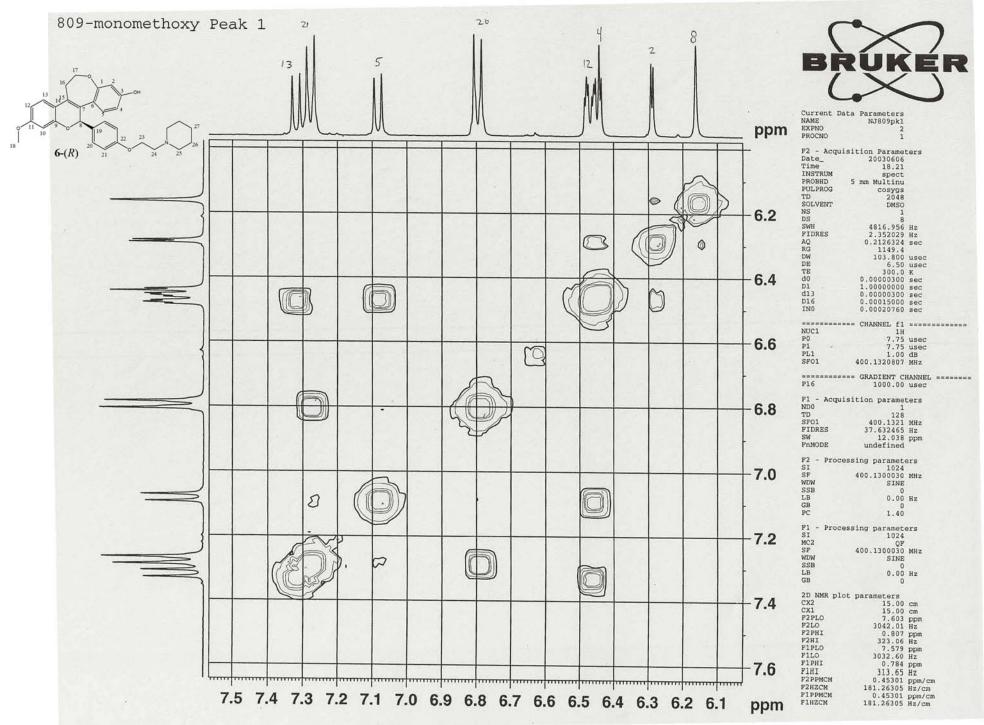


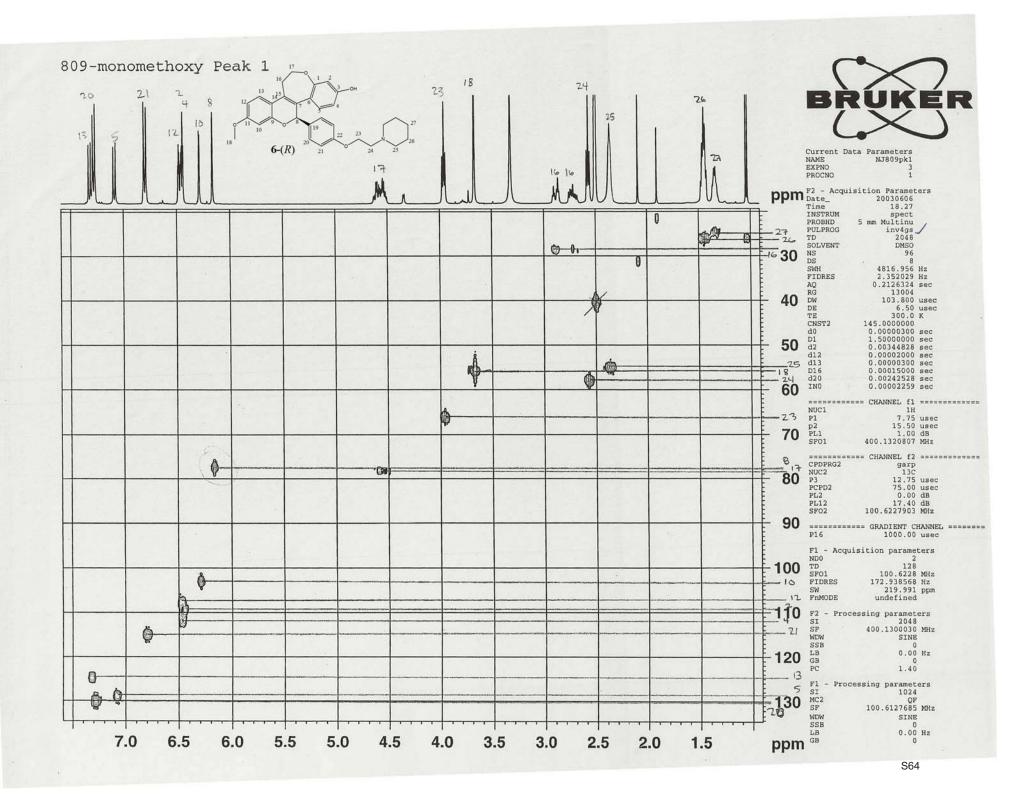

No title	1947 - 1947 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -			2 a 2 1 / /	BRUKER
Ho 11 10 (R) 21	$\begin{array}{c} 18 \\ Me \\ 4 \\ 22 \\ 0 \\ 24 \\ 25 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26$				Current Data Parameters NAME 23046-x003 EXPNO 11 PROCNO 1 F2 - Acquisition Parameters 20080329 Date_ 20080329 Time 22.05 INSTRUM spect PROBHD 5 mm QNP 1H/13 PULPROG zgpg30 TD 65536 SOLVENT DMSO NS 256 DS 2 SWH 23980.814 Hz FIDRES 0.365918 Hz AQ 1.3664756 sec RG 2298.8 DW 20.850
					DW 20.850 Usec DE 7.00 usec TE 298.2 K D1 1.0000000 sec dl1 0.0300000 sec DELTA 0.89999998 sec MCREST 0.0000000 sec MCWRK 0.01500000 sec MUC1 13C P1 9.75 usec PL1 3.00 dB SF01 100.6228298 MHz
					CHANNEL f2 f2 CPDPRG2 waltz16 NUC2 1H PCPD2 81.00 usec PL2 3.60 dB PL12 22.93 dB PL13 25.00 dB SFO2 400.1316005 MHz F2 Processing parameters 32768 SF 100.6128193 MHz WDW EM SSB
200 180 160	140 120	100 80	60 40		LB 1.00 Hz GB 0 PC \$57 1.40

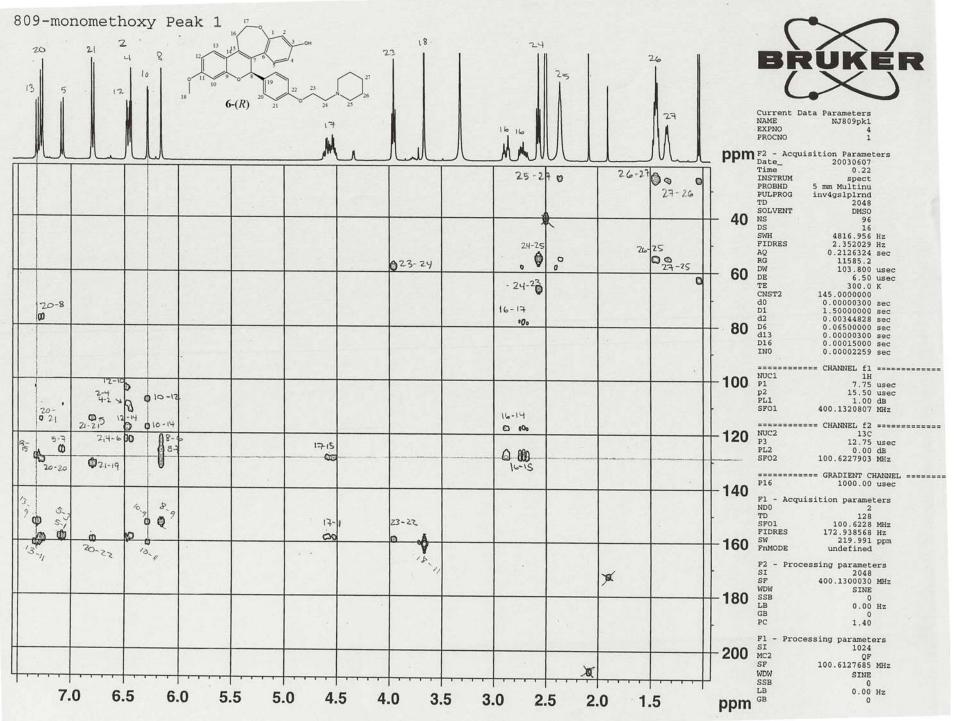
pras :

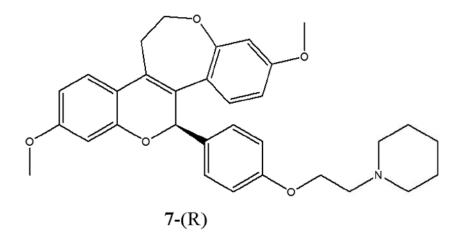

Structure Determination of **6**-(R)

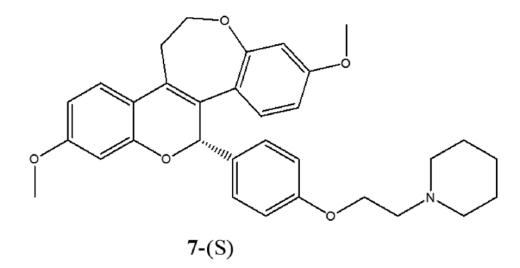

(Peak 1)

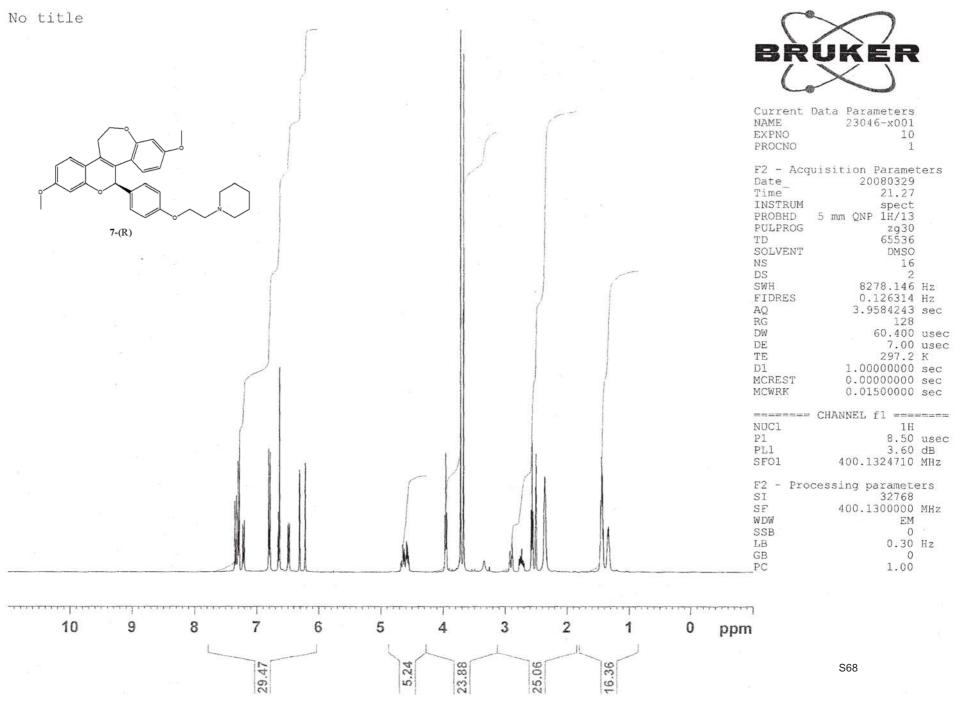





NJ 809 1-D NOE			17 16 0 1 2					BR	UKER
				он				Current D NAME EXPNO PROCNO	Data Parameters nj809pk1_noe 3 1
NoE 16-	13	18 10	6-(R) 21 21	23 26				Date_ Time INSTRUM	tisition Parameters 20030625 14.28 spect 5 mm BBI 1H-BB selnogp.2 65536 DMSO 128 4 5733.945 Hz 0.087493 Hz 5.7147894 sec 256 87.200 usec 6.00 usec 300.0 K 2.0000000 sec 0.5000000 sec 0.24895000 sec
	n unde de prese de la dista un Antil presente de prese Antil presente de presente	Hababartala Antoitermilie	United and the solution of the			line pin antida pin pana pana		NUC1 P1 P2 P12 PL0 PL1 SF01 SF01 SP2 SP0AM2 SP0FF2	CHANNEL f1 ====== 1H 7.70 usec 15.40 usec 40000.00 usec 120.00 dB -1.00 dB 600.1332107 MHz 59.58 dB Gaus1.1000 -1484.72 Hz
								GPNAM1 GPNAM2 GPNAM3 GPX1 GPX2 GPX3 GPY1 GPY2 GPY3 GPZ1 GPZ2 GPZ3 P16	CADIENT CHANNEL ===== sine.100 sine.100 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 15.00 % 40.00 % 15.00 % 1000.00 usec

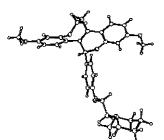



o title					BR	ak UKER Data Parameters 23046-x004
18 11 11 10 18 6-($ \begin{array}{c} 17 \\ 7 \\ 7 \\ 8 \\ 19 \\ 20 \\ 21 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24$	27 26			EXPNO PROCNO F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH	11 1 1 20080329 22.23 spect 5 mm QNP 1H/13 2gpg30 65536 DMSO 256 2 23980.814 Hz
						0.365918 Hz 1.3664756 se 13004 20.850 us 7.00 us 298.2 K 1.00000000 se 0.39999998 se 0.00000000 se 0.01500000 se 0.01500000 se
1144			k. allon n. all. de . atal. comban isio	a cillion al la secola de la secola	NUC1 P1 PL1 SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL12 PL12 PL13 SF02	13C 9.75 us 3.00 dB 100.6228298 MH CHANNEL f2 ====== waltz16 1H 81.00 us 3.60 dB 22.93 dB 25.00 dB 400.1316005 MH
			in the second se		Its manufacture and the second	cessing parameters 32768 100.6128193 MF EM 0 1.00 Hz 0 1.40
200 180	160 1	40 120 100	80 60	40 20 八	ppm	S66


 1 H NMR and 13 NMR of 7-(R)

&

Crystal Structre analysis Report for 7-(S)



No title				- 13 (124) 24 (14) 24 (14)	6 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			BR	UKER
	\bigcirc								NAME EXPNO PROCNO	Data Parameters 23046-x001 11 1
	7-(R)								P2 - ACC Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA MCREST MCWRK	uisition Parameters 20080329 21.25 spect 5 mm QNP 1H/13 2gpg30 65536 DMSO 256 2 23980.814 Hz 0.365918 Hz 1.3664756 sec 3251 20.850 usec 7.00 usec 297.2 K 1.0000000 sec 0.0300000 sec 0.01500000 sec
	Lapanaharah buda				land an Harrison Store			ally calls for a straight	NUC1 P1 PL1 SF01 CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SF02	CHANNEL f1 13C 9.75 usec 3.00 dB 100.6228298 MHz CHANNEL f2 waltz16 1H 81.00 usec 3.60 dB 22.93 dB 25.00 dB 400.1316005 MHz
Alty day juicture and so a faith of the second source of	loquill's regard	ter lange for the	upper ter synthetister		all flygraprove dage.	tigent paintering in the	stall, martinenal	lite all magnession parties and	F2 - Pro	ocessing parameters 32768 100.6128193 MHz EM 0 1.00 Hz 0
200	180	160	140 1	20 100	80	60	40 八	20	ppm	1.40 S69

BRIEF EXPERIMENTAL DESCRIPTION TO BE INCLUDED IN TEXT OR AS A FOOTNOTE AT TIME OF PUBLICATION

Single crystals of (S-C₃₂H₃₅NO₅) are, at -80±2°C,monoclinic, space group P2₁ - C_2^2 (No. 4) with $\mathbf{a} = 11.166(1)$ Å, $\mathbf{b} = 10.690(1)$ Å, $\mathbf{c} = 11.523(1)$ Å, $\mathbf{B} = 94.147(2)^{\circ}$, $\mathbf{V} = 10.690(1)$ Å, $\mathbf{b} = 10.690(1)$ Å, $\mathbf{c} = 11.523(1)$ Å, $\mathbf{b} = 10.690(1)$ Å, $\mathbf{c} = 10.690(1)$ Å, $\mathbf{b} = 10.690(1)$ Å, $\mathbf{c} = 11.523(1)$ Å, $\mathbf{b} = 10.690(1)$ Å, $\mathbf{b} = 10.690(1)$ Å, $\mathbf{c} = 11.523(1)$ Å, $\mathbf{b} = 10.690(1)$ Å, \mathbf{b} 1371.8(3) Å³ and Z = 2 molecules { $d_{calcd} = 1.243 \text{ gcm}^{-3}$; $\mu_a(MoK \bar{\alpha}) = 0.083 \text{ mm}^{-1}$ }. A full hemisphere of diffracted intensities (1868 10-second frames with an omega scan width of 0.30°) was measured using graphite-monochromated MoK α radiation on a Bruker SMART APEX CCD Single Crystal Diffraction System. X-rays were provided by a fine-focus sealed x-ray tube operated at 50kV and 35mA. Lattice constants were determined with the Bruker SAINT software package using peak centers for 4360 reflections. A total of 14506 integrated reflection intensities having $2\theta(MoK \bar{\alpha}) < 61.01^{\circ}$ were produced using the Bruker program SAINT; 7450 of these were unique and gave $R_{int} = 0.053$. The Bruker SHELXTL-PC software package was used to solve the structure using "direct methods" techniques. All stages of weighted full-matrix least-squares refinement were conducted using F_0^2 data with the SHELXTL-PC Version 5 software package. Final agreement factors at convergence are: R_1 (unweighted, based on F) = 0.057 for 6165 independent reflections having $2\theta(MoK_{-\overline{\alpha}}) < 61.01^{\circ}$ and $I > 2\sigma(I)$; $R_1(unweighted, based on F) = 0.066$ and wR_2 (weighted, based on F^2) = 0.126 for all 7450 independent reflections having $2\theta (MoK_{-\alpha}) <$ 61.01°. Since there were no atoms present which were heavier than oxygen, the absolute configuration could not be determined experimentally using anomalous dispersion of the xrays; the "Flack" absolute structure parameter refined to a final value of 1.1(8).

The structural model incorporated anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. The two methyl groups (C_{21} , C_{23} and their hydrogens) were included in the structural model as rigid groups (assuming idealized sp³- hybridization of the carbon atom and a C-H bond length of 0.98 Å) which were allowed to rotate about their O-C bonds in least-squares refinement cycles. All additional hydrogen atoms were included in the structure factor calculations as idealized atoms (assuming sp²- or sp³-hybridization of the carbon atoms and C-H bond lengths of 0.95 - 1.00 Å) "riding" on their respective carbon atoms. The isotropic thermal parameter of each hydrogen atom was fixed at a value 1.2 (nonmethyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the carbon atom to which it is covalently bonded.

Crystalytics Company Crystal Structure Analysis Report

Compound Formula: (S-C₃₂H₃₅NO₅)

Reference Code: CGS9-0704

Johnson & Johnson Pharmaceutical Research & Development, L.L.C. Sample JNJ-19399003-AAA-23182817

Dr. Alexandra Shedlow

Description of Single-Crystal Sample and Mounting Used for Data Collection:

- 1) Color: Colorless
- 2) Shape: Rectangular parallelepiped
- 3) Dimensions: 0.14 mm. x 0.34 mm. x 0.38 mm.
- 4) Indices of Faces:
- 5) Crystal Mount: Crystal was frozen in Paratone N oil and suspended inside a nylon cryoloop.
- 6) Crystal Orientation: Crystal had a random orientation.
- 7) Comments:

Space Group and Cell Data:

- 1) Crystal System: Monoclinic Space Group and Number¹: $P2_1 C_2^2$ (No. 4)
- 2) Number of Computer-Centered Reflections Used in the Least-Squares Refinement of the Cell Dimensions: 4360 having $7.63^{\circ} < 2\theta (MoK_{\overline{\alpha}}) < 60.00^{\circ}$ and measured at $-80 \pm 2^{\circ}$ C
- 3) Lattice Constants with esd's:

a = 11.166(1) Å	$\alpha = 90.000^{\circ}$	$V = 1371.8(3) Å^3$
$\mathbf{b} = 10.690(1) \text{ Å}$	$fs = 94.147(2)^{\circ}$	Z = 2 molecules
c = 11.523(1) Å	$\gamma = 90.000^{\circ}$	$\lambda = 0.71073 \text{ Å}$

- 4) Molecular Weight:513.61 amuCalculated Density: 1.243 g·cm^{-3} 5) Linear Absorption Coefficient^{2a}: 0.083 mm^{-1} F(000) = 548.
- 6) Comments: Crystals were grown from a saturated ethanol solution.

Description of Data Collection³:

- 1) Instrument: Bruker SMART APEX CCD Single Crystal Diffraction System
- 2) X-ray Source: Sealed fine focus X-ray tube
- 3) Radiation: MoK $\bar{\alpha}$ Power: <u>50</u> kV <u>35</u> mA
- 4) <u>X</u> Monochromator: <u>X</u> Graphite __Other (Specify:) __Filter: __Nickel __Niobium __Other (Specify:)
- 5) Incident Beam Collimator Diameter: 0.5 mm Temperature: -80+2°C
- 6) Scan Axis: <u>X</u> Omega or <u>Phi</u>
- 7) Scan Width: 0.30° 20 Range of Data : 7.62° 61.01°
- 8) Sample to Detector Distance: 6.000 cm
- 9) Portion of Ewald Sphere Collected: Hemisphere
- 10) Number of frames collected: 1868 Seconds/frame: 10
- 11) Total Number of Reflections Collected: 14506
- 12) Number of Independent Reflections Collected: 7450
- 13) Data Collected: $-15 \le h \le 15$; $-14 \le k \le 14$; $-16 \le l \le 16$ $R_{int}^{4} = 0.053$

Data Reduction³:

- 1) Lorentz and Polarization Corrections? Yes
- 2) Absorption Correction: None Range of relative transmission factors:
 - _____ Empirical Correction using Measurements for Equivalent Reflections

(_____ Reflections used)

- ____ Face-Indexed Gaussian Grid Correction
- 3) Comments:

Structure Solution⁵:

- 1) Method(s) Used in Structure Solution ____Heavy-atom Patterson Techniques
 - <u>XX</u> Direct Methods a) <u>XX</u> SHELXTL/PC b) ___Other

Other Techniques

2) Hydrogen Atom Positions Located? Yes After Refinement Cycle # 2 by <u>XX</u> Difference Fourier <u>XX</u> Calculated

3) Comments:

Structure Refinement⁵: (see next page for summary of refinement cycles)

- 1) Final Scale Factor: 0.669(1)
- 2) Extinction Parameter⁶ Refined? No Final Value: Form: $k[1+0.001(x)(F_c^2)(\lambda^3)/\sin(2\theta)]^{-\frac{1}{4}}$
- 3) Anomalous Dispersion Corrections^{2b} for Which Atoms: O, N, C
- 4) Variable Occupancies for Which Atoms? None
 Atom Final Occupancy Atomic Form Factor^{2c} Used
- 5) Refinement Constraints/Restraints: The two methyl groups (C₂₁, C₂₃ and their hydrogens) were included in the structural model as rigid groups (assuming idealized sp³- hybridization of the carbon atom and a C-H bond length of 0.98 Å) which were allowed to rotate about their O-C bonds in least-squares refinement cycles. All additional hydrogen atoms were included in the structure factor calculations as idealized atoms (assuming sp²- or sp³-hybridization of the carbon atoms and C-H bond lengths of 0.95 1.00 Å) "riding" on their respective carbon atoms. The isotropic thermal parameter of each hydrogen atom was fixed at a value 1.2 (nonmethyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the carbon atom to which it is covalently bonded.
- 6) Shift/Error Analysis for Final Least-Squares Cycle⁷: Maximum Shift for all Parameters: <u>0.000</u> σ_p Mean Shift for all Parameters: <u>0.000</u> σ_p
- 7) Peaks found in Final Difference Fourier Map: There were no peaks present in the final difference Fourier map above the background level $(0.24 \text{ e}^{-}/\text{Å}^3)$. The minimum and mean electron density in the final difference Fourier were -0.28 and $0.00 \text{ e}^{-}/\text{Å}^3$, respectively. The rms deviation from the mean electron density was $0.05 \text{ e}^{-}/\text{Å}^3$.

References and Notes

- 1. "International Tables for X-Ray Crystallography", Vol. A, Kluwer Academic Publishers, Dordrecht, 1995.
- 2. "International Tables for X-Ray Crystallography", Vol. C, Kluwer Academic Publishers, Dordrecht, 1992; a) Tables 4.2.4.2pp. 193-199; b) Tables 4.2.6.8pp 219-222; c) Tables 6.1.1.4 pp 500-502.
- 3. Data acquisition and reduction was accomplished using standard versions of Bruker software for the diffraction system.
- 4. $R_{int} = \Sigma |F_o^2 F_o^2(mean)| / \Sigma [F_o]^2$
- 5. All structure determination and refinement calculations were performed on an IBM compatible 586 personal computer using the Bruker SHELXTL Version 5.0PC interactive software package.
- 6. A. C. Larson in "Crystallographic Computing", **1970**, Ed. F. R. Ahmed, Munksgaard, Copenhagen, pp 291-294.
- 7. σ_p is the estimated standard deviation of the parameter in question.
- 8. Refinement on F^2 for all reflections. Weighted R-factors wR₂ and all goodnesses of fit S are based on F², conventional R-factors R₁ are based on F, with F set to zero for negative F². The observed criterion of F² > 2sigma(F²) is used only for calculating "R-factor obs" etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.
- 9. The anisotropic thermal parameter is of the form: $\exp[-2\pi^{2}(U_{11}h^{2}a^{*2} + U_{22}k^{2}b^{*2} + U_{33}l^{2}c^{*2} + 2U_{12}hka^{*}b^{*} + 2U_{13}hla^{*}c^{*} + 2U_{23}klb^{*}c^{*})].$
- 10. The weighting scheme used is defined as: $w = 1 / [\sigma^2(F_o^2) + (a^*P)^2 + b^*P + d + e^*sin(\theta)]$ where $P = [F_o^2 + 2F_c^2]/3$. In this case, $a = \underline{0.0603}$, $b = \underline{0}$, $d = \underline{0}$ and $e = \underline{0}$.
- 11. $\underline{\mathbf{R}}_{1} = \Sigma ||\mathbf{F}_{0}| |\mathbf{F}_{c}|| / \Sigma |\mathbf{F}_{0}|$
- 12. $w\underline{R}_2 = [\Sigma[w(F_o^2 F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{\frac{1}{2}}$
- 13. GooF = S = $[\Sigma[w(F_0^2 F_c^2)^2]/(n-p)]^{\frac{1}{2}}$ where n is the total number of reflections and p is the number of parameters refined.
- 14. The value of the "Flack absolute structure parameter", x, should be 0.00 for the correct enantiomorphic description and 1.00 for the inverted description: a) H. D. Flack, *Acta Cryst.*, **1983**, *A39*, 876-881; b) G. Bernardinelli and H. D. Flack, *Acta Cryst.*, **1985**, *A41*, 500-511.

Atom	Fra	actional Coordina	tes	Equivalent Isotropic
Type ^b	10 ⁴ x	10 ⁴ y	10^4 z	Thermal Parameter, U, Å ² x 10 ^{3 c}
C ₂₈	2613(2)	1604(2)	410(2)	38(1)
C ₂₉	1740(2)	2407(2)	-79(2)	34(1)
O ₃₀	4581(1)	1374(1)	1448(1)	43(1)
C ₃₁	4317(2)	88(2)	1664(2)	38(1)
C ₃₂	5307(2)	-429(2)	2454(2)	55(1)
N ₃₃	5029(2)	-1720(2)	2759(2)	40(1)
C ₃₄	4894(2)	-1875(3)	3987(2)	70(1)
C ₃₅	4511(3)	-3210(5)	4232(4)	110(2)
C ₃₆	5359(3)	-4148(4)	3796(4)	118(2)
C ₃₇	5554(3)	-3901(3)	2556(4)	93(1)
C ₃₈	5938(2)	-2566(2)	2378(2)	55(1)

^a The numbers in parentheses are the estimated standard deviations in the last significant digit. ^b Atoms are labeled in agreement with Figure 1. ^c This is one-third of the trace of the orthogonalized U_{ij} tensor.

	C ₂₆ 3881(2)	C ₂₅ 3001(2)	C ₂₄ 1910(1)	C ₂₃ 1960(3)	O ₂₂ 2080(2)	C ₂₁ -1810(2)	O ₂₀ -2426(1)	C ₁₉ 1016(2)	C ₁₈ 1597(2)	C ₁₇ 1716(2)	C ₁₆ 1252(2)	C ₁₅ -1681(2)		O ₁₃ 93(1)	C ₁₂ 555(2)	C ₁₁ 650(2)	C ₁₀ -927(2)	C ₉ 146(2)	C ₈ 927(2)	0 ₇ 220(1)	C ₆ -2670(2)	C ₅ -2328(2)	-1335(2)	C ₃ -706(1)	C ₂ -1036(2)	C ₁ -2023(2)	Type ^b 10 ⁴ x	Atom	Table 1. Atomic Coordinates (S-C ₃₂ H ₃₅ NO ₅) ^a
2087(2)	3364(2)	4154(2)	3690(2)	2967(4)	4044(2)	4146(3)	3415(2)	2954(2)	3996(3)	5058(2)	5092(2)	3066(2)	1839(2)	1897(1)	2995(2)	4068(2)	3569(2)	4078(2)	4581(2)	4949(1)	2783(2)	2806(2)	3488(2)	4171(2)	4181(2)	3480(2)	10 ⁴ y	Fractional Coordinates	es
918(2)	899(2)	415(2)	-65(1)	-6644(2)	-5923(1)	4084(2)	3201(1)	-4452(2)	-4859(2)	-4189(2)	-3116(2)	-2398(2)	-2831(2)	-2955(1)	-3365(2)	-2673(2)	-1362(2)	-1521(2)	-508(2)	452(1)	1254(2)	125(2)	-184(2)	699(2)	1831(2)	2108(2)	10^4 z	tes	for Nonhydrogen Atoms in Crystalline
31(1)	34(1)	31(1)	26(1)	86(1)	71(1)	65(1)	48(1)	41(1)	49(1)	49(1)	39(1)	33(1)	38(1)	37(1)	34(1)	32(1)	28(1)	27(1)	27(1)	31(1)	37(1)	33(1)	27(1)	28(1)	32(1)	34(1)	Thermal Parameter, U, Å ² x 10 ³ c	Equivalent Isotropic	in Crystalline

C_{28}	C ₂₇	C_{26}	C ₂₅	C ₂₄	C ₂₃	0 ₂₂	C ₂₁	O_{20}	C ₁₉	C ₁₈	C ₁₇	C ₁₆	C ₁₅	C ₁₄	0 ₁₃	C ₁₂	C ₁₁	C ₁₀	C9	°20 C	07	C ₆	C ₅	C ₄	C ₃	C_2	C ₁	Atom Type ^c	Table 2.
36(1)	27(1)	25(1)	30(1)	27(1)		-	44(1)	48(1)	44(1)	48(1)	48(1)	39(1)	27(1)	38(1)	39(1)	32(1)	29(1)	30(1)	29(1)	27(1)	31(1)	30(1)	29(1)	26(1)	24(1)	30(1)	32(1)	U ₁₁	Anisotropic Thermal (S-C ₃₂ H ₃₅ NO ₅) ^{a,b}
20(1)	27(1)	29(1)	21(1)	26(1)	109(3)	87(1)	118(2)	58(1)	49(1)	68(2)	57(1)	41(1)	37(1)	38(1)	32(1)	38(1)	36(1)	22(1)	23(1)	24(1)	27(1)	31(1)	25(1)	20(1)	23(1)	31(1)	33(1)	Anisotropic U ₂₂	il Parameters
57(1)	38(1)	46(1)	42(1)	25(1)	42(1)	41(1)	34(1)	41(1)	31(1)	32(1)	43(1)	37(1)	34(1)	38(1)	41(1)	30(1)	30(1)	32(1)	30(1)	30(1)	34(1)	52(1)	45(1)	35(1)	36(1)	33(1)	39(1)	opic Thermal U ₃₃	1
3(1)	4(1)	0(1)	1(1)	1(1)	3(2)	18(1)	6(1)	7(1)	2(1)	14(1)	20(1)	10(1)	-4(1)	-10(1)	-2(1)	4(1)	5(1)	-2(1)	1(1)	1(1)	-5(1)	5(1)	-4(1)	1(1)	2(1)	-2(1)	6(1)	Parameters U ₂₃	for Nonhydrogen Atoms
-8(1)	0(1)	-4(1)	1(1)	2(1)	34(2)	27(1)	4(1)	15(1)	1(1)	8(1)	4(1)	-1(1)	-4(1)	-2(1)	3(1)	-1(1)	-1(1)	-1(1)	0(1)	2(1)	4(1)	9(1)	1(1)	-1(1)	2(1)	0(1)	7(1)	$({ m \AA}^2 \ge 10^3)$ U_{13}	s in Crystalline
-7(1)	-2(1)	-6(1)	-3(1)	-3(1)	33(2)	17(1)	6(1)	4(1)	17(1)	17(1)	-3(1)	1(1)	3(1)	-1(1)	7(1)	9(1)	5(1)	3(1)	4(1)	-3(1)	-3(1)	1(1)	1(1)	5(1)	5(1)	5(1)	9(1)	U ₁₂	
																													S77

Table	2.	(continued)
-------	----	-------------

Atom Type ^c	U ₁₁	Anisotr U ₂₂	opic Thermal U ₃₃	Parameters (A U ₂₃	${ m \AA}^2 \ge 10^3)$ U ₁₃	U ₁₂
C ₂₉	31(1)	27(1)	43(1)	4(1)	-9(1)	-6(1)
O ₃₀	31(1)	27(1)	69(1)	10(1)	-12(1)	-4(1)
C ₃₁	36(1)	26(1)	52(1)	8(1)	-4(1)	-2(1)
C ₃₂	51(1)	33(1)	76(2)	9(1)	-23(1)	-3(1)
N ₃₃	40(1)	33(1)	46(1)	9(1)	-7(1)	1(1)
C ₃₄	53(2)	97(2)	60(2)	12(2)	14(1)	18(2)
C ₃₅	59(2)	153(4)	118(3)	89(3)	10(2)	-12(2)
C ₃₆	76(2)	77(2)	195(4)	91(3)	-32(3)	-12(2)
C ₃₇	98(3)	34(1)	142(3)	-8(2)	-27(2)	14(2)
C ₃₈	66(2)	49(1)	51(1)	-3(1)	8(1)	5(1)

^a The numbers in parentheses are the estimated standard deviations in the last significant digit.
^b The form of the anisotropic thermal parameter is: exp[-2π²(U₁₁h²a^{*2} + U₂₂k²b^{*2} + U₃₃l²c^{*2} + 2U₁₂hka*b* + 2U₁₃hla*c* + 2U₂₃klb*c*)].
^c Atoms are labeled in agreement with Figure 1.

H _{35a}	H _{34b}	H _{34a}	H_{32b}	H _{32a}	H _{31b}	H _{31a}	H ₂₉	H ₂₈	H ₂₆	H ₂₅	H _{23c}	H _{23b}	H _{23a}	H _{21c}	H _{21b}	H_{21a}	H ₁₉	H ₁₇	H_{16}	H _{15b}	H _{15a}	H_{14b}	H_{14a}	H_8	H_6	H_5	H_2	Atom Type ^b
4469	5665	4283	5408	6068	3545	4250	1014	2480	4622	3143	2372	1106	2317	-977	-1822	-2206	935	2118	1343	-2513	-1708	-1599	-1347	1327	-3340	-2783	-596	10 ⁴ x
-3320	-1690	-1282	85	-405	19	-385	2071	726	3697	5030	2260	2767	3133	3858	5026	4056	2218	5769	5832	2932	3691	1626	1163	5352	2296	2345	4660	Fractional Coordinates 10 ⁴ y
5082	4432	4238	3168	2064	2031	924	-430	398	1217	410	-6250	-6798	-7381	4202	3847	4811	-4914	-4467	-2662	-2179	-3034	-3592	-2277	-783	1446	-457	2410	10 ⁴ z

CRYSTAL STRUCTURE ANALYSIS REPORT

REFERENCE CODE: CGS9-0704

Summary of Full Matrix Least-Squares Refinement⁸ Cycles

Cy	sin	θ/λ	Anisotropic ⁹	Isotropic	Atom	ıs		<u>R</u> 1 (u		pased on F)	<u>R</u> 2 (we	eighted,based	1 on F^2) ¹⁰	
Cycle Number	Minimum	Maximum	Atoms Number and Type	Number and Type	Positions Refined	Thermal Parameters	# Refined Parameters	<u>R</u> ₁ ¹¹	# Observed Reflections	F ₀ / σ(F ₀) Cutoff	<u>R</u> 2 ¹²	Total # Independent Reflections	'Goodness- of-fit' (Goof) ¹³	Extinction Correction
1	0.00	0.71		5 O, 1 N 32 C	X	x	153	0.127	6165	4.0	0.299	7450	2.390	
2	0.00	0.71	5 O, 1 N 32 C				343	0.081	6165	4.0	0.196	7450	1.569	
3	0.00	0.71	5 O, 1 N 32 C	*35 H			345	0.057	6165	4.0	0.126	7450	0.996	
							······							

* See Item 5 on page 3 regarding the treatment of the hydrogen atoms.

Final Statistics from Cycle #3 for All of the Reflection Data: $R_1 = 0.066$; $wR_2 = 0.126$; GOOF = 0.996 for 7450 reflections

The absolute configuration could not be determined experimentally since the "Flack" absolute structure parameter¹⁴ refined to a final value of 1.1(8).

Atom		Fractional Coordinates	
Type ^b	10 ⁴ x	10 ⁴ y	10 ⁴ z
H _{35b}	3698	-3357	3856
H_{36a}	6135	-4104	4267
H _{36b}	5027	-5000	3877
H_{37a}	4802	-4068	2073
H_{37b}	6180	-4475	2301
H _{38a}	6712	-2406	2828
H _{38b}	6052	-2421	1545

Table 3. (continued)

- σ ھ atom to which they are covalently bonded. (methyl) times the (equivalent) equivalent isotropic thermal parameter of the carbon thermal parameters of all hydrogen atoms were fixed at values 1.2 (nonmethyl) or 1.5 bond lengths of 0.95-1.00 Å) "riding" on their respective carbon atoms. The isotropic as idealized atoms (assuming sp²- or sp³-hybridization of the carbon atoms and C-H the remaining hydrogen atoms were included in the final structure factor calculations allowed to rotate about their O-C bonds in the least-squares refinement cycles. All of (using idealized sp³-hybridized geometry and a C-H bond length of 0.98 Å) which were The two methyl groups (C_{21} , C_{23} and their hydrogens) were refined as rigid rotors
- carbon. (a, b or c), where necessary, to distinguish between hydrogens bonded atoms to which they are covalently bonded; they also carry an additional literal subscript Hydrogen atoms are labeled with the same numerical subscripts as the carbon atoms to the same

The numbers in parentheses are the estimated standard deviations in the last significant	estimated standard	parentheses are the	ne numbers ir
1.340(2)	C9-C ₁₀	1.509(4)	C ₃₇ -C ₃₈
		1.485(6)	C ₃₆ -C ₃₇
1.387(3)	C ₂₈ -C ₂₉	1.492(6)	C ₃₅ -C ₃₆
1.387(2)	C ₂₇ -C ₂₈	1.522(5)	C ₃₄ -C ₃₅
1.384(3)	$C_{26}-C_{27}$	1.486(3)	$C_{31}-C_{32}$
1.382(3)	$C_{25}-C_{26}$	1.524(3)	C ₁₄ -C ₁₅
1.385(2)	C ₂₄ -C ₂₉		
1.392(2)	C ₂₄ -C ₂₅	1.509(2)	C ₁₀ -C ₁₅
1.388(3)	C ₁₈ -C ₁₉	1.479(2)	C ₉ -C ₁₁
1.374(4)	C ₁₇ -C ₁₈	1.513(2)	C ₈ -C ₂₄
1.374(3)	C ₁₆ -C ₁₇	1.506(2)	C ₈ -C ₉
1.389(3)	C ₁₂ -C ₁₉	1.466(2)	C ₄ -C ₁₀
1.400(3)	C ₁₁ -C ₁₆		
1.397(3)	C ₁₁ -C ₁₂	1.432(2)	O ₃₀ -C ₃₁
1.382(3)	C ₅ -C ₆	1.420(4)	0 ₂₂ -C ₂₃
1.394(2)	C_4-C_5	1.420(3)	0 ₂₀ -C ₂₁
1.399(2)	C_3-C_4	1.442(2)	0 ₁₃ -C ₁₄
1.380(2)	C ₂ -C ₃	1.459(2)	0 ₇ -C ₈
1.394(3)	C_1-C_6		
1.389(3)	C_1-C_2	1.371(2)	C ₂₇ -O ₃₀
		1.376(3)	C ₁₈ -O ₂₂
1.450(3)	N ₃₃ -C ₃₈	1.370(2)	C ₁ -O ₂₀
1.443(3)	N ₃₃ -C ₃₄	1.379(2)	C ₁₂ -O ₁₃
1.463(3)	C ₃₂ -N ₃₃	1.373(2)	C ₃ -O ₇
Length, A	Туре	Lengin, A	турс

C ₁₂ C ₁₁ C ₉	C9C10C15	$C_4C_{10}C_{15}$	$C_9C_{10}C_4$	$C_{10}C_{9}C_{11}$	$C_{11}C_9C_8$	$C_{10}C_9C_8$	C ₅ C ₆ C ₁	$C_6C_5C_4$	$C_5C_4C_{10}$	$C_{3}C_{4}C_{10}$	$C_5C_4C_3$	$C_2C_3C_4$	$O_7C_3C_4$	$O_7C_3C_2$	$C_3C_2C_1$	$C_2C_1C_6$	$O_{20}C_1C_6$	$O_{20}C_1C_2$)	$C_{38}N_{33}C_{32}$	$C_{34}N_{33}C_{32}$	$C_{34}N_{33}C_{38}$!	$C_{27}O_{30}C_{31}$	$C_{18}O_{22}C_{23}$	$C_1 O_{20} C_{21}$	C ₁₂ O ₁₃ C ₁₄	C ₃ O ₇ C ₈	Type ^b	
120.0(2)	119.3(2)	121.3(2)	119.4(2)	121.5(2)	117.5(1)	120.9(2)	119.4(2)	121.9(2)	125.0(2)	118.0(2)	117.0(2)	122.5(2)	120.7(2)	116.6(2)	118.9(2)	120.4(2)	115.7(2)	123.9(2)		110.5(2)	112.5(2)	110.5(2)		117.2(1)	117.7(2)	117.1(2)	117.8(1)	116.9(1)	Angle, (deg)	
$C_{36}C_{35}C_{34}$	$N_{33}C_{34}C_{35}$	$N_{33}C_{32}C_{31}$	$O_{30}C_{31}C_{32}$	$C_{10}C_{15}C_{14}$	0 ₁₃ C ₁₄ C ₁₅	$C_9C_8C_{24}$	$O_7C_8C_{24}$	$0_7 C_8 C_9$		$C_{24}C_{29}C_{28}$	$C_{29}C_{28}C_{27}$	$C_{26}C_{27}C_{28}$	$O_{30}C_{27}C_{28}$	$O_{30}C_{27}C_{26}$	C ₂₅ C ₂₆ C ₂₇	$C_{26}C_{25}C_{24}$	$C_{29}C_{24}C_{25}$	$C_{29}C_{24}C_8$	$\mathrm{C}_{25}\mathrm{C}_{24}\mathrm{C}_{8}$	$C_{18}C_{19}C_{12}$	$C_{17}C_{18}C_{19}$	O ₂₂ C ₁₈ C ₁₉	$C_{17}C_{18}O_{22}$	$C_{18}C_{17}C_{16}$	C ₁₇ C ₁₆ C ₁₁	$C_{19}C_{12}C_{11}$	O ₁₃ C ₁₂ C ₁₉	0 ₁₃ C ₁₂ C ₁₁	Type ^b	(~~~ <u>3211351705</u>)
111.9(2)	109.9(3)	109.7(2)	108.1(2)	111.6(2)	112.5(2)	113.7(1)	109.4(1)	111.7(1)		121.2(2)	119.8(2)	119.8(2)	124.1(2)	116.1(2)	119.8(2)	121.3(2)	118.2(2)	121.6(2)	120.1(2)	119.5(2)	120.1(2)	123.6(2)	116.3(2)	120.0(2)	122.0(2)	121.5(2)	117.0(2)	121.3(2)	Angle, (deg)	

Table 5. Bond Angles in Crystalline (S-C₃₂H₃₅NO₅) ^a

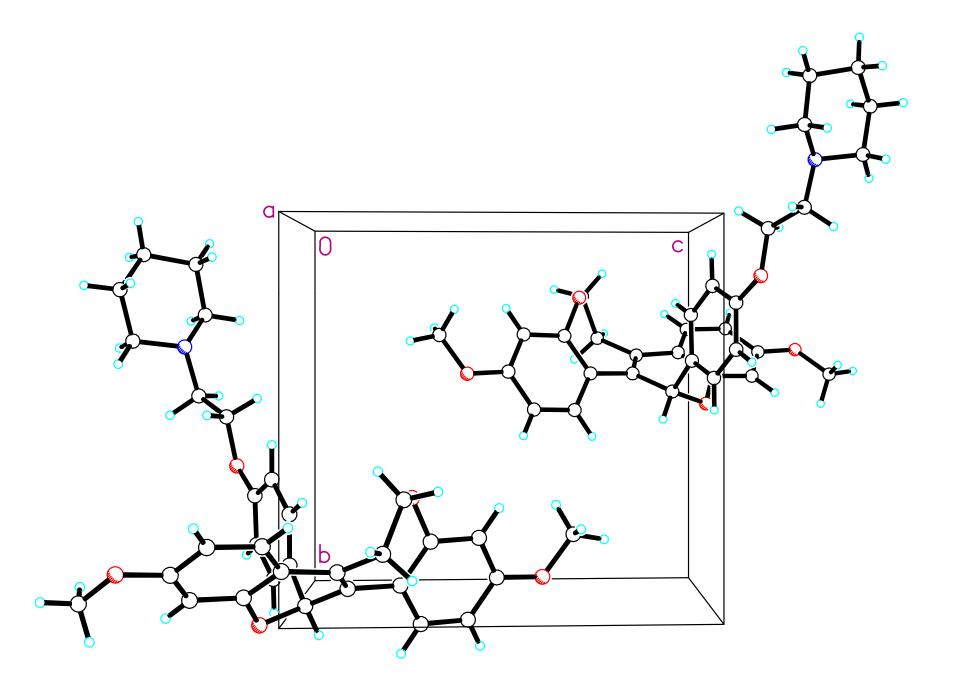
Table 5. (continued)

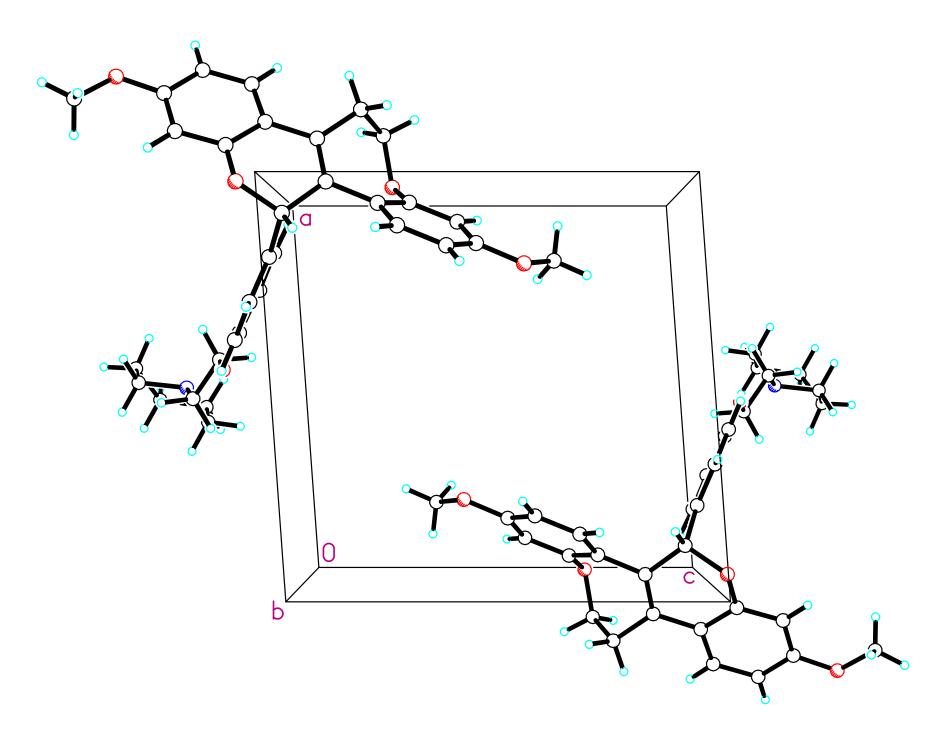
Type ^b	Angle, (deg)	Type ^b	Angle, (deg)
C ₁₆ C ₁₁ C ₉	123.1(2)	C ₃₇ C ₃₆ C ₃₅	110.2(3)
$C_{12}C_{11}C_{16}$ $N_{33}C_{38}C_{37}$	116.9(2) 109.7(2)	C ₃₆ C ₃₇ C ₃₈	111.2(3)

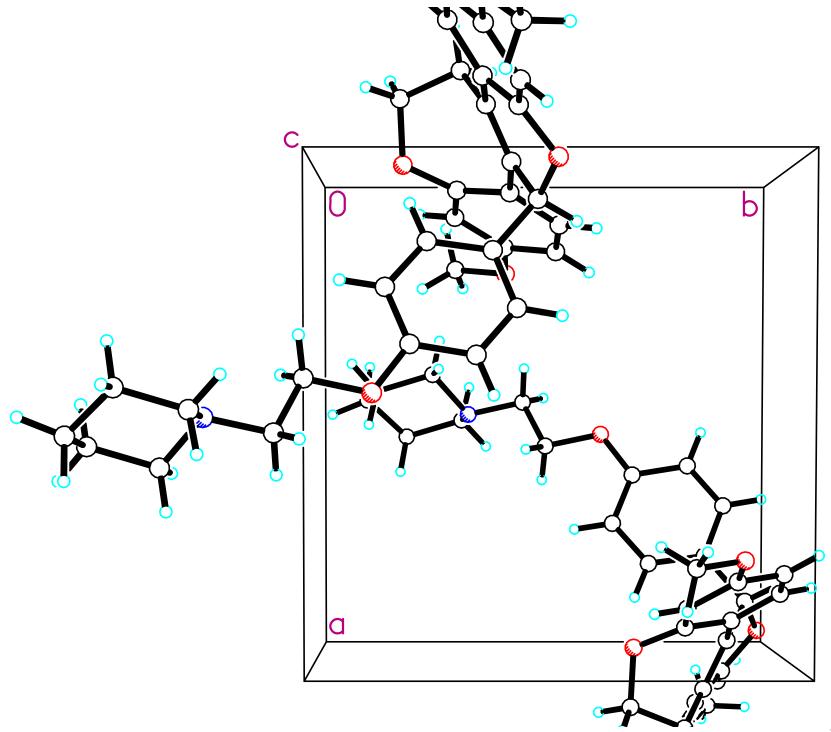
^a The numbers in parentheses are the estimated standard deviations in the last significant digit. Atoms are labeled in agreement with Figure 1. b

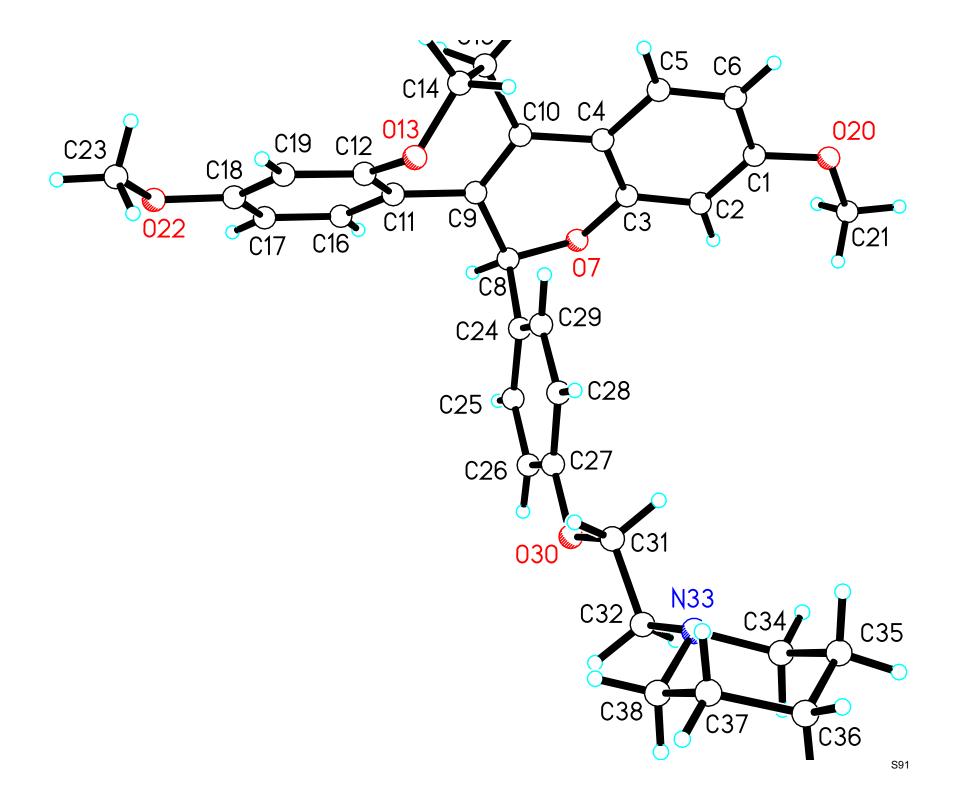
Type ^b	Angle. (deg)	Tringb	
		турс	Angle, (deg)
O ₂₀ -C ₁ -C ₂ -C ₃	179.7(2)	O ₁₃ -C ₁₄ -C ₁₅ -C ₁₀	-47.8(2)
$C_{6}-C_{1}-C_{2}-C_{3}$	-0.3(3)	$C_{12}-C_{11}-C_{16}-C_{17}$	0.9(3)
C ₁ -C ₂ -C ₃ -O ₇	175.5(2)	C ₉ -C ₁₁ -C ₁₆ -C ₁₇	179.9(2)
$C_1 - C_2 - C_3 - C_4$	0.5(3)	C ₁₁ -C ₁₆ -C ₁₇ -C ₁₈	-0.2(3)
07-C3-C4-C2	-174.6(2)	C ₁₆ -C ₁₇ -C ₁₈ -O ₂₂	179.7(2)
C ₂ -C ₃ -C ₄ -C ₅	0.2(2)	C ₁₆ -C ₁₇ -C ₁₈ -C ₁₉	-0.4(3)
$O_7 - C_3 - C_4 - C_{10}$	3.7(2)	$C_{17}-C_{18}-C_{19}-C_{12}$	0.1(3)
C ₂ -C ₃ -C ₄ -C ₁₀	178.4(2)	O_{22} - C_{18} - C_{19} - C_{12}	-179.9(2)
C ₃ -C ₄ -C ₅ -C ₆	-1.2(2)	0 ₁₃ -C ₁₂ -C ₁₉ -C ₁₈	-173.8(2)
$C_{10}-C_4-C_5-C_6$	-179.3(2)	C ₁₁ -C ₁₂ -C ₁₉ -C ₁₈	0.7(3)
$C_4 - C_5 - C_6 - C_1$	1.4(3)	$C_2 - C_1 - O_{20} - C_{21}$	2.0(3)
$O_{20}-C_1-C_6-C_5$	179.4(2)	$C_6 - C_1 - O_{20} - C_{21}$	-178.0(2)
$C_2 - C_1 - C_6 - C_5$	-0.6(3)	$C_{17}-C_{18}-O_{22}-C_{23}$	-179.2(2)
$C_2 - C_3 - O_7 - C_8$	153.2(1)	$C_{19}-C_{18}-O_{22}-C_{23}$	0.9(3)
$C_4 - C_3 - O_7 - C_8$	-31.7(2)	$O_{7}-C_{8}-C_{24}-C_{29}$	91.5(2)
$C_3-O_7-C_8-C_9$	41.1(1)	C ₉ -C ₈ -C ₂₄ -C ₂₉	-34.2(2)
C ₃ -O ₇ -C ₈ -C ₂₄	-85.8(2)	07-C8-C24-C25	-85.9(2)
O ₇ -C ₈ -C ₉ -C ₁₀	-25.3(2)	C ₉ -C ₈ -C ₂₄ -C ₂₅	148.5(2)
$C_{24}-C_8-C_9-C_{10}$	99.2(2)	$C_{29}-C_{24}-C_{25}-C_{26}$	-2.0(3)
0 ₇ -C ₈ -C ₉ -C ₁₁	159.9(1)	$C_8 - C_{24} - C_{25} - C_{26}$	175.5(2)
$C_{24}-C_8-C_9-C_{11}$	-75.7(2)	$C_{24}-C_{25}-C_{26}-C_{27}$	-0.5(3)
C_{11} - C_9 - C_{10} - C_4	173.8(2)	$C_{25}-C_{26}-C_{27}-O_{30}$	-177.9(2)
$C_8-C_9-C_{10}-C_4$	-0.8(2)	$C_{25}-C_{26}-C_{27}-C_{28}$	2.5(3)
C ₁₁ -C ₉ -C ₁₀ -C ₁₅	-5.0(3)	O_{30} - C_{27} - C_{28} - C_{29}	178.4(2)
C ₈ -C ₉ -C ₁₀ -C ₁₅	-179.6(2)	$C_{26}-C_{27}-C_{28}-C_{29}$	-2.1(3)
$C_{5}-C_{4}-C_{10}-C_{9}$	-169.0(2)	$C_{25}-C_{24}-C_{29}-C_{28}$	2.4(3)
$C_3 - C_4 - C_{10} - C_9$	12.9(2)	$C_8 - C_{24} - C_{29} - C_{28}$	-175.0(2)
$C_5 - C_4 - C_{10} - C_{15}$	9.8(3)	$C_{27}-C_{28}-C_{29}-C_{24}$	-0.4(3)
$C_3 - C_4 - C_{10} - C_{15}$	-168.3(2)	C ₂₆ -C ₂₇ -O ₃₀ -C ₃₁	169.2(2)

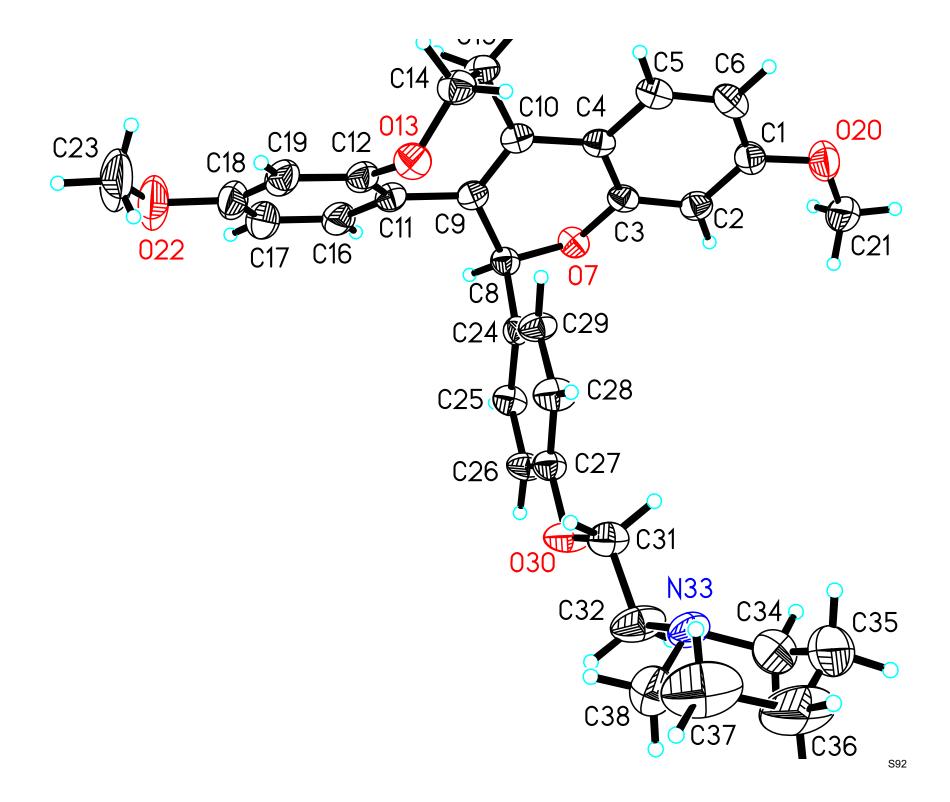
Table 6. Torsion Angles in Crystalline (S-C₃₂H₃₅NO₅) ^a


Table 6. (continued)


Type ^b	Angle, (deg)	Type ^b	Angle, (deg)
$\begin{array}{c} C_{10} - C_9 - C_{11} - C_{12} \\ C_8 - C_9 - C_{11} - C_{12} \\ C_{10} - C_9 - C_{11} - C_{16} \\ C_8 - C_9 - C_{11} - C_{16} \\ C_{16} - C_{11} - C_{12} - O_{13} \\ C_9 - C_{11} - C_{12} - O_{13} \\ C_{16} - C_{11} - C_{12} - C_{19} \\ C_9 - C_{11} - C_{12} - C_{19} \\ C_9 - C_{11} - C_{12} - O_{13} - C_{14} \\ C_{11} - C_{12} - O_{13} - C_{14} \end{array}$	$\begin{array}{c} -42.0(2) \\ 132.7(2) \\ 139.1(2) \\ -46.2(2) \\ 173.0(2) \\ -5.9(3) \\ -1.2(3) \\ 179.8(2) \\ -113.1(2) \\ 72.4(2) \end{array}$	$\begin{array}{c} C_{28} \cdot C_{27} \cdot O_{30} \cdot C_{31} \\ C_{27} \cdot O_{30} \cdot C_{31} \cdot C_{32} \\ O_{30} \cdot C_{31} \cdot C_{32} \cdot N_{33} \\ C_{31} \cdot C_{32} \cdot N_{33} \cdot C_{34} \\ C_{31} \cdot C_{32} \cdot N_{33} \cdot C_{34} \\ C_{38} \cdot N_{33} \cdot C_{34} \cdot C_{35} \\ C_{32} \cdot N_{33} \cdot C_{34} \cdot C_{35} \\ N_{33} \cdot C_{34} \cdot C_{35} \cdot C_{36} \\ C_{34} \cdot C_{35} \cdot C_{36} \cdot C_{37} \\ C_{35} \cdot C_{36} \cdot C_{37} \cdot C_{38} \end{array}$	-11.2(3) -168.2(2) 176.2(2) -116.5(2) 119.5(2) -60.4(3) 175.6(2) 55.5(4) -51.8(4) 53.4(4)
C_{12} - O_{13} - C_{14} - C_{15} C_{9} - C_{10} - C_{15} - C_{14} C_{4} - C_{10} - C_{15} - C_{14}	-37.9(2) 73.7(2) -105.1(2)	C_{34} - N_{33} - C_{38} - C_{37} C_{32} - N_{33} - C_{38} - C_{37} C_{36} - C_{37} - C_{38} - N_{33}	62.3(3) -172.6(2) -58.6(3)


^a The numbers in parentheses are the estimated standard deviations in the last significant digit. ^b Atoms are labeled in agreement with Figure 1.


FIGURE CAPTIONS


- Figure 1a. shows a perspective drawing of the solid-state structure for the $(S-C_{32}H_{35}NO_5)$ molecule. Nonhydrogen atoms are represented by 50% probability thermal vibration ellipsoids and hydrogen atoms are represented by arbitrarily-small spheres which are in no way representative of their true thermal motion.
- Figure 1b. shows a perspective drawing of the solid-state structure for the $(S-C_{32}H_{35}NO_5)$ molecule. The view is the same as in Figure 1a but atoms are now represented by: oxygen and nitrogen, medium-sized shaded spheres; carbon, medium-sized open spheres; and hydrogen, small open spheres, respectively.
- Figure 1c. shows a space-filling drawing of the solid-state structure for the $(S-C_{32}H_{35}NO_5)$ molecule. The view is the same as in Figure 1a.

