Molecular Machinery: Synthesis of a "Nanodragster"

 Supporting Information

 Supporting Information}

Guillaume Vives, ${ }^{\dagger}$ JungHo Kang, ${ }^{\dagger}$ Kevin F. Kelly, ${ }^{*, \dagger}$ and James M. Tour* ${ }^{*} \dagger, \delta$
${ }^{\dagger}$ Departments of Chemistry and ${ }^{\delta}$ Mechanical Engineering and Materials Science, and The R. E. Smalley Institute for Nanoscale Science and Technology,
${ }^{\ddagger}$ Department of Electrical and Computer Engineering Rice University, MS 222, 6100 Main Street, Houston, Texas 77005

kkelly@rice.edu; tour@rice.edu
Table of Contents for Supporting Information
General Synthetic Methods and Syntheses: S1
Spectra for Compounds 1, 4-6, 8, 10: S8
Zoomed-in image of Figure 2A: S28

General Synthetic Methods. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 500 MHz , respectively, on a Bruker Avance 400 and Avance 500 spectrometer. Proton chemical shifts (δ) are reported in ppm downfield from tetramethylsilane (TMS). Mass spectroscopy was performed at the Rice University Mass Spectrometry Laboratory or at the University of South Carolina Mass Spectrometry Laboratory. IR spectra were obtained on a Nicolet Avatar 360 FTIR. All Reagent grade tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were distilled under nitrogen over sodium benzophenone ketyl. Triethylamine and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled over CaH_{2} under nitrogen unless otherwise stated. THF and triethylamine were well-degassed with a stream of argon for 1 h before being used in the Castro-Stephens-Sonogashira coupling. All other reagents were purchased from commercial suppliers and used without further purification. Trimethylsilylacetylene (TMSA) was donated by FAR Research Inc. or Petra Research Inc. Flash chromatography was carried out using silica gel (230-400 mesh from EM science). Thin layer chromatography (TLC) was carried out on glass plates coated with silica gel 40 F254 purchased from EM Science. All reactions were conducted under a dry oxygen-free atmosphere using oven-dried glassware unless otherwise stated. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2},{ }^{1} \mathbf{2},{ }^{2} \mathbf{3}^{3}, \mathbf{7}^{3}$ and $\mathbf{9}^{2}$ were prepared using literature procedures.

[^0]General Procedure for the Coupling of a Terminal Alkyne with an Aryl Halide Using a Palladium-Catalyzed Sonogashira Coupling. To an oven-dried round-bottom flask equipped with a magnetic stir bar were added the aryl halide, the terminal alkyne, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($\mathrm{ca} 2 \mathrm{~mol} \$.$% per aryl halide), and \mathrm{CuI}$ (ca. $4 \mathrm{~mol} \%$ per aryl halide). A solvent system of $\mathrm{Et}_{3} \mathrm{~N}$ and/or THF was added depending on the substrates. Upon completion, the reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was then diluted with hexanes, diethyl ether, or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was washed with water or saturated $\mathrm{NH}_{4} \mathrm{Cl}(1 \times)$. The combined aqueous layers were extracted with hexanes, diethyl ether, or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic layers were dried over MgSO_{4}, filtered, and the solvent was removed from the filtrate in vacuo to afford the crude product, which was purified by column chromatography (silica gel). Eluents and other slight modifications are described below for each compound.

General procedure for the removal of TMS/TIPS protecting groups. To an oven-dried round-bottom flask equipped with a magnetic stir bar were added the TMS-protected compound dissolved in THF. Then to the stirred solution TBAF (ca. 1.5~2 equiv. per TMS/TIPS) was added and the mixture was stirred for $\sim 1 \mathrm{~h}$ (completion monitored by TLC). Upon completion, the reaction was diluted with $20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane and the mixture was passed through a short silica plug. The column was washed with $75 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane until the entire product was removed. The solvent was removed in vacuo to afford the product.

Compound 4. See the general procedure for the $\mathrm{Pd} / \mathrm{Cu}$ Sonogashira coupling reaction. The materials used were $2(200 \mathrm{mg}, 0.20 \mathrm{mmol}), 3(130 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14 \mathrm{mg}$, $0.02 \mathrm{mmol})$, $\mathrm{CuI}(8.0 \mathrm{mg}, 0.04 \mathrm{mmol})$, THF (10 mL), and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ at RT overnight. The crude product was purified by column chromatography (silica gel, Hexanes / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 8:2) to yield a yellow solid ($250 \mathrm{mg}, 88 \%$). FTIR 2924, 2854, 2615, 2148, 1505, 1466, 1424, 1385, $1214,1064 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz CDCl$)_{3}$) $\delta 7.38(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (dd, $J=8.1 \mathrm{~Hz} J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}$,
$1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.2-1.7(\mathrm{~m}$ broad, 30 H$), 1.50(\mathrm{~m}, 8 \mathrm{H}), 1.27(\mathrm{~m}, 48 \mathrm{H})$, $1.15(\mathrm{~s}$ broad, 21 H$), 0.87(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz CDCl 3) $\delta 154.5,154.0,153.6$, $153.4,135.3,132.2,130.9,127.0,123.8,122.1,118.2,117.2,117.0,116.7,115.0,114.5$, $114.2,113.4,103.2,96.7,92.1,91.7,91.4,91.4,87.9,70.1,69.8,69.4,32.1,29.9,29.8,29.7$, 29.7, 29.7, 29.6, 29.6, 29.5, 26.4, 26.3, 26.2, 26.2, 22.9, 18.9, 14.3, 11.6; MALDI-TOF (sulfur as the matrix): calculated for $\mathrm{C}_{81} \mathrm{H}_{134} \mathrm{~B}_{20} \mathrm{O}_{4} \mathrm{Si}$: 1416.2 found: 1416.5.

Compound 5. In a Schlenk tube, $n-\operatorname{BuLi}(0.2 \mathrm{ml}, 0.5 \mathrm{mmol}, 2.5 \mathrm{M})$ was added dropwise to a solution of $4(215 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h, then MeI ($0.1 \mathrm{ml}, 1.6 \mathrm{mmol}$) was added. The mixture was stirred another 30 min at $-78^{\circ} \mathrm{C}$, then allowed to warm to RT and was stirred for an additional 2 h . The solvent was evaporated and the mixture purified by column chromatography (silica gel, hexanes / $\mathrm{CH}_{2} \mathrm{Cl}_{2} 8: 2$) to yield 5 as a yellow solid ($215 \mathrm{mg}, 98 \%$). FTIR 2924, 2854, 2611, 2149, 1505, 1466, 1424, 1385, 1275, 1214, $1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz} \mathrm{CDCl} 3) ~ \delta 7.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95$ (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.2-1.7(\mathrm{~m}$ broad, 28 H$), 1.50(\mathrm{~m}, 8 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~m}, 48 \mathrm{H}), 1.14(\mathrm{~s}$ broad, 21 H), $0.87(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz CDCl 3) $\delta 154.56,153.98,153.67,153.47$, 135.37, 132.24, 130.92, 126.99, 123.90, 122.21, 118.17, 117.21, 117.06, 116.71, 114.95, $114.56,114.22,113.52,103.25,96.73,92.08,91.85,91.51,91.33,90.79,87.67,70.11,69.80$, $69.79,69.43,32.17,32.14,29.97,29.94,29.88,29.85,29.79,29.77,29.75,29.73,29.66$, 29.63, 29.57, 26.48, 26.38, 26.31, 26.28, 26.25, 22.94, 18.97, 14.37, 11.62; 11.6; MALDITOF (sulfur as the matrix): calculated for $\mathrm{C}_{83} \mathrm{H}_{138} \mathrm{~B}_{20} \mathrm{O}_{4} \mathrm{Si}$: 1444.3 found: 1444.5.

Compound 6. 5 was deprotected with TBAF (see the general procedure for the removal of TMS/TIPS protecting groups). The materials used were 5 ($200 \mathrm{mg}, 0.13 \mathrm{mmol}$), THF (10 mL), and TBAF ($0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}$) at RT. The resulting reaction mixture was passed through a plug of silica gel, and concentrated to afford the title compound $\mathbf{6}$ as a yellow solid ($169 \mathrm{mg}, 95 \%$). FTIR 2923, 2853, 2610, 1506, 1467, 1423, 1385, 1215, $1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta 7.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.01(\mathrm{~m}, 6 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 3.2-1.7$ (m broad, 28H), $1.50(\mathrm{~m}, 8 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~m}, 48 \mathrm{H})$, $0.87(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta 154.37,153.98,153.70,153.53,135.38$, $132.25,130.94,126.96,123.90,122.22,118.23,117.25,117.22,117.07,115.19,114.80$, 113.67, 112.77, 91.91, 91.77, 91.67, 91.28, 90.80, 82.53, 80.29, 78.30, 78.18, 70.00, 69.80, 32.16, 29.98, 29.94, 29.87, 29.84, 29.81, 29.77, 29.74, 29.70, 29.63, 29.59, 29.53, 29.43, 26.38, 26.31, 26.28, 26.23, 26.20, 22.94, 18.38, 17.94, 14.37, 13.63, 12.51; MALDI-TOF (sulfur as the matrix): calculated for $\mathrm{C}_{74} \mathrm{H}_{118} \mathrm{~B}_{20} \mathrm{O}_{4}: 1287.9$ found:1288.4.

Compound 8. See the general procedure for the $\mathrm{Pd} / \mathrm{Cu}$ Sonogashira coupling reaction. The materials used were $6(170 \mathrm{mg}, 0.13 \mathrm{mmol})$, $7(45 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(8 \mathrm{mg}$, $0.001 \mathrm{mmol}), \mathrm{CuI}(4 \mathrm{mg}, 0.002 \mathrm{mmol})$, THF $(10 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ at RT overnight. The crude product was purified by column chromatography (silica gel, hexanes / $\mathrm{CH}_{2} \mathrm{Cl}_{2} 7$:3) to yield a yellow solid. The product was immediately deprotected (see the general procedure for the removal of TMS/TIPS protecting groups) with $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg}), \mathrm{MeOH}(5 \mathrm{~mL})$ and THF (5 mL) at RT for 2 h . The resulting reaction mixture was passed through a plug of silica
gel, and concentrated to afford the title compound 8 as a fluorescent yellow solid (75 mg , 48% two steps). FTIR 2923, 2853, 2610, 1423, 1216, $1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}$ broad, 2H), $7.02(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 6 \mathrm{H}), 3.43(\mathrm{~s}$, $1 \mathrm{H}), 3.18(\mathrm{~s}, 1 \mathrm{H}), 3.2-1.7(\mathrm{~m}$ broad, 28 H$), 1.50(\mathrm{~m}, 8 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~m}, 48 \mathrm{H}), 0.87(\mathrm{~m}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz CDCl 3) $\delta 154.06,154.01,153.73,153.68,135.70,135.38,132.85$, $132.25,131.44,130.93,127.05,126.98,124.71,123.91,122.81,122.22,117.92,117.40$, $117.28,117.11,115.25,114.88,113.71,113.69,92.38,91.97,91.91,91.31,91.16,90.81$, $87.69,83.02,82.54,82.05,79.66,78.31,78.20,70.09,69.92,69.85,69.82,32.16,32.14$, $29.98,29.94,29.90,29.88,29.84,29.77,29.75,29.73,29.66,29.63,29.60,29.58,26.38$, 26.31, 26.29, 26.26, 22.93, 14.36; MALDI-TOF (sulfur as the matrix): calculated for $\mathrm{C}_{84} \mathrm{H}_{122} \mathrm{~B}_{20} \mathrm{O}_{4}$: 1412.1 found:1412.5.

Compound 10. See the general procedure for the $\mathrm{Pd} / \mathrm{Cu}$ Sonogashira coupling reaction. The materials used were $8(75 \mathrm{mg}, 0.053 \mathrm{mmol}), 9(100 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14 \mathrm{mg}$, $0.02 \mathrm{mmol}), \mathrm{CuI}(8.0 \mathrm{mg}, 0.04 \mathrm{mmol})$, THF (10 mL), and $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{~mL})$ at RT overnight. The crude product was purified by column chromatography (silica gel, Hexanes / $\mathrm{CH}_{2} \mathrm{Cl}_{2} 7: 3$) to yield 10 as a fluorescent yellow solid ($50 \mathrm{mg}, 39 \%$). FTIR 2924, 2853, 2611, 1502, 1466, 1425, 1379, 1275, 1216, 1022, $843 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} \mathrm{CDCl}{ }_{3}$) $\delta 7.70(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.00$ $(\mathrm{s}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.93(\mathrm{~m}, 12 \mathrm{H})$, $3.82(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.2-1.7(\mathrm{~m}$ broad, 36 H$), 1.50(\mathrm{~m}, 16 \mathrm{H}), 1.41$ $(\mathrm{s}, 6 \mathrm{H}), 1.27(\mathrm{~m}, 96 \mathrm{H}), 0.87(\mathrm{~m}, 24 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz $\left.\mathrm{CDCl}_{3}\right) \delta 154.48,154.36,154.00,153.84,153.81,153.78,153.70,153.68,153.58,135.39$, $132.26,131.73,131.06,130.91,127.00,126.57$, 125.95, 123.87, 123.43, 122.21, 117.80,
117.57, 117.44, 117.23, 117.20, 117.06, 117.04, 117.03, 114.96, 114.84, 114.49, 114.27, $114.21,114.01,113.59,101.36,101.30,100.55,100.43,94.16,93.89,93.19,92.35,91.97$, $91.94,91.88,91.35,91.11,90.77,88.43,87.68,70.22,70.12,69.79,69.74,69.72,69.70$, 69.44, 32.17, $32.15,29.90,29.85,29.66,29.61,29.59,26.29,22.93,14.38,0.21$, MALDITOF (sulfur as the matrix): calculated for $\mathrm{C}_{146} \mathrm{H}_{226} \mathrm{~B}_{20} \mathrm{O}_{8} \mathrm{Si}_{2}$: 2381.7 found: 2382.6

Nanodragster 1. To a solution of $10(24 \mathrm{mg}, 0.010 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added dropwise TBAF ($0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$). 30 min after the addition of TBAF, the resulting reaction mixture was passed through a plug of silica gel, and concentrated to a yellow solid ($22 \mathrm{mg}, 98 \%$). This material was pure enough to carry on to the next reaction. To an ovendried 250 mL round-bottom flask equipped with a magnetic stir bar were added the deprotected product ($22 \mathrm{mg}, 0.0098 \mathrm{mmol}$) and $\mathrm{C}_{60}(28 \mathrm{mg}, 0.038 \mathrm{mmol})$. After adding THF $(120 \mathrm{~mL})$, the mixture was sonicated for 3 h . To the greenish-brown suspension formed after sonication was added LHMDS ($0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$) dropwise at room temperature over 0.5 h . As the reaction progressed, the mixture turned into a deep greenish-black solution. During the addition of LHMDS, small aliquots from the reaction were extracted and quenched with trifluoroacetic acid (TFA), dried and redissolved in CS_{2} for TLC analysis (developed in a mixture of $\mathrm{CS}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and hexanes 5:2:3). Completion of the reaction was confirmed by the disappearance of the starting materials. Upon completion, the reaction was quenched with TFA to give a brownish slurry. Excess TFA and solvent were then removed in vacuo to afford a crude product which was then dissolved in CS_{2} and directly loaded onto a column $\left(\mathrm{SiO}_{2}\right)$. The column was eluted with CS_{2} to remove unreacted C_{60}, followed by $\mathrm{CS}_{2} /$ Hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:3:2) to afford the nanodragster 1 as a brown solid ($14 \mathrm{mg}, 41 \%$). FTIR 2923, 2852, 2609, 1504, 1464, 1423, 1377, 1275, 1216, $1021 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}$,
$1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}$, $1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~m} ; 4 \mathrm{H}), 4.11(\mathrm{~m} ; 4 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.99(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 4 \mathrm{H}), 3.2-1.7(\mathrm{~m}$ broad, 36 H$), 1.50(\mathrm{~m}, 16 \mathrm{H}), 1.41(\mathrm{~s}$, $6 \mathrm{H}), 1.27(\mathrm{~m}, 96 \mathrm{H}), 0.87(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz} \mathrm{CDCl}{ }_{3}\right) \delta 154.89,154.76,154.05$, 154.03, 153.99, 153.95, 153.91, 153.86, 153.84, 153.81, 153.70, 151.88, 151.84, 151.80, $151.72,147.95,147.67,146.97,146.93,146.90,146.88,146.70,146.61,146.54,146.15$, $146.12,146.08,146.04,146.01,145.95,145.92$, 145.87 , 145.76, 145.68, 145.00, 144.97, $144.82,144.81,143.50,143.32,142.91,142.88,142.85,142.44,142.41,142.36,142.30$, $142.28,142.20,141.99,141.97,141.92,140.69,140.68,140.62,140.61,136.40,136.37$, $135.50,135.46,135.39,134.58,132.25,131.76,131.19,130.92,130.90,126.97,126.95$, $126.79,126.10,123.86,123.53,123.00,122.21,118.19,117.85,117.65,117.61,117.60$, $117.55,117.29,117.26,117.23,117.17,117.09,117.07,117.03,116.99,116.97,115.98$, $115.95,115.56,115.35,115.29,115.05,114.98,114.86,114.79,114.58,114.28,113.68$, $113.65,113.52,113.38,113.12,100.21,98.03,94.53,94.29,93.25,92.46,92.07,91.94$, $91.91,91.31,91.29,90.75,88.49,87.68,70.29,70.02,69.83,69.79,69.71,69.54,62.22$, $62.18,55.81,32.26,32.20,32.18,32.15,30.24,30.18,30.15,30.07,30.04,29.97,29.96$, 29.93, 29.90, 29.87, 29.79, 29.76, 29.72, 29.68, 29.63, 29.57, 26.38, 26.36, 26.32, 26.31, 22.99, 22.96, 14.45, 14.41; MALDI-TOF (sulfur as the matrix): calculated for $\mathrm{C}_{260} \mathrm{H}_{210} \mathrm{~B}_{20} \mathrm{O}_{8}$: 3678.7 found: 3678.9
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $1,4-6,8,10$
Compound 4

Compound 5

Compound 6

Compound 8

Compound 10

Compound 1

Zoomed-in image of Figure 2A

STM image of the bottom nanodragsters (bias voltage $\left[V_{\text {bias }}\right]=-75 \mathrm{mV}$, tunneling current $\left[I_{t}\right]$ $=0.3 \mathrm{nA}$, image size : $7.8 \times 7.8 \mathrm{~nm}^{2}$).

[^0]: ${ }^{1}$ Itatani, H.; Bailar, J. C., J. Am. Oil Chem. Soc. 1967, 44, 147.
 ${ }^{2}$ Shirai, Y.; Zhao, Y.; Cheng, L.; Tour, J. M. Org. Lett. 2004, 6, 2129-2132.
 ${ }^{3}$ Morin, J.-F.; Sasaki, T.; Shirai, Y.; Guerrero, J. M.; Tour, J. M. J. Org. Chem. 2007, 72, 9481-9490.

