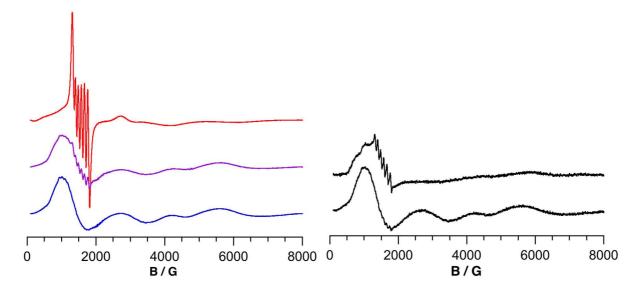
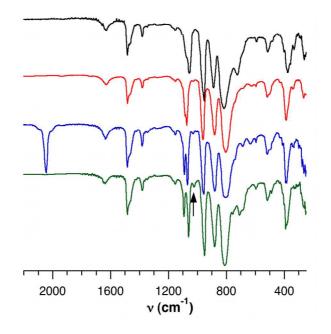

Photochemical activation of an azido manganese-monosubstituted Keggin polyoxometalate: on the road to a Mn(V)-nitrido derivative.

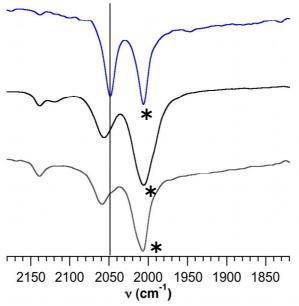

G. Izzet, E. Ishow, J. Delaire, C. Afonso, J.-C. Tabet, A. Proust*

anna.proust@upmc.fr

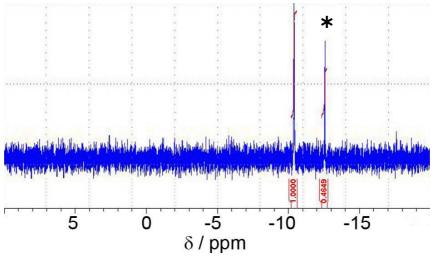
Supporting Information

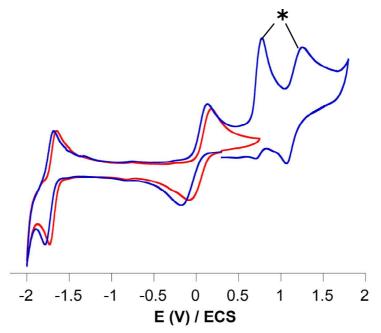


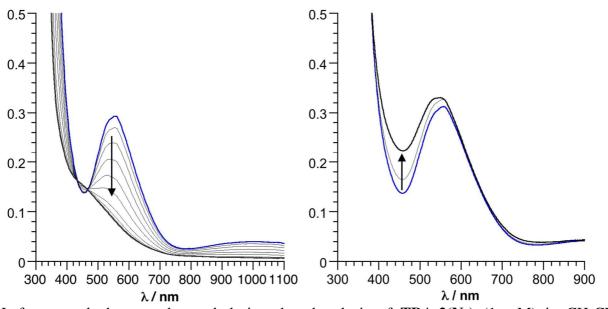
Effect of temperature on the absorbance spectral profile for $TBA-2(N_3)$ in butyronitrile. Spectra were recorded from room temperature (red curve) to 140 K (blue curve).



Left: Evolution of the EPR spectrum (X band) of $TBA-1(OH_2)$ (red) upon addition of increasing amounts of $TBAN_3$ in CH_3CN (77 K). The blue plot corresponds to the signal of $TBA-1(N_3)$ while the purple one corresponds to a mixture of $TBA-1(OH_2)$ and $TBA-1(N_3)$.


Right up: EPR spectrum (X band) of a photolysed solution (room temperature, $\lambda_{exc} = 335$ nm) of **TBA-2(N₃)** (0.5 mM, 2 eq. of TBAN₃ per Mn^{III}) in CH₃CN. Right down: same sample after addition of an excess of TBAN₃.


IR spectra of **TBA-1(OH₂)** (black), **TBA-2(OH₂)** (red), **TBA-2(N₃)** (blue) and **TBA-3** in KBr (the arrow indicates the very weak band at 1023 cm⁻¹ that was assigned to the Mn-N stretch).


1800-2200 cm⁻¹ region of the IR spectra of solutions of **TBA-2(N₃)** (0.5 mM, 2 eq. of TBAN₃ per Mn^{III}) in MeCN (blue), **TBA-1(N₃)** (1 mM, large excess of TBAN₃) in MeCN (black) and photolysed solution (room temperature, $\lambda_{exc} = 335$ nm) of **TBA-2(N₃)** (0.5 mM, 5 eq. of TBAN₃ per Mn^{III}) in CH₃CN (grey). The peaks marked by ***** corresponds to the free N₃⁻¹ present in solution.

³¹P NMR (CD₃CN/CH₃CN, 121.5 MHz) spectrum of a solution of **TBA-3** obtained by photolysis at -30°C with $\lambda_{exc} = 313$ nm of **TBA-2(N₃)** (1.0 mM, 4 eq. of TBAN₃ per Mn^{III}). The peak marked by ***** corresponds to TBA₃[PW₁₂O₄₀] (0.5 mM) used as internal reference.

Cyclic voltammograms of **TBA-2(OH**₂) (1 mM, red) and **TBA-2(N**₃) (1.0 mM, 2 eq. of TBAN₃ per Mn^{III}, blue) in CH₃CN with 10⁻¹ M TBABF₄ as supporting electrolyte versus SCE (scan rate 100 mV.s⁻¹). The waves marked by ***** correspond to the oxidation of free N₃⁻¹.

Left: spectral changes observed during the photolysis of **TBA-2(N₃)** (1 mM) in CH₃CN solution with $\lambda_{exc} = 365$ nm at room temperature. The photolysis was complete within 1 hour. Right: same experiment carried out at -30°C. After 1 hour of photolysis, (black bold curve) the reaction was still far from completion.