Direct Catalytic Asymmetric Aldol Reactions of Thioamides: Toward a Stereocontrolled Synthesis of 1,3-Polyols

Mitsutaka Iwata, Ryo Yazaki, Yuta Suzuki, Naoya Kumagai, * and Masakatsu Shibasaki* Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan mshibasa@mol.f.u-tokyo.ac.jp, nkumagai@mol.f.u-tokyo.ac.jp

1. General
2. Instrumentation
3. Materials
4. General Procedure for Direct Catalytic Asymmetric Aldol Reaction of Thioamides
5. Procedures for the Synthesis of Compounds $\mathbf{5}$ and $\mathbf{6}$
6. Determination of the Absolute Configuration of the Aldol Product
7. NMR \& MS Analyses of Catalyst—Product Complex
8. Estimation of pKa of Pentamethylchromanol by DFT Calculation
9. Characterization of Aldol Products
10. NMR spectra of New Compounds

1. General

Catalytic asymmetric aldol reaction was performed in a flame-dried 20 mL test tube with a Teflon-coated magnetic stirring bar unless otherwise noted. The test tubes were fitted with a 3-way glass stopcock and reactions were run under Ar atmosphere. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere.

2. Instrumentation

Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. NMR was recorded on JEOL LA-500, JEOL ECX-500 spectrometers. Chemical shifts for proton are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CDCl}_{3}: \delta 7.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: \delta 7.16 \mathrm{ppm}\right)$. For ${ }^{13} \mathrm{C}$ NMR, chemical shifts were reported in the scale relative to NMR solvent $\left(\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: \delta 128.0\right)$ as an internal reference. NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, dd: doublet of doublets, t: triplet, q: quartet, sep: septet, m: multiplet, br: broad signal), coupling constant (Hz), and integration. Optical rotation was measured using a 1 mL cell with a 0.5 dm path length on a JASCO polarimeter P-1010. ESI mass spectra were measured on Waters-ZQ4000. High-resolution mass spectra (ESI TOF (+)w) were measured on JEOL AccuTOF JMS-T100LC. HPLC analysis was conducted on a JASCO HPLC system equipped with Daicel chiral stationary phase columns.

3. Materials

Unless otherwise noted, materials were purchased from commercial suppliers and were used without purification. THF was distilled from sodium/benzophenone ketyl. Dry DMF and ${ }^{n} \mathrm{BuLi}$ in n-hexane were purchased from Kanto Chemical Co. Ltd. (R, R)-Ph-BPE and (S, S)-Ph-BPE were purchased from Strem Chemical Co. Ltd. and used as received (handled in a dry box). 2,2,5,7,8-Pentamethylchromanol was purchased from Aldrich and recrystallized from benzene. $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}$ was purchased from Aldrich and used as received. Aldehydes used in Table 1 and 2 were distilled before use. o-Methoxyphenol was purchased from Wako Pure Chemical Co. Ltd. and distilled before use. $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}$ was purchased from TCI and used as received (handled in a dry box). Column chromatography was performed with silica gel Merck 60 (230-400 mesh ASTM).

4. General Procedure for the Direct Aldol Reaction of Thioamide

For Table 2, entry 1.
To a flame-dried 5 mL pear-shaped flask equipped with a magnetic stirring bar and a 3-way-top was charged with 2,2,5,7,8-pentamethylchromanol ($17.6 \mathrm{mg}, 0.08 \mathrm{mmol}$) and dried under vacuum for 60 min . Ar was back-filled to the flask and dry THF $(0.4 \mathrm{~mL})$ was added via a stainless steel needle and a syringe. To the solution was added ${ }^{n} \mathrm{BuLi}\left(51 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1.57 \mathrm{M}\right.$ in n-hexane) at $-78{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 60 min to give 0.2 M lithium 2,2,5,7,8-Pentamethylchromanolate solution in THF, which was stored at room temperature and used within 15 min .

To a flame-dried 5 mL pear-shaped flask equipped with a magnetic stirring bar and a 3-way-top were charged with (R, R) - Ph-BPE $(40.5 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(29.8 \mathrm{mg}, 0.08 \mathrm{mmol})$ in a dry box. To the mixture was added THF (0.8 mL) via syringe to give 0.1 M THF solution of $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu}$ solution, which was stored at room temperature and used within 3 h .

To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way-top were added (R, R)-Ph-BPE/Cu solution ($0.1 \mathrm{M} / \mathrm{THF}, 120 \mu \mathrm{~L}, 0.012 \mathrm{mmol}$), dry DMF (4 mL), N, N-diallylthioacetamide (1a) $(76.4 \mu \mathrm{~L}, 0.48 \mathrm{mmol})$ and isobutyraldehyde (2a) $(36.3 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ under Ar at room temperature. The test tube was immersed into the electronically-controlled cooling bath at $-60^{\circ} \mathrm{C}$ with 2-propanol as medium. To the solution was added lithium 2,2,5,7,8-Pentamethylchromanolate ($0.2 \mathrm{M} / \mathrm{THF}, 60 \mu \mathrm{~L}, 0.012 \mathrm{mmol}$) and stirred at $-60^{\circ} \mathrm{C}$. After 40 h of stirring, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and bipyridine (18.7 mg) were added to the reaction mixture (essential to make sure the dissociation of the product from Cu complex) and aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtrate was concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography (eluent n-hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1-1 / 5$) to give 3aa as a colorless oil ($78.8 \mathrm{mg}, 0.35$ $\mathrm{mmol}, 87 \%)$. Enantiomeric excess was determined by HPLC analysis.

(R)-N,N-Diallyl-3-hydroxy-4-methylpentanethioamide (3aa)

Colorless oil; IR (KBr) v3405, 2956, 2929, 2856, 1521, 1073, $835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.86$ (dddd, $J=17.7,10.4,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (dddd, $J=17.1,10.7,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.12(\mathrm{~m}$, $4 \mathrm{H}), 4.69(\mathrm{dd}, J=14.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=14.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.08$
 (m, 1H), 3.90 (ddd, $J=9.8,5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (brs, 1H), 2.80 (dd, $J=15.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (dd, $J=15.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right)$ $\delta 203.5,130.6,130.5,118.6,117.9,74.6,55.8,52.9,45.2,33.3,18.5,17.8 ;[\alpha]_{\mathrm{D}}{ }^{23}+92.1\left(c 1.0, \mathrm{CHCl}_{3}, 91 \%\right.$ ee sample); ESI-MS m/z 250 [M+Na] ${ }^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NNaOS} m / z 250.1232$ [M+Na] , found 250.1246; HPLC: Daicel CHIRALCEL OD-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol/ n-hexane $=1 / 99$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=17.0 \mathrm{~min}$ (minor), 22.1 min (major).
racemic sample

reaction sample

5. Procedures for the Synthesis of Compounds 5 and 6

5-1. TBS protection of 3ba.

(R)-3-(tert-Butyldimethylsilyloxy)-N,N,4-trimethylpentanethioamide (S1)

To a stirred solution of $\mathbf{3 b a}(296 \mathrm{mg}, 1.69 \mathrm{mmol}, 94 \% \mathrm{ee})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added 2,6-lutidine ($390 \mu \mathrm{~L}$, $3.38 \mathrm{mmol})$ and TBSOTf $(580 \mu \mathrm{~L}, 2.53 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring the resulting solution at room temperature for 10 h , sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated under reduced pressure and the resulting residue was purified by silica gel column chromatography (eluent: n-hexane/ethyl acetate $=1 / 0-20 / 1$) to give $\mathbf{S 1}$ as colorless oil ($479.4 \mathrm{mg}, 1.66 \mathrm{mmol}, 98 \%$ yield). Enantiomeric excess remained unchanged in the transformation as confirmed by HPLC analysis.

(R)-3-(tert-Butyldimethylsilyloxy)-N,N,4-trimethylpentanethioamide (S1)

Pale yellow oil; IR (KBr) v 2956, 2929, 2886, 2456, 1519, 1086, $962 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 4.28 (ddd, $J=9.8,3.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=12.8,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{dd}, J=12.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dsep}, J=7.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}$,

S1 $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 203.0,78.7,45.0$, $44.8,42.5,34.2,25.9,18.1,18.0,16.5,-4.2,-5.1 ;[\alpha]_{D^{23}}+52.7$ (c 1.2, $\mathrm{CHCl}_{3}, 94 \%$ ee sample); ESI-MS $m / z 312$ [M+Na] ${ }^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{NNaOSiS} m / z 312.1788$ [M+Na] ${ }^{+}$, found 312.1784; HPLC: Daicel CHIRALCEL OZ-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 99$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.5 \mathrm{~min}$ (major), 11.1 min (minor).

5-2. Reduction of thioamide functionality of S1 to aldehyde.

To a white suspension of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(597 \mathrm{mg}, 2.31 \mathrm{mmol})$ in toluene $(8.5 \mathrm{~mL})$ was added $\mathbf{S 1}(335 \mathrm{mg}, 1.16$ mmol) in toluene (17 mL) at room temperature and the resulting suspension was stirred at the same temperature for 1 h . The resulting green solution was cooled to $-78^{\circ} \mathrm{C}$ and silica gel (c.a. 600 mg) was added. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and at room temperature for 2 h , then filtered through a short pad of silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The filtrate was concentrated and the resulting residue was purified by silica gel column chromatography (eluent: n-hexane/ether $=1 / 0-15 / 1$) to give aldehyde 5 as a colorless solid ($224.7 \mathrm{mg}, 0.98 \mathrm{mmol}, 84 \%$ yield).

5-3. Direct catalytic asymmetric aldol reaction of aldehyde 5 with (R)-catalyst.

To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way-top were added (R, R)-Ph-BPE/Cu solution ($0.1 \mathrm{M} / \mathrm{THF}, 180 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$, prepared by following the procedure described in section 4), dry DMF (1.8 mL), N, N-dimethylthioacetamide ($\mathbf{1 b}$) ($21.8 \mathrm{mg}, 0.211 \mathrm{mmol}, 500 \mu \mathrm{~L}$ in DMF) and aldehyde 5 ($40.5 \mathrm{mg}, 0.176 \mathrm{mmol}, 500 \mu \mathrm{~L}$ in DMF) under Ar at room temperature. The test tube was immersed into the electronically-controlled cooling bath at $-60^{\circ} \mathrm{C}$ with 2 -propanol as medium. To the solution was added lithium 2,2,5,7,8-Pentamethylchromanolate ($0.2 \mathrm{M} / \mathrm{THF}, 90 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$, prepared by following the procedure described in section 4) and stirred at $-60^{\circ} \mathrm{C}$. After 40 h of stirring, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and bipyridine $(8.4 \mathrm{mg})$ were added to the reaction mixture (essential to make sure the dissociation of the product from Cu complex) and aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtrate was concentrated under reduced pressure and the resulting crude residue was submitted to the NMR analysis to determine diastereomeric ratio (syn/anti= 95/5, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: syn $\delta 4.07\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC} \underline{\mathrm{H}}(\mathrm{OTBS}) \mathrm{CH}_{2} ..\right)$; anti $\left.\delta 4.23\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC} \underline{\mathrm{H}}(\mathrm{OTBS}) \mathrm{CH}_{2} ..\right)\right)$. The crude material was purified by silica gel column chromatography (eluent: n-hexane/ethyl acetate $=15 / 1-$ $5 / 1$) to give aldol product as a pale yellow oil ($45.6 \mathrm{mg}, 0.137 \mathrm{mmol}, 78 \%$ yield, 99% ee). Enantiomeric excess was determined by HPLC analysis. Relative configuration was determined after converting the each diastereomer to the corresponding di-TBS protected aldehyde S2. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR of $\mathbf{S} 2$ matched to those of syn-S2 reported in the literature. ${ }^{\text {S1 }}$

(3S,5R)-N,N-Dimethyl-5-(tert-butyldimethylsilyloxy)-3-hydroxy-6-methylheptanethioamide ((3S,5R)-6) Pale yellow oil; IR (KBr) v3406, 2955, 2929, 2856, $1519 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 4.60$ (brs, $1 \mathrm{H}), 4.54-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=7.6,5.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, J=15.9$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (dd, $J=15.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{ddd}, J=$ $13.9,9.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (ddd, $J=13.9,7.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}$,

(3S,5R)-6 $9 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 201.4,74.6,67.9,49.2,43.4,41.2,40.3$, 32.1, 26.2, 19.3, 18.4, 16.4, $-4.0,-4.4 ;[\alpha]^{24}+65.7$ (c $2.0, \mathrm{CHCl}_{3}, 99 \%$ ee sample); ESI-MS $m / z 356[\mathrm{M}+\mathrm{Na}]^{+} ;$ HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{NNaO}_{2} \mathrm{SiS} m / z 356.2050$ [M+Na] ${ }^{+}$, found 356.2056; HPLC: Daicel CHIRALPAK IC ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 9$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ $=6.7 \mathrm{~min}$ (minor), 12.1 min (major).

	tR $[\mathrm{min}]$	
Unknown	5.892	30.529
Unknown	6.942	19.362
Unknown	13.133	19.372
Unknown	18.792	30.737

5-4. Direct catalytic asymmetric aldol reaction of aldehyde 5 with (S)-catalyst.
To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way-top were added (S, S)-Ph-BPE/Cu solution $(0.1 \mathrm{M} / \mathrm{THF}, 180 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$, prepared by following the procedure described

[^0]Direct Catalytic Asymmetric Aldol Reactions of Thioamides: Toward a Stereocontrolled Synthesis of 1,3-polyols in section 4), dry DMF (1.8 mL), N, N-dimethylthioacetamide ($\mathbf{1 b}$) ($21.8 \mathrm{mg}, 0.211 \mathrm{mmol}, 500 \mu \mathrm{~L}$ in DMF) and aldehyde 5 ($40.5 \mathrm{mg}, 0.176 \mathrm{mmol}, 500 \mu \mathrm{~L}$ in DMF) under Ar at room temperature. The test tube was immersed into the electronically-controlled cooling bath at $-60^{\circ} \mathrm{C}$ with 2 -propanol as medium. To the solution was added lithium 2,2,5,7,8-Pentamethylchromanolate ($0.2 \mathrm{M} / \mathrm{THF}, 90 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$, prepared by following the procedure described in section 4) and stirred at $-60^{\circ} \mathrm{C}$. After 40 h of stirring, sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. and bipyridine $(8.4 \mathrm{mg})$ were added to the reaction mixture (essential to make sure the dissociation of the product from Cu complex) and aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtrate was concentrated under reduced pressure and the resulting crude residue was submitted to the NMR analysis to determine diastereomeric ratio (syn/anti = $11 / 89,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: syn $\delta 4.07\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC} \underline{\left.\left.(\mathrm{HTBS}) \mathrm{CH}_{2 . .}\right) \text {; anti } \delta 4.23\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC} \underline{H}(\mathrm{OTBS}) \mathrm{CH}_{2} . .\right)\right) \text {. The }, ~}\right.$ crude material was purified by silica gel column chromatography (eluent: n-hexane/ethyl acetate = 15/1$5 / 1$) to give aldol product as a pale yellow oil ($41.7 \mathrm{mg}, 0.125 \mathrm{mmol}, 71 \%$ yield, $99 \% \mathrm{ee}$). Enantiomeric excess was determined by HPLC analysis. Relative configuration was determined after converting the major diastereomer to the corresponding di-TBS protected aldehyde S2. Chemical shifts in ${ }^{1} \mathrm{H}$ NMR of $\mathbf{S} 2$ matched to those of anti-S2 reported in the literature. ${ }^{51}$

(3R,5R)-N,N-Dimethyl-5-(tert-butyldimethylsilyloxy)-3-hydroxy-6-methylheptanethioamide ((3R,5R)-6) Pale yellow oil; IR (KBr) v3418, 3083, 2959, 2874, $1643 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 4.78$ (brs, $1 \mathrm{H}), 4.68-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.23$ (ddd, $J=9.5,4.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{dd}, J=16.2$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=16.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=$ $13.4,10.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=$

$(3 R, 5 R)-6$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (C6 $\left.\mathrm{C}_{6}\right) \delta 201.7,73.3,66.0,49.1,43.3,40.0,39.2,34.5,26.3,18.5$, 18.4, 17.1, $-4.0,-4.3 ;[\alpha]_{D^{24}}-50.2$ (c 1.3, $\mathrm{CHCl}_{3}, 99 \%$ ee sample); ESI-MS $m / z 356[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{NNaO}_{2} \mathrm{SiS} m / z 356.2050[\mathrm{M}+\mathrm{Na}]^{+}$, found 356.2047; HPLC: Daicel CHIRALPAK IC $(\phi$ $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 9$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.7 \mathrm{~min}$ (major), 16.2 min (minor).

6. Determination of the Absolute Configuration of Aldol Products 3

Synthesis of (-)-(S)-3ba and (-)-(S)-S3 through auxiliary approach was reported (Cinquini, M.; Manfredi, A.; Molinari, H.; Restelli, A. Tetrahedron 1985, 41, 4929). The optical rotation of 3ba prepared from (R)-catalyst in Table 2, entry 2 was $[\alpha]_{D^{22}}+147.7$, indicating that the absolute configuration of 3ba prepared in our protocol is $(+)-(R)-3$ ba as shown below. The direct aldol reaction of pivalaldehyde (2b) and N, N-dimethylthioacetamide (1b) with (R)-catalyst gave the corresponding aldol product $\mathbf{S 2}$ with 87% ee and ${ }^{(+)}$optical rotation, indicating that the absolute configuration of $\mathbf{S 3}$ produced by the present protocol was $(+)-(R)$.

Product 3aa derived from N, N-diallylthioacetamide (1a) was converted to the aldehyde 5 . The optical rotation of 5 prepared from 3aa and 3ba was nearly identical, indicating that the absolute configuration of the aldol product from N, N-diallylthioacetamide (1a) was identical to that obtained from N, N-dimethylthioacetamide (1b).

The sign of the optical rotation of other aldol products was uniformly (+). The absolute configuration of the other aldol products 3 in Table 2 was deduced by analogy.

7. NMR \& MS Analyses of Catalyst-Product Complex

In the direct aldol reaction of N, N-diallylthioacetamide (1a) and isobutyraldehyde (2a) in THF solvent with $10 \mathrm{~mol} \%$ of catalyst (Table 1, entry 1), sampling a small aliquot of the reaction mixture followed by TLC analysis showed no spots corresponding to the desired product 3aa, likely due to the tight complexation of the product and catalyst $\left((R, R)\right.$-Ph-BPE/Cu complex). As shown in Figure $\mathrm{S} 1(\mathrm{a}),{ }^{1} \mathrm{H}$ NMR of a mixture of (R, R) - Ph-BPE $/\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}: 3 \mathrm{aa}=1: 1$ in CDCl_{3}, broad peaks were observed, suggesting that the formation of the Cu complex. In ESI MS spectrum of the mixture (Figure S1 (d)), $(R, R)-\mathrm{Ph}-\mathrm{BPE} /\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6} / 3 \mathbf{a a}=1: 1$ complex was most prominently observed and the intensity of the peak derived from free 3aa was weak, indicating that the complexation of $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu}$ complex and 3aa was sufficiently strong, and would arrest the catalytic turnover. In Figure S 1 (f), the addition of pyridine would somewhat effective for releasing the 3aa from $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu}$ complex, however, the population of $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu} / 3$ aa complex was still high. The beneficial effect of pyridine for catalytic turnover in (Table 2, entry 2 and 3) would be come from the competitive coordination of pyridine to $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu}$ complex. As shown in Figure S1 (b) and (e), by the addition of 3 equivalents of bipyridine, 3aa was completely released from $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu}$ complex, showing a $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu} /$ bipyridine complex and free 3aa in ${ }^{1} \mathrm{H}$ NMR and ESI MS. Bipyridine was used to make sure the release of the aldol product from the (R, R) - Ph -BPE/Cu complex in the work-up procedure as described above.

Direct Catalytic Asymmetric Aldol Reactions of Thioamides: Toward a Stereocontrolled Synthesis of 1,3-polyols
(a) ${ }^{1} \mathrm{H}$ NMR of $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu}: 3 \mathrm{aa}=1: 1$ in CDCl_{3}

(b) ${ }^{1} \mathrm{H}$ NMR of the above mixture in CDCl_{3} after treatment with s equivalents of bipyridine.

(c) ${ }^{1} \mathrm{H}$ NMR of 3 aa in CDCl_{3}

Direct Catalytic Asymmetric Aldol Reactions of Thioamides: Toward a Stereocontrolled Synthesis of 1,3-polyols (d) ESI MS (positive ion mode) of $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu}: 3 \mathrm{aa}=1: 1$.

(e) ESI MS (positive ion mode) of (R, R)-Ph-BPE/Cu : 3aa : bipyridine $=1: 1: 3$.

(f) ESI MS (positive ion mode) of $(R, R)-\mathrm{Ph}-\mathrm{BPE} / \mathrm{Cu}:$ 3aa : pyridine $=1: 1: 3$.

Figure S1.

8. Estimation of $\mathbf{p K a}$ of Pentamethylchromanol by DFT Calculation

Calculations were performed on Jaguar version 7.0 released in 2007 (Jaguar version 7.0, Schrödinger, LLC, New York, NY, 2007) using the B3LYP level of density functional theory. ${ }^{52}$ The $6-31 \mathrm{G}+(\mathrm{d}, \mathrm{p})$ basis set of Pople and coworkers was used. ${ }^{\text {S3 }}$

Geometry optimization of 2,2,5,7,8-pentamethylchromanol.

Input geometry:
angstroms

atom	x	y	z
C1	-2.3669160000	-0.2128210000	0.2147680000
C2	-3.1824290000	1.0040760000	0.5321580000
C3	-4.5396300000	0.9600530000	0.4367290000
C4	-5.2157040000	-0.3383670000	0.1295650000
C5	-4.4856840000	-1.4839990000	0.0281360000
C6	-2.9826190000	-1.3922010000	-0.0453750000
O7	-6.5955840000	-0.3409590000	0.0130140000
O8	-0.9682530000	-0.1915060000	0.2023630000
C9	-0.3958800000	1.0938360000	0.0319240000
C10	-0.9632390000	2.0887920000	1.0642890000
H11	-0.7765740000	1.6957920000	2.0890260000
H12	-0.4516810000	3.0735260000	0.9820830000
C13	-2.4630200000	2.2901350000	0.8904830000
H14	-2.8620430000	2.7001400000	1.8430620000
H15	-2.6355710000	3.0425750000	0.0907470000
C16	-0.5850570000	1.5854230000	-1.4230710000
H17	-1.6573560000	1.6628730000	-1.6959730000
H18	-0.1186410000	2.5846650000	-1.5605200000
H19	-0.1130840000	0.8730330000	-2.1333060000
C20	1.1134900000	0.9483360000	0.2899110000
H21	1.6342450000	1.9229150000	0.1669760000
H22	1.2972360000	0.5767840000	1.3212470000
H23	1.5597190000	0.2177150000	-0.4190010000
C24	-2.2109850000	-2.4774980000	-0.4104300000
H25	-2.7960710000	-3.3380180000	-0.7889000000
H26	-1.5275540000	-2.2039430000	-1.2447910000
H27	-1.6071280000	-2.8219280000	0.4567470000
C28	-5.1025340000	-2.7175380000	0.0509020000
H29	-4.5279280000	-3.4283040000	0.6828380000
H30	-6.1091700000	-2.6983200000	0.5212970000
H31	-5.1885190000	-3.1183410000	-0.9813480000
C32	-5.2987860000	2.0921750000	0.6468070000
C1			
H	-1000		

[^1]| H33 | -6.3864140000 | 1.9325070000 | 0.5069920000 |
| :--- | ---: | ---: | ---: |
| H34 | -5.1671140000 | 2.4570820000 | 1.6876130000 |
| H35 | -5.0085140000 | 2.8902460000 | -0.0696680000 |
| H36 | -6.8560490000 | -0.9982450000 | -0.6824370000 |

Final optimized geometry:

atom	x	y	z
C1	-1.0352573572	0.5102254941	-0.4071646233
N2	-0.1966412484	-0.0005486915	-1.3479941835
O3	-0.7503184435	1.4595032404	0.3056480205
H4	-0.5023402931	-0.7000023139	-2.0078247366
H5	0.6616974115	0.5021163122	-1.5262089221
C6	-2.3922932101	-0.2205345814	-0.2158900014
C7	-3.4891079217	0.8429676228	-0.2897155591
O8	-4.2364215795	0.8537809561	0.8252102922
O9	-3.6809803277	1.5647868916	-1.2458702864
C10	-5.3191902118	1.8162925025	0.8516803864
H11	-4.8936926764	2.8192420424	0.7489381187
H12	-5.9663693394	1.6380672355	-0.0128891043
C13	-6.0533501957	1.6349904735	2.1666127854
H14	-6.4640609531	0.6233705077	2.2496459347
H15	-5.3830972182	1.8065430383	3.0148308497
H16	-6.8812346932	2.3494481481	2.2304859126
C17	-3.1654654908	-3.5667388626	-2.8592754012
C18	-3.2517067956	-2.2612196274	-3.3463968076
C19	-3.0140356740	-1.1757845108	-2.5021550457
C20	-2.6853723610	-1.3839005917	-1.1525156191
C21	-2.6029069811	-2.6985860871	-0.6739575001
C22	-2.8412163742	-3.7824608487	-1.5192532154
H23	-3.3528311256	-4.4100356826	-3.5187686549
H24	-3.5101829485	-2.0843633152	-4.3872398978
H25	-3.1005723011	-0.1598409822	-2.8753767907
H26	-2.3498385310	-2.8733672312	0.3694436858
H27	-2.7752135011	-4.7949808368	-1.1293616722
H28	-2.3656755996	-0.5931368631	0.8123235781

1176.296150614 hartrees

Abstract

Calculation of pKa value of hydrogen 36 H was performed on the obtained optimized geometry. The calculation was performed by following the method described in ref S3, using ab initio quantum chemical calculation on Jaguar 7.0 platform. Calculated pKa value of hydrogen $36 \mathrm{H}^{\text {in }} \mathrm{H}_{2} \mathrm{O}$ was 12.3. ${ }^{54}$ Experimentally determined pKa of 2-methoxyphenol is reported as 9.90 (calculated as 9.62), ${ }^{55}$ thus lithium salt of 2,2,5,7,8-pentamethylchromanol is much stronger base than lithium salt of 2-methoxyphenol.

[^2]
9. Characterization of Aldol Products

(R)-3-Hydroxy-N,N,4-trimethylpentanethioamide (3ba)

Pale yellow oil; IR (KBr) v3309, 2959, 2875, 1670, 1523, 1395, $846 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $4.05(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=15.6,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.3,74.7,45.8,44.7,41.9,33.5,18.9,18.1 ;[\alpha]_{\mathrm{D}}{ }^{22}+147.7$ (c 1.3,

3ba $\mathrm{CHCl}_{3}, 94 \%$ ee sample); ESI-MS $m / z 198$ [M+Na] ${ }^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}_{2} \mathrm{~m} / \mathrm{z}$ $373.1954[2 \mathrm{M}+\mathrm{Na}]^{+}$, found 373.1946; HPLC: CHIRALCEL OD-H $(\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, 2 -propanol $/ n$-hexane $=$ $1 / 19$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.5 \mathrm{~min}$ (minor), 14.7 min (major).

$$
\text { racemic sample } \quad \text { reaction sample }
$$

(R)-N,N-Diallyl-3-cyclohexyl-3-hydroxypropanethioamide (3ab)

Colorless oil; IR (KBr) v 3408, 2925, 2852, 1642, $1492 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.88$ (dddd, $J=17.1,10.4,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ (dddd, $J=17.1,9.9,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.30-5.14(\mathrm{~m}, 4 \mathrm{H}), 4.70(\mathrm{dd}, J=14.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=14.9,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{ddd}, J=9.9,5.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{brs}, 1 \mathrm{H})$,
 $2.81(\mathrm{dd}, J=15.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=15.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.03(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 203.6,130.6,130.5,118.7,117.9,74.1,55.8,52.9,45.5,43.3,29.0,28.3,26.5,26.3,26.2 ;$ $[\alpha]_{\mathrm{D}}{ }^{22}+84.1$ (c 1.1, $\mathrm{CHCl}_{3}, 92 \%$ ee sample); ESI-MS $m / z 290[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NNaOS} m / z 290.1549[\mathrm{M}+\mathrm{Na}]^{+}$, found 290.1544; HPLC: Daicel CHIRALCEL OD-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 99$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.4 \mathrm{~min}$ (minor), 12.5 min (major). racemic sample reaction sample

(R)-N,N-Diallyl-3-hydroxy-4,4-dimethylpentanethioamide (3ac)

Colorless oil; IR (KBr) v 3419, 3083, 2956, 2870, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.89$ (dddd, $J=17.1,10.4,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (dddd, $J=17.1,10.4,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}$),
 $5.31-5.15(\mathrm{~m}, 4 \mathrm{H}), 4.72(\mathrm{dd}, J=15.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.08(\mathrm{~m}$, $1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=15.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=15.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (brs, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 203.9,130.6,130.6,118.6,117.9,77.6,55.9,52.9,43.5,34.7,25.8 ;[\alpha]_{\mathrm{D}}{ }^{22}+70.0(c 1.1$, $\mathrm{CHCl}_{3}, 92 \%$ ee sample); ESI-MS $\mathrm{m} / \mathrm{z} 290[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NNaOS} \mathrm{m} / \mathrm{z}$ $264.1393[\mathrm{M}+\mathrm{Na}]^{+}$, found 264.1388; HPLC: Daicel CHIRALCEL OD-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 99$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.8 \mathrm{~min}$ (minor), 16.4 min (major).

(R)-5-(Benzyloxy)-3-hydroxy-N,N,4,4-tetramethylpentanethioamide (3bd)

Pale yellow oil; IR (KBr) v 3405, 2960, 2871, 1521, $1102 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{dd}, J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=14.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}$, $J=14.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.6,138.3,128.3$,

3bd $127.5,127.5,78.4,76.2,73.5,44.6,44.5,41.9,38.7,21.9,20.5 ;[\alpha]_{D^{25}}+57.8$ (c $1.1, \mathrm{CHCl}_{3}, 84 \%$ ee sample); ESI-MS $m / z 318$ [M+Na]+; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{~S} m / z 318.1498$ [M+Na] ${ }^{+}$, found 318.1501; HPLC: Daicel CHIRALCEL OD-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 19$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.2 \mathrm{~min}$ (minor), 15.1 min (major).
racemic sample

reaction sample

(S)-N,N-Diallyl-3-hydroxydecanethioamide (3ae)

Pale yellow oil; IR (KBr) v 3408, 3084, 2925, 2854, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.87$ (dddd, $\left.J=17.1,10.5,5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77$ (dddd, $J=17.1,10.4$, $4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.13(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{dd}, J=14.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=$ $14.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 3 \mathrm{H}), 2.76(\mathrm{dd}, J=15.9,1.9$
 $\mathrm{Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.26(\mathrm{~m}, 12 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 203.0,130.6$, $130.4,118.7,117.9,69.9,55.6,52.8,47.9,36.6,31.8,29.6,29.2,25.6,22.6,14.1 ;[\alpha]_{\mathrm{D}}{ }^{23}+74.0\left(c 1.3, \mathrm{CHCl}_{3}, 89 \%\right.$ ee found 306.1859; HPLC: Daicel CHIRALCEL OD-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol/ n-hexane $=1 / 19$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.4 \mathrm{~min}$ (minor), 12.5 min (major).
racemic sample

reaction sample

(S)-N,N-Diallyl-4-cyclohexyl-3-hydroxybutanethioamide (3af)

Colorless oil; IR (KBr) v3419, 3082, 2922, 2849, $1643 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.88$ (dddd, $J=17.1,10.1,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.77 (dddd, $J=17.1,10.4,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.30-5.13(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{dd}, J=14.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=14.7,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.32-4.27 (m, 1H), 4.26-4.20 (m, 1H), 4.14-4.10 (m, 1H), 3.30 (brs, 1H), 2.71 (dd, $J=$
 $16.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=16.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 2 \mathrm{H})$, 1.29-1.10 (m, 4H), 0.98-0.82 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 203.1,130.6,130.5,118.7,118.0,67.4,55.6,52.6,48.3$, 44.3, 34.1, 34.0, 32.9, 26.6, 26.3, 26.2; [$\alpha]_{\mathrm{D}^{24}}+84.9$ (c 1.2, $\mathrm{CHCl}_{3}, 90 \%$ ee sample); ESI-MS $m / z 304[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NNaOS} \mathrm{m} / \mathrm{z} 304.1706[\mathrm{M}+\mathrm{H}]^{+}$, found 304.1721; HPLC: Daicel CHIRALCEL OD-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 99$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection 254 $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}=9.6 \mathrm{~min}$ (minor), 16.7 min (major).
racemic sample

reaction sample

(S)-N,N-Diallyl-3-hydroxy-5-methylhexanethioamide (3ag)

Colorless oil; IR (KBr) v 3407, 3084, 2954, 2925, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.87$ (dddd, $J=17.1,10.4,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (dddd, $J=17.1,10.4,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28-5.12(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{dd}, J=14.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=14.7,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.28-4.21 (m, 2H), 4.13-4.09 (m, 1H), 3.60 (brs, 1H), 2.71 (dd, J=16.1, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$
 $(\mathrm{dd}, J=16.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.14(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.9,130.6,130.5,118.7,117.9,68.0,55.6,52.6,48.3,45.7,24.4,23.4$, 22.1; $[\alpha]_{\mathrm{D}}{ }^{23}+93.0$ (c 1.1, $\mathrm{CHCl}_{3}, 90 \%$ ee sample); ESI-MS $m / z 264[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NNaOS} m / z 264.1393[\mathrm{M}+\mathrm{H}]^{+}$, found 264.1396; HPLC: Daicel CHIRALCEL OD-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 99$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=17.6 \mathrm{~min}$ (minor), 23.1 min (major).

(S)-N,N-Diallyl-3-hydroxy-5-phenylpentanethioamide (3ah)

Pale yellow oil; IR (KBr) v 3406. 3025, 2925, 1721, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.29-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.88$ (dddd, $J=17.4,10.4,6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (dddd, $J=17.4$, $10.1,4.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.11(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{dd}, J=15.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=$ $15.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=$
 $15.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.6,142.1,130.6,130.4,128.4,128.4,125.8,118.8,118.0,69.2,55.6,52.8,47.8,38.3,32.0 ;[\alpha]_{\mathrm{D}}{ }^{25}$ +56.3 (c 1.1, $\mathrm{CHCl}_{3}, 88 \%$ ee sample); ESI-MS $m / z 312[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NNaOS} m / z 312.1393[\mathrm{M}+\mathrm{Na}]^{+}$, found 312.1387; HPLC: Daicel CHIRALPAK IC ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 19$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=26.3 \mathrm{~min}$ (minor), 30.8 min (major).
racemic sample

reaction sample

(S)-10-(Diallylamino)-8-hydroxy-10-thioxodecyl benzoate (3ai)

Colorless oil; IR (KBr) v 3414, 2929, 2856, 1717, $1276 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=$ 7.9, 7.3 Hz, 2H), 5.88 (dddd, $J=16.8,10.7,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (dddd, J $=17.1,10.9,4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.13(\mathrm{~m}, 4 \mathrm{H}), 4.69$
 (dd, $J=14.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=14.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.25-4.09(\mathrm{~m}, 3 \mathrm{H}), 3.50$ (brs, $1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.34(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.9,166.6,132.7,130.6,130.5,130.5,129.5,128.3,118.7,117.9,69.8,65.0,55.6,52.8,47.9,36.5$, 29.4, 29.2, 28.7, 25.9, 25.5; $[\alpha]_{\mathrm{D}}{ }^{23}+55.6$ (c 1.2, $\mathrm{CHCl}_{3}, 90 \%$ ee sample); ESI-MS m/z $264[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI-TOF) Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NNaOS} m / z 426.2062$ [M+Na] ${ }^{+}$, found 426.2081; HPLC: Daicel CHIRALCEL

Direct Catalytic Asymmetric Aldol Reactions of Thioamides: Toward a Stereocontrolled Synthesis of 1,3-polyols OD-H ($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), 2-propanol $/ n$-hexane $=1 / 19$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, detection $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=13.6$ min (minor), 17.0 min (major).

reaction sample

Ma

Direct Catalytic Asymmetric Aldol Reactions of Thioamides: Toward a Stereocontrolled Synthesis of 1,3-polyols

Mad 1

Nad

릅돌ㄹㄹ뭄

Ned 1

[^0]: ${ }^{\text {S1 }}$ Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.

[^1]: ${ }^{\text {S2 }}$ B3LYP = Becke-3-Lee-Yang-Parr density functional theory. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
 ${ }^{\text {S3 }}$ (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta. 1973, 28, 213.

[^2]: ${ }^{\text {S4 Klicic, J. J.; Friensner, R. A.; Liu, S.-Y.; Guida, W. C. J. Phys. Chem. A 2002, 106, } 1327 .}$
 ${ }^{\text {S5 }}$ Jover, J.; Bosque, R.; Sales, J. QSAR Comb. Sci. 2007, 26, 385.

