Doubly $\boldsymbol{\beta}$-functionalized meso-meso Directly Linked Porphyrin Dimer Sensitizers for Photovoltaics

Jong Kang Park, ${ }^{\dagger}$ Jinping Chen, ${ }^{\dagger}$ Hye Ryun Lee, ${ }^{\dagger}$ Sun Woo Park, ${ }^{\dagger}$ Hiroshi Shinokubo, ${ }^{*, \S}$ Atsuhiro Osuka*," and Dongho Kim ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, Yonsei University, Seoul 120-749, Korea, ${ }^{\ddagger}$ Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China ${ }^{\S}$ Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan "Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

To whom correspondence should be addressed. E-mail: ${ }^{\dagger}$ dongho@yonsei.ac.kr, osuka@kuchem.kyoto-u.ac.jp, ${ }^{\text {}}$ hshino@apchem.nagoya-u.ac.jp

This PDF file includes:

(Synthetic procedure for PEG-2b-bd-Zn2 and normalized emission of diporphyrins. Cyclic voltammogram of ester form of all porphyrins. DFT calculation of $\mathbf{2 b}-\mathbf{F B}-\mathbf{Z n}$, 2b-Zn2, 4b-Zn2, 2b-bd-FB-Zn, and 2b-bd-Zn2.)

(1) Synthetic Procedure for PEG-2b-bd-Zn2.

3,5-di-PEG-benzene

Resorcinol ($500 \mathrm{mg}, 4.6 \mathrm{mmol}, 1.0$ equiv), a tosylate of tetraethylene glycol monomethyl ether (4.2 g , 11.6 mmol , 2.5 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.18 \mathrm{~g}, 23 \mathrm{mmol}, 5.0$ equiv), and dried acetone (20 mL) were added to a $50-\mathrm{mL}$ two-necked flask and purged with argon for 15 min . The resulting mixture was refluxed for 20 h under argon. The reaction mixture was quenched with water and extracted with ethyl acetate (3 times). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and purified by silica gel column chromatography (eluent: ethyl acetate). Removal of the solvent under vacuum gave the product $(1.4 \mathrm{~g})$ as colorless oil in 62% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.37-4.09(\mathrm{~m}, 38 \mathrm{H}), 6.49-6.51(\mathrm{~m}$, $3 \mathrm{H}), 7.13-7.16(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$.

PEG-porphyrin monomer

3,5-di-PEG-benzene ($808 \mathrm{mg}, 1.65 \mathrm{mmol}, 1.0$ equiv), bis(pinacolato)diboron ($419 \mathrm{mg}, 1.65 \mathrm{mmol}, 1.0$ equiv), 4,4'-di-tert-butyl-2,2'-bipyridyl ($2.2 \mathrm{mg}, 0.0082 \mathrm{mmol}, 0.005$ equiv), and $[\operatorname{IrOMe}(c o d)]_{2}(2.7 \mathrm{mg}$, $0.0041 \mathrm{mmol}, 0.0025$ equiv) were added to a Schlenk flask and purged with argon, and then charged with 4.0 mL of dry THF. The mixture was stirred at reflux for 24 h under argon. The solvent was removed under vacuum and the crude product was used for the following reaction without separation. The crude product was a mixture of the desired borylated compound (66\%) and the starting material (34\%) according to the ${ }^{1} \mathrm{H}$ NMR spectrum. The borylated PEG-benzene ($1.07 \mathrm{mmol}, 1.3$ equiv), meso-
bromoporphyrin ($620 \mathrm{mg}, 0.81 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(528 \mathrm{mg}, 1.62 \mathrm{mmol}, 2.0\right.$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(37$ $\mathrm{mg}, 0.04 \mathrm{mmol}, 0.05$ equiv), $\mathrm{PPh}_{3}(42 \mathrm{mg}, 0.16 \mathrm{mmol}, 0.2$ equiv), $\mathrm{CsF}(246 \mathrm{mg}, 1.62 \mathrm{mmol}, 2.0$ equiv) were added to a Schlenk flask and purged with argon, and then charged with 2.5 mL of dry DMF and 5 mL of dry toluene. The solution was deoxygenated via three freeze-pump-thaw degas cycles, and the resulting mixture was heated at $80^{\circ} \mathrm{C}$ for 24 h under argon. The reaction mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated and filter through a short pad of silica gel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}=$ $30 / 1$) to get rid of insoluble salts and high polar materials. The mixture was purified by GPC column (BioRad Bio-Beads SX-1, packed in THF in a $3.0 \times 60 \mathrm{~cm}$ gravity-flow column; eluent: THF) to afford PEG-porphyrin monomer $(710 \mathrm{mg})$ in 75% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-2.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 1.56(\mathrm{~s}, 36 \mathrm{H}$, $\left.12 \times \mathrm{CH}_{3}\right), 3.28-4.28(\mathrm{~m}, 38 \mathrm{H}$, PEG-H), $6.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.11$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{ArH}$), $8.93(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.94(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.06(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H})$, $9.33(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 10.21\left(\mathrm{~s}, 1 \mathrm{H}\right.$, meso-H); MS (MALDI-TOF): $m / z 1167.8\left(\mathrm{M}^{+}\right)$, calcd. m / z 1174.70.

Br-PEG-porphyrin monomer

To a $300-\mathrm{mL}$ two-necked flask equipped with stirrer and ice bath $\left(0-2{ }^{\circ} \mathrm{C}\right)$ was added PEG-porphyrin monomer ($458 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0$ equiv), $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$, and pyridine $(0.5 \mathrm{~mL})$. Then a solution of N -bromosuccinimide (NBS, $76.3 \mathrm{mg}, 0.43 \mathrm{mmol}$, 1.1 equiv) in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ was added dropwise over a period of 30 min at $0-2{ }^{\circ} \mathrm{C}$. Stirring of the solution was continued for additional 15 min in ice bath. Then the reaction was quenched by an addition of 2 mL of acetone. The solution was then washed with water, dried over anhydrous sodium sulfate, evaporated to dryness to get the product (500 mg) as a purple solid quantitatively. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-2.67(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H}), 1.62\left(\mathrm{~s}, 36 \mathrm{H}, 12 \times \mathrm{CH}_{3}\right), 3.28-4.27(\mathrm{~m}, 38 \mathrm{H}$, PEG-H), $6.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.05(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 8.82(\mathrm{br}, 2 \mathrm{H}, \beta-\mathrm{H})$, 8.87 (br, 2H, β-H), 8.94 (br, 2H, β-H), 9.67 (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}$); MS (MALDI-TOF): $m / z 1254.4$
$\left(\mathrm{M}^{+}\right)$, calcd. m / z 1252.60.

PEG-porphyrin dimer

Porphyrin bronoate ($193 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv), Br-PEG-porphyrin ($325 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($143 \mathrm{mg}, 0.44 \mathrm{mmol}, 2.0$ equiv), and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(25 \mathrm{mg}, 0.022 \mathrm{mmol}, 0.1$ equiv) were added to a Schlenk flask and purged with argon, and then charged with dry DMF $(2.5 \mathrm{~mL})$ and dry toluene $(5 \mathrm{~mL})$. The solution was deoxygenated via three freeze-pump-thaw degas cycles, and the resulting mixture was heated at $80{ }^{\circ} \mathrm{C}$ for 48 h under argon. The reaction mixture was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was purified by GPC column to afford PEG-porphyrin dimer (335 mg) in 79% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-2.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N}-\mathrm{H})$, $1.43-1.56\left(\mathrm{~m}, 72 \mathrm{H}, 24 \times \mathrm{CH}_{3}\right), 3.30-4.33(\mathrm{~m}, 38 \mathrm{H}$, PEG-H), $6.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.69$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.00(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.10(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, $8.19(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.56(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.76(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.90(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.99(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.18(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.49(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-$ H), $10.38\left(\mathrm{~s}, 1 \mathrm{H}\right.$, meso-H); MS (MALDI-TOF): $m / z 1922.9\left(\mathrm{M}^{+}\right)$, calcd. $m / z 1921.03$.

Zinc insertion of PEG-porphyrin dimer

PEG-porphyryin dimer ($210 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, and the solution was purged with nitrogen for 10 min . A solution of $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(119 \mathrm{mg}, 0.55 \mathrm{mmol}, 5.0$ equiv $)$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added to the porphyrin solution in one portion, and the reaction mixture was stirred at room temperature for 30 min . The reaction was quenched with saturated NaHCO_{3} aq. and extracted with CHCl_{3} for 3 times. The organic layer was washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo to give PEG-porphyryin dimer biszinc(II) $(210 \mathrm{mg})$ in 97% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $1.43-1.56\left(\mathrm{~m}, 72 \mathrm{H}, 24 \times \mathrm{CH}_{3}\right), 2.97-4.35(\mathrm{~m}, 38 \mathrm{H}$, PEG-H), $6.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.68$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 7.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 8.07(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.11(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, $8.18(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.67(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.75(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.99(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.08(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.19(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.49(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-$ H), 10.38 (s, 1H, meso-H); MS (MALDI-TOF): $m / z 1985.7\left(\mathrm{M}^{+}\right)$, calcd. $m / z 1982.94$.

PEG-porphyrin dimer diester

PEG-porphyryin dimer biszinc(II) ($105 \mathrm{mg}, 0.052 \mathrm{mmol}, 1.0$ equiv), bis(pinacolato)diboron (132 mg , $0.52 \mathrm{mmol}, 10.0$ equiv), 4,4'-di-tert-butyl-2,2'-bipyridyl ($2.8 \mathrm{mg}, 0.0104 \mathrm{mmol}, 0.2$ equiv), and $[\operatorname{IrOMe}(\mathrm{cod})]_{2}(3.4 \mathrm{mg}, 0.0052 \mathrm{mmol}, 0.1$ equiv) were added to a Schlenk flask and purged with argon, and then charged with 1,4-dioxane (1.5 mL). The mixture was stirred at reflux for 48 h under argon. The solvent was removed under vacuum and the crude product was used for the following reaction without separation. The crude product was a mixture of diborylated compound (78\%) and monoborylated compound (12\%) according to the ${ }^{1} \mathrm{H}$ NMR spectrum. The borylated mixture and $[\mathrm{Rh}(\operatorname{cod}) \mathrm{OH}]_{2}(2.0 \mathrm{mg}$, $0.0044 \mathrm{mmol}, 0.08$ equiv) were added to a Schlenk flask and purged with argon, and charged with $1,4-$ dioxane (2 mL), $\mathrm{H}_{2} \mathrm{O}(200 \mu \mathrm{~L})$, and methyl 2,4-pentadienoate ($154 \mu \mathrm{l}, 1.32 \mathrm{mmol}, 40$ equiv). The mixture was stirred at room temperature for 3 days under argon. The solvent was removed under vacuum and the crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and $\mathrm{DDQ}(20 \mathrm{mg})$ was added. The mixture was stirred for 5 min and quenched with saturated NaHCO_{3} aq. and extracted with CHCl_{3} for 3 times. The crude product was purified by silica gel chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $=50 / 1$ as eluent to give PEG -porphyrin dimer diester (32.7 mg) in 28% yield for two steps. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ in the presence of $\left.n-\mathrm{BuNH}_{2}\right): \delta$ $1.43-1.47\left(\mathrm{~m}, 72 \mathrm{H}, 24 \times \mathrm{CH}_{3}\right), 3.90(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OMe}), 3.31-4.33(\mathrm{~m}, 38 \mathrm{H}$, PEG-H), $6.25(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}$, double bond), $6.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.64(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 2 \mathrm{H}$, double bond), 7.66 (m, 2H, ArH), 7.71 (m, 2H, ArH), $7.97(\mathrm{~m}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.06(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 8.10(\mathrm{dd}, J=15.1,11.0 \mathrm{~Hz}, 2 \mathrm{H}$, double bond), $8.52(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.58(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.78(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}$, double bond), $8.90(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.98(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.23(\mathrm{~s}, 2 \mathrm{H}, \beta-\mathrm{H}), 10.34(\mathrm{~s}, 1 \mathrm{H}$, meso-H); MS (MALDI-TOF): $m / z 2209.5\left(\mathrm{M}^{\dagger}\right)$, calcd. $m / z 2203.02$.

* solvent

FigureS1. ${ }^{1} \mathrm{H}$ NMR for PEG-porphyrin dimer diester in CDCl_{3} in presence of $n-\mathrm{BuNH}_{2}$.

PEG-2b-bd-Zn2

PEG-porphyrin dimer diester ($32.7 \mathrm{mg}, 0.015 \mathrm{mmol}$) was dissolved in THF (2 mL). Then ethanol (2 mL) and NaOH aq. ($2.0 \mathrm{M}, 2 \mathrm{~mL}$) was added. The solution was stirred under N_{2} atmosphere at $65-70{ }^{\circ} \mathrm{C}$ (oil bath) for 40 h . The solvent was removed in vacuo, and then about 30 mL of water was added to the solid. The dark solid was precipitated by the slow addition of HCl aq. $(1.0 \mathrm{M})$ to the aqueous solution of the product until the solution became enough acidic $(\mathrm{pH}=3)$. Then the solid was filtered to obtain desired product (26.0 mg) in 80% yield. ${ }^{1} \mathrm{H}$ NMR (pyridine- d_{5}): $\delta 1.25-1.56\left(\mathrm{~m}, 72 \mathrm{H}, 24 \times \mathrm{CH}_{3}\right.$), $3.20-4.38(\mathrm{~m}$, 38 H, PEG-H), 6.51 (d, $J=14.7 \mathrm{~Hz}, 2 \mathrm{H}$, double bond), 6.93 (s, $1 \mathrm{H}, \mathrm{ArH}$), 7.72 (dd, $J=16.5,11.0 \mathrm{~Hz}, 2 \mathrm{H}$, double bond), $7.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.95(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 8.30(\mathrm{dd}, J=15.6,11.5 \mathrm{~Hz}, 2 \mathrm{H}$, double bond), $8.40(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 8.46(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 8.95(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.04(\mathrm{~d}, J$ $=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.30(\mathrm{~d}, J=15.1,2 \mathrm{H}$, double bond), $9.34(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.39(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $2 \mathrm{H}, \beta-\mathrm{H}), 9.76(\mathrm{~s}, 2 \mathrm{H}, \beta-\mathrm{H}), 11.18\left(\mathrm{~s}, 1 \mathrm{H}\right.$, meso-H); MS (MALDI-TOF): $m / z 2176.9\left(\mathrm{M}^{+}\right)$, calcd. m / z 2174.99.

* solvent

FigureS2. ${ }^{1} \mathrm{H}$ NMR for $\mathbf{P E G - 2 b - b d - Z n 2}$ in pyridine $-\mathrm{d}_{5}$
(2) Normalized emission spectra in ethanol

Figure S3. Fluorescence spectra of 2b-FB-Zn, 2b-Zn2, 4b-Zn2, 2b-bd-FB-Zn2, 2b-bd-Zn2 and PEG$\mathbf{2 b - b d}-\mathbf{Z n} \mathbf{2}$ in ethanol. The spectra are normalized for comparison.

(3) Cyclic voltammetry

<Oxidation and reduction for free base porphyrin>
(b)

$<$ Oxidation and reduction for zinc porphyrin $>$
(c)

$<$ Oxidation and reduction for 2b-FB-Zn $>$

$<$ Oxidation and reduction for $\mathbf{2 b}-\mathbf{Z n} 2>$

$<$ Oxidation and reduction for 2b-bd-FB-Zn $>$

$<$ Oxidation and reduction for 2b-bd-Zn2 $>$

$<$ Oxidation and reduction for 4b-Zn2>
(h)

$<$ Oxidation and reduction for PEG-2b-bd-Zn2>

Figure S4. Cyclic voltammogram of all ester derivatives in dichloromethane reported versus $\mathrm{Ag} / \mathrm{AgClO} 4$ (V).
(4) DFT calculation

Figure S5. Selected four molecular orbitals for carboxylic acid porphyrin dimers calculated at B3LYP/631G level. The aryl groups were replaced by hydrogen before calculation.

Table S1. Redox potentials of porphyrin dimers. ${ }^{a}$

Compound	$\mathrm{E}_{1 / 2, \text { ox }}(\mathrm{V})$	$\mathrm{E}_{1 / 2, \text { red }}(\mathrm{V})$	$\Delta \mathrm{E}_{\text {номо-димо }}{ }^{b}(\mathrm{~V})$	$\mathrm{E}_{1 / 2, \text { ox }}{ }^{c}(\mathrm{eV})$
$\mathbf{F b P}^{d}$	0.44	-1.75	2.19	-
$\mathbf{Z n P}^{d}$	0.27	-1.91	2.18	-
$\mathbf{2 b - F B - Z n}$	0.34	-1.57	1.91	-1.54
$\mathbf{2 b - Z n 2}$	0.26	-1.59	1.85	-1.64
$\mathbf{4 b - Z n 2}$	0.20	-1.53	1.63	-1.68
$\mathbf{2 b - b d - F B - Z n}$	0.19	-1.62	1.81	-1.64
$\mathbf{2 b - b d - Z n 2}$	0.12	-1.62	1.74	-1.73
PEG-2b-bd-Zn2	0.28	-1.64	1.92	-1.57

${ }^{a}$ These values were measured by cyclic voltammetry using a platinum working electrode, a platinum wire counter electrode and $\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgClO}_{4}$ reference electrode. The measurements were carried out in dichloromethane solutions containing $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NBF}_{6}$ as a supporting electrolyte. (in V vs
ferrocene/ferrocenium ion pair). ${ }^{b} \Delta \mathrm{E}_{\text {Номо-LUмо }}=\mathrm{E}_{1 / 2, \text { ox }}-\mathrm{E}_{1 / 2 \text {, red }} .{ }^{c} \mathrm{E}^{*}{ }_{1 / 2, \text { ox }}=\mathrm{E}_{1 / 2, \text { ox }}-\mathrm{E}_{0-0} .{ }^{d}$ Aryl groups are 3,5-di-tert-butylphenyl.

Table S2. Energy levels from DFT calculation. ${ }^{a}$

Compound	HOMO-1 (eV)	HOMO (eV)	LUMO (eV)	LUMO+1 (eV)	$\Delta \mathrm{E}_{\text {cal }}(\mathrm{eV})^{b}$
$\mathbf{2 b - F B - Z n}$	-5.52	-5.33	-2.97	-2.75	2.36
$\mathbf{2 b - Z n 2}$	-5.47	-5.42	-2.94	-2.72	2.48
$\mathbf{4 b - Z n 2}$	-5.80	-5.77	-3.10	-3.10	2.67
$\mathbf{2 b - b d - F B - Z n}$	-5.47	-5.33	-2.97	-2.75	2.36
2b-bd-Zn2	-5.42	-5.42	-2.97	-2.70	2.45
PEG-2b-bd-Zn2	$-^{c}$	${ }^{c}$	${ }^{c}$	$-^{c}$	$-^{c}$

${ }^{a}$ Calculated at B3LYP/6-31G level. ${ }^{b}$ Difference in the HOMO-LUMO energy. ${ }^{c}$ Not calculated.

