Supporting Information

Synthesis of 2-Hydroxymethyl Ketones by Ruthenium Hydride-Catalyzed Cross-Coupling Reaction of α,β-Unsaturated Aldehydes with Primary Alcohols

Aurélien Denichoux, Takahide Fukuyama, Takashi Doi, Jiro Hiroguchi, Ilhyong Ryu*

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan ryu@c.s.osakafu-u.ac.jp

Table of Contents.

General Information	S2
Typical Procedure	S2
Spectral data of Products	S2-S7
¹ Ĥ and ¹³ C NMR spectra	S8-S33

General information. ¹H NMR spectra were recorded with a JEOL JMN-500 (500 MHz) spectrometer in CDCl₃ and are referenced at 0.00 ppm for TMS. Chemical shifts are reported in parts per million (δ). ¹³C NMR spectra were recorded with a JEOL JMN-500 (125 MHz) spectrometer in CDCl₃ and are referenced at 77 ppm for CDCl₃. Infrared spectra were obtained on a JASCO FT/IR-4100 spectrometer; absorptions were reported in reciprocal centimeters. Both conventional and high resolution mass spectra were recorded with a JEOL MS700 spectrometer. RuHCl(CO)(PPh₃)₃ was purchased from Wako Pure Chemical Industries, Ltd. Enals were distilled prior to use. The products were purified by flash chromatography on silica gel (Nacalai Tesque Inc., Silica Gel 60, 230-400 mesh) and/or preparative HPLC (Japan Analytical Industry Co., Ltd., LC-908) with GPC columns using CHCl₃ as an eluent.

Typical procedure for the cross-coupling reaction:

A mixture of benzyl alcohol (**1a**, 103.6 mg, 0.96 mmol), benzaldehyde (9 mg, 0.085 mmol) and RuHCl(CO)(PPh₃)₃ (77.2 mg, 0.081 mmol) in benzene (4 mL) are heated at reflux under nitrogen. A solution of 2-hexenal (**2a**, 78.1 mg, 0.80 mmol) in benzene (5 mL) was added during 1 h by a syringe pump. Then the resulting mixture was stirred another 1 h under reflux. Purification by recycling HPLC gave the product **3a** (119 mg, 72%) as a colorless oil.

2-Hydroxymethyl-1-phenyl-1-hexanone (3a):

¹H NMR (500 MHz, CDCl₃) δ 0.86 (t, J = 6.9 Hz, 3H), 1.23-1.37 (m, 4H), 1.58-1.76 (m, 2H), 2.36 (br, 1H), 3.58-3.63 (m, 1H), 3.83-3.86 (m, 1H), 3.92-3.97 (m, 1H), 7.47-7.50 (m, 2H), 7.57-7.60 (m, 1H), 7.96-7.97 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 13.85, 22.78, 28.94, 29.56, 48.13, 62.97, 128.34, 128.74, 133.26, 136.81, 204.70; IR (neat): 3429, 1672 cm⁻¹; EIMS *m/z* (relative intensity) 206 (M⁺, 8), 188 (15), 150 (71), 123 (56), 105 (100), 77 (63); HRMS (EI) *m/z* calcd for C₁₃H₁₈O₂: 206.1307, found: 206.1314. Cignarella, G.; Barlocco, D.; Curzu, M.M.; Pinna, G.A. Synthesis **1984**, 342-5

2-Hydroxymethyl-1-(2-methoxyphenyl)-1-hexanone (3b):

¹H NMR (500 MHz, CDCl₃) δ 0.85 (t, J = 6.9 Hz, 3H), 1.22-1.40 (m, 4H), 1.50-1.58 (m, 1H), 1.63-1.72 (m, 1H), 2.38 (t, J = 6.0 Hz, 1H), 3.57-3.63 (m, 1H), 3.83-3.88 (m, 2H), 3.88 (s, 3H), 6.96 (d, J = 8.7 Hz, 1H), 7.02 (t, J = 8.7 Hz, 1H), 7.45-7.49 (m, 1H), 7.60

(dd, J = 7.8, 1.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.81, 22.66, 28.06, 29.51, 52.68, 55.43, 62.50, 111.47, 120.77, 128.43, 130.21, 133.33, 157.93, 207.24; IR (neat): 3433, 1669 cm⁻¹; EIMS *m/z* (relative intensity) 236 (M⁺, 3), 187 (12), 135 (100); HRMS (EI) *m/z* calcd for C₁₄H₂₀O₃: 236.1412, found: 236.1412.

2-Hydroxymethyl-1-(3-trifluoromethylphenyl)-1-hexanone (3c):

¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, *J* = 7.3 Hz, 3H), 1.25-1.38 (m, 4H), 1.57-1.75 (m, 2H), 2.09 (t, *J* = 6.4 Hz, 1H), 3.59-3.64 (m, 1H), 3.84-3.90 (m, 1H), 3.95-4.02 (m, 1H), 7.64 (t, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 8.15 (d, *J* = 7.8 Hz, 1H) 8.22 (s, 1H). ¹³C

NMR (125 MHz, CDCl₃) δ 13.65, 22.64, 28.81, 29.38, 48.59, 63.05, 123.60 (q, J = 270.8 Hz), 125.07, 129.32, 129.48, 131.10, 131.43, 137.58, 203.19. IR (neat): 3418, 1684 cm⁻¹; EIMS *m/z* (relative intensity) 274 (M⁺, 1), 256 (12), 218 (72), 173 (100), 145 (66); HRMS (CI) *m/z* calcd for C₁₄H₁₈F₃O₂ (M⁺+H): 275.1259, found: 275.1261.

2-Hydroxymethyl-1-(3-methoxyphenyl)-1-hexanone (3d):

¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, *J* = 6.9 Hz, 3H), 1.27-1.38 (m, 4H), 1.60-1.76 (m, 2H), 2.36 (t, *J* = 6.0 Hz, 1H), 3.55-3.60 (m, 1H), 3.83-3.87 (m, 1H), 3.87 (s, 3H), 3.92-3.98 (m, 1H), 7.12-7.15 (m, 1H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.49 (s, 1H), 7.53-7.55 (m, 1H);

¹³C NMR (125 MHz, CDCl₃) δ 13.77, 22.70, 28.94, 29.46, 48.33, 55.32, 63.02, 112.58, 119.64, 120.90, 129.56, 138.23, 159.80, 204.36; IR (neat): 3434, 1676 cm⁻¹; EIMS *m/z* (relative intensity) 236 (M⁺, 15), 180 (21), 152 (36), 135 (100) 107 (20); HRMS (EI) *m/z* calcd for C₁₄H₂₀O₃: 236.1412, found: 236.1412.

1-(4-Chlorophenyl)-2-hydroxymethyl-1-hexanone (3e):

¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, J = 7.3 Hz, 3H), 1.24-1.40 (m, 4H), 1.57-1.73 (m, 2H), 2.16 (t, J = 6.0 Hz, 1H), 3.52-3.57 (m, 1H), 3.80-3.86 (m, 1H), 3.92-3.97 (m, 1H), 7.46 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H); ¹³C NMR (125

MHz, CDCl₃) δ 13.71, 22.67, 28.89, 29.39, 48.34, 63.06, 128.88, 129.66, 135.29, 139.56, 203.28; IR (neat): 3425, 1675 cm⁻¹; EIMS *m/z* (relative intensity) 240 (M⁺, 1), 184 (30), 139 (100), 111 (28); HRMS (EI) *m/z* calcd for C₁₃H₁₇ClO₂: 240.0917, found: 240.0905.

2-Hydroxymethyl-1-(4-methylphenyl)-1-hexanone (3f):

¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, *J* = 7.3 Hz, 3H), 1.25-1.39 (m, 4H), 1.57-1.75 (m, 2H), 2.31 (t, *J* = 6.0 Hz, 1H), 2.42 (s, 3H), 3.55-3.60 (m, 1H), 3.82-3.88 (m, 1H), 3.90-3.98 (m, 1H), 7.27 (d, *J* = 8.3 Hz, 2H), 7.87 (*J* = 8.3 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 13.73, 21.54, 22.68, 29.43, 47.98, 63.03, 128.39, 129.27, 134.35, 143.96, 204.16; IR (neat): 3433, 1666 cm⁻¹; EIMS *m/z* (relative intensity) 220 (M⁺, 3), 202 (34), 187 (56), 164 (25), 119 (100), 91 (59); HRMS (EI) *m/z* calcd for C₁₄H₂₀O₂: 220.1463, found: 220.1470.

2-Hydroxymethyl-1-(2-thienyl)-1-hexanone (3g):

A mixture of 2-thiophenecarboxyaldehyde (9.9 mg, 0.088 mmol) and RuHCl(CO)(PPh₃)₃ (76.1 mg, 0.08 mmol) in benzene (4 mL) was heated at reflux under nitrogen. A mixture of 2-hexenal (**2a**, 93 μ L, 0.80 mmol) and 2-thiophenemethanol (**1g**, 91 μ L, 0.96 mmol) in benzene (5 mL) was added during 1 h by a syringe pump. Then the resulting mixture was stirred another 30 min at reflux. Purification by recycling HPLC gave the product **3g** (110 mg, 64%) as a colorless oil.

¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, *J* = 6.9 Hz, 3H), 1.25-1.40 (m, 4H), 1.60-1.80 (m, 2H), 2.23 (t, *J* = 6.0 Hz, 1H), 3.38-3.43 (m, 1H), 3.80-3.88 (m, 1H), 3.89-3.95 (m, 1H), 7.15-7.17 (m, 1H), 7.68-7.69 (m, 1H), 7.76-7.77 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 13.78, 22.69, 29.21, 29.55, 50.22, 63.32, 128.27, 132.41, 134.32, 144.53, 197.05; IR (neat): 3433, 1647 cm⁻¹; EIMS *m/z* (relative intensity) 212 (M⁺, 6), 156 (44), 111 (100); HRMS (EI) *m/z* calcd for $C_{11}H_{16}O_2S$: 212.0871, found: 212.0867.

1-(2-Furanyl)-2-hydroxymethyl-1-hexanone (3h):

¹H NMR (500 MHz, CDCl₃) δ 0.88 (t, *J* = 7.4 Hz, 3H), 1.25-1.40 (m, 4H), 1.60-1.80 (m, 2H), 2.23 (t, *J* = 5.5 Hz, 1H), 3.35-3.40 (m, 1H), 3.78-3.84 (m, 1H), 3.88-3.94 (m, 1H), 6.56 (d, *J* = 3.7 Hz, 1H), 7.25 (d, *J* = 3.7 Hz, 1H), 7.62 (s, 1H); ¹³C NMR (125 MHz, CDCl₃)

δ 13.72, 22.60, 28.61, 29.40, 49.21, 63.01, 112.30, 118.13, 146.85, 152.76, 192.84. IR (neat): 3434, 1660 cm⁻¹; EIMS *m/z* (relative intensity) 196 (M⁺, 2), 140 (100), 95 (96); HRMS (EI) *m/z* calcd for C₁₁H₁₆O₃: 196.1099, found: 196.1099.

2-Hydroxymethyl-1-phenyl-1-octanone (3i):

¹H NMR (500 MHz, CDCl₃) δ 0.85 (t, *J* = 7.4 Hz, 3H), 1.20-1.40 (m, 8H), 1.56-1.74 (m, 2H), 2.24-2.29 (m, 1H), 3.57-3.62 (m, 1H), 3.82-3.88 (m, 1H), 3.92-3.97 (m, 1H), 7.45-7.52 (m, 2H), 7.57-7.60 (m, 1H), 7.94-7.98 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 13.91, 22.45, 27.27, 29.19, 29.28, 31.47, 48.17, 62.98, 128.27, 128.63, 133.13, 136.86, 204.62; IR (neat): 3423, 1673 cm⁻¹; EIMS *m/z* (relative intensity) 234 (M⁺, 1), 150 (14), 120 (43), 105 (100), 77 (31); HRMS (EI) *m/z* calcd for C₁₅H₂₂O₂: 234.1620, found: 234.1616.

2-Hydroxymethyl-3-methyl-1-phenyl-1-butanone (3j):

¹H NMR (500 MHz, CDCl₃) δ 0.95 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H), 2.14 (t, J = 6.0 Hz, 1H), 2.22 (oct, J = 6.9 Hz, 1H), 3.43-3.49 (m, 1H), 3.80-3.86 (m, 1H), 4.03-4.10 (m, 1H), 7.47-7.50 (m, 2H), 7.57-7.60 (m, 1H), 7.95-7.97 (m, 2H); ¹³C

NMR (125 MHz, CDCl₃) δ 19.69, 21.38, 28.55, 54.17, 61.27, 128.30, 128.63, 133.18, 137.77, 205.15; IR (neat): 3410, 1660 cm⁻¹; EIMS *m/z* (relative intensity) 192 (M⁺, 13),

150 (36), 123 (21), 105 (100), 77 (59); HRMS (EI) *m/z* calcd for C₁₂H₁₆O₂S: 192.1150, found: 192.1153.

Kobayashi, S.; Hachiya, I. J. Org. Chem. 1994, 59, 3590.

3-(2-Furanyl)-2-hydroxymethyl-1-phenyl-1-propanone (3k):

ОН

¹H NMR (500 MHz, CDCl₃) δ 2.27 (t, J = 6.4 Hz, 1H), 3.01 (dd, J = 13.7, 7.7 Hz 1H), 3.08 (dd, J = 13.7, 6.2 Hz, 1H), 3.85-3.90 (m, 2H), 3.92-3.99 (m, 1H), 6.05 (d, J = 3.2, 1H), 6.24 (dd, J = 1.8, 3.2 Hz, 1H), 7.30 (d, J = 1.4 Hz, 1H), 7.46-7.49 (m, 2H), 7.57-7.60

(m, 1H), 7.95-7.97 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 27.28, 47.29, 62.67, 106.86, 110.24, 128.38, 128.69, 133.35, 136.26, 141.49, 152.37, 203.13; IR (neat): 3446, 1677 cm⁻¹; EIMS *m/z* (relative intensity) 230 (M⁺, 6), 199 (16), 105 (100), 77 (45); HRMS (CI) *m/z* calcd for C₁₄H₁₅O₃ (M⁺+H): 231.1021, found: 231.1008.

1-(4-Chlorophenyl)-2-hydroxymethyl-3-phenyl-1-propanone (3l):

A mixture of 4-chlorobenzaldehyde (12 mg, 0.085 mmol) and RuHCl(CO)(PPh₃)₃ (73.5 mg, 0.077 mmol) in benzene (4 mL) was heated at reflux under nitrogen. A mixture of cinnamaldehyde (2e, 102 mg, 0.77 mmol) and 4-chlorobenzyl alcohol (1e, 132 mg, 0.93 mmol) in benzene (5 mL) was added during 1 h with a syringe pump. Then the resulting mixture was stirred another 1 h at reflux. Purification by recycling HPLC gave the product **3l** (147 mg, 69%) as a colorless oil.

¹H NMR (CDCl₃, 500 MHz) δ 2.17 (bs, 1H), 2.92 (dd, *J* = 13.8, 7.8 Hz, 1H), 3.21 (dd, *J* = 13.8, 6.4 Hz, 1H), 3.79-3.85 (m, 2H), 3.88-3.91 (m, 1H), 7.17-7.20 (m, 3H), 7.24-7.27 (m, 2H), 7.40-7.41 (m, 2H), 7.82-7.83 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz)

δ 35.22, 50.29, 62.85, 126.76, 128.75, 129.07, 129.14, 129.94, 135.22, 138.72, 139.99, 202.81; IR (neat): 3433, 1676 cm⁻¹; EIMS *m/z* (relative intensity) 274 (M⁺, 8), 256 (17), 243 (66), 139 (100), 111 (36), 91 (32); HRMS (EI) *m/z* calcd for C₁₆H₁₅O₂Cl : 274.0761, found: 274.0763.

4-Hydroxymethyl-1-phenyl-3-octanone (3m):

¹H NMR (CDCl₃, 500 MHz) δ 0.86 (t, *J* = 6.9 Hz, 3H), 1.14-1.33 (m, 4H), 1.40-1.47 (m, 1H), 1.51-1.60 (m, 1H), 1.83 (bs, 1H), 2.64-2.69 (m, 1H), 2.80-2.84 (m, 2H), 2.90-2.93 (m, 2H),

3.68 (dd, J = 11.0, 3.7 Hz, 1H), 3.76 (dd, J = 11.0, 7.8 Hz, 1H), 7.18-7.20 (m, 2H), 7.26-7.29 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.92, 22.87, 27.93, 29.59, 44.51, 54.03, 62.98, 126.25, 128.48, 128.61, 141.21, 214.06; IR (neat): 3437, 1707 cm⁻¹; EIMS *m/z* (relative intensity) 234 (M⁺, 17), 178 (32), 133 (28), 105 (75), 104 (61), 91 (100), 77 (14); HRMS (EI) *m/z* calcd for C₁₅H₂₂O₂: 234.1620, found: 234.1619.

C: ¥W INNMR98¥COMMON¥_DEFAULT. ALS au433c2h4