Supporting Information

Highly efficient, enantioselective syntheses of (*S*)-(+)- and (*R*)-(-)dapoxetine starting with 3-phenyl-1-propanol

Soyeong Kang and Hyeon-Kyu Lee*

Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, KOREA; Medicinal and Pharmaceutical Chemistry Major, University of Science and Technology, 113 Gwahango, Yuseong, Daejeon 305-333, KOREA. Tel: +82-42-860-7016; Fax: +82-42-861-0307; e-mail: leehk@krict.re.kr

Table of Contents

1. General 4
2. Experimental procedures for the synthesis of compounds
(S)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide4
(<i>R</i>)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide6
$Rh_2(S-nap)_4$
Rh ₂ (<i>R</i> -nap) ₄
(<i>S</i>)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>S</i>)-4 7
(<i>R</i>)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>R</i>)-4 ······ 8
3- <i>Cbz</i> -4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>S</i>)-7 11
(S)-3-(N-Cbz-amino)-3-phenylpropan-1-ol: (S)-812
(<i>S</i>)-3-Amino-3-phenyl-propan-1-ol: (<i>S</i>)-912
(S)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-5 ······14
(<i>R</i>)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>R</i>)-514
(S)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-617
(<i>R</i>)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (<i>R</i>)-6 ······17
(S)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-1 ······20
(<i>R</i>)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (<i>R</i>)-120

3. Table for the crystallographic data and ORTEP of (*R*)-4------8

4. Copies of ¹H-NMR and ¹³C-NMR spectra

¹ H-NMR of (<i>S</i>)-4-Methyl- <i>N</i> -(2-oxo-piperidin-3-yl)-benzenesulfonamide	23
¹³ C-NMR of (S)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide	24
¹ H-NMR of (R)-4-Methyl- <i>N</i> -(2-oxo-piperidin-3-yl)-benzenesulfonamide	25
¹³ C-NMR of (<i>R</i>)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide	26
¹ H-NMR of Rh ₂ (S-nap) ₄ ·····	27
¹ H-NMR of $Rh_2(R-nap)_4$	28
¹ H-NMR of (<i>S</i>)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>S</i>)-4 ······	29
¹³ C-NMR of (S)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-4 ······	30
¹ H-NMR of (<i>R</i>)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>R</i>)-4 ······	31
¹³ C-NMR of (<i>R</i>)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>R</i>)-4 ······	32

¹ H-NMR of (S)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-5 ······ 33
¹³ C-NMR of (S)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-5 ·······34
¹ H-NMR of (<i>R</i>)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>R</i>)-5 35
¹³ C-NMR of (<i>R</i>)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>R</i>)-5 36
¹ H-NMR of 3- <i>Cbz</i> -4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>S</i>)-7 37
¹³ C-NMR of 3- <i>Cbz</i> -4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (<i>S</i>)-7 38
¹ H-NMR of (<i>S</i>)-3-(<i>N</i> - <i>Cbz</i> -amino)-3-phenylpropan-1-ol: (S)-8
¹³ C-NMR of (<i>S</i>)-3-(<i>N</i> - <i>Cbz</i> -amino)-3-phenylpropan-1-ol: (S)-8 40
¹ H-NMR of (<i>S</i>)-3-Amino-3-phenyl-propan-1-ol: (<i>S</i>)-9 41
¹³ C-NMR of (<i>S</i>)-3-Amino-3-phenyl-propan-1-ol: (<i>S</i>)-9 42
¹ H-NMR of Commercial sample of (S)-9 from Acros Organics43
¹³ C-NMR of Commercial sample of (S)-9 from Acros Organics44
¹ H-NMR of (<i>S</i>)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (<i>S</i>)-645
¹³ C-NMR of (S)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-646
¹ H-NMR of (<i>R</i>)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (<i>R</i>)-6 ······47
¹³ C-NMR of (<i>R</i>)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (<i>R</i>)-6 ·······48
¹ H-NMR of (S)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-1
¹³ C-NMR of (S)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-1 50
¹ H-NMR of (<i>R</i>)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (<i>R</i>)-1 51
¹³ C-NMR of (<i>R</i>)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (<i>R</i>)-1 52

General: All commercial reagents were used as obtained commercially unless otherwise noted. Reactions were performed using oven dried glassware under an atmosphere of nitrogen. Dichloromethane (DCM) was dried with CaH and distilled prior to use. Flash column chromatography was carried out on Fuji Chromatorex silica gel (38-75 μ m). Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F₂₅₄ plates. Visualization of the developed chromatogram was accomplished with UV light and by staining with ethanolic phosphomolybdic acid (PMA) solution followed by heating.

Nuclear magnetic resonance (NMR) spectra were recorded using Bruker 500 MHz NMR instrument (¹H NMR at 500 MHz and ¹³C NMR at 125 MHz) and Bruker 300 MHz NMR instrument (¹H NMR at 300 MHz and ¹³C NMR at 75 MHz). ¹H NMR data are reported as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, coupling constants (Hz). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High performance liquid chromatography (HPLC) was carried out on a Perkin Elmer series 200 HPLC equipped with a Chiralcel OD-H column. Specific rotations were measured on a Rudolph Autopol IV (Automatic polarimeter). High-resolution mass spectra were obtained from the center for chemical analysis in Korea Research Institute of Chemical Technology. Sulfamate ester **3** was prepared from the alcohol **2** according to a protocol reported by Du Bois and coworkers.^a Preparation of Rh₂(*S*-nap)₄ catalyst was reported by Du Bois and coworkers.^b Rh₂(*R*-nap)₄ catalyst was prepared by reaction between Rh₂(OAc)₄ and (*R*)-3-tosylamino-valerolactam, which is obtained from unnatural D-(-)- ornithine hydrochloride in a manner that is similar to the procedure employed for the preparation of Rh₂(*S*-nap)₄ catalyst from L-(+)-ornithine hydrochloride.^{b,c}

(S)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide.

Prepared from L-(+)-ornithine hydrochloride according to the procedure of Du Bois and coworkers.^b

Acetyl chloride (5.3 mL, 74.1 mmol) was slowly added over a 5 min period to an ice-cold suspension of L-(+)-ornithine hydrochloride (5 g, 29.7 mmol) in 120 mL of MeOH. The mixture was stirred at 0 $^{\circ}$ C for 10 min, the flask was then fitted with a reflux condenser, and the contents heated at 65 $^{\circ}$ C for

12 h. The clear, colorless solution was cooled to room temperature and concentrated under reduced pressure to give clear oil. This material was allowed to stand under high vacuum for 4 h prior to subsequent use; during this time the compound solidified. The solid mass was dissolved in 120 mL of MeOH to which Et_3N (12.4 mL, 89.1 mmol) was then added. The reaction mixture was stirred at 65 °C for 2 h. Following this time, the solution was concentrated under reduced pressure and the isolated solid was placed under high vacuum for 3 h. The off-white mass was suspended in 100 mL of DCM and to this mixture was added pyridine (4.8 mL, 59.4 mmol). The flask was set in an ice bath and charged with *p*-toluenesulfonyl chloride (6.8 g, 35.6 mmol). The mixture was warmed slowly to room temperature, stirred for 8 h, and then concentrated under reduced pressure to an orange solid. This material was transferred to a separatory funnel with 200 mL of warm EtOAc and washed with 80 mL of saturated aqueous NH₄Cl (3 times). The organic layer was collected, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure to a white solid. Recrystallization of this material using hot EtOAc furnished the desired lactam as colorless needles (2.1 g, 26% overall).

 $[\alpha]_{D}^{32}$ = +50.7 (c 1.08, DMSO), $[\alpha]_{D}^{28}$ = +121.8 (c 1.09, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, 2H, *J* = 8.1 Hz), 7.30 (d, 2H, *J* = 8.1 Hz), 6.26 (br s, 1H), 5.95 (br, s, 1H), 3.47-3.50 (m, 1H), 3.25-3.28 (m, 2H), 2.45-2.48 (m, 1H), 2.42 (s, 3H), 1.66-2.05 (m, 3H).; ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 143.6, 136.0, 129.7, 127.4, 53.3, 41.9, 28.5, 21.5, 20.8.; HRMS (EI): *m/z* Calcd for C₁₂H₁₆N₂O₃S 268.0882, found 268.0880.

The sign and magnitude of the optical rotation of (*S*)-4-methyl-N-(2-oxo-piperidin-3-yl)benzenesulfonamide ligand (A: $[\alpha]_D^{25} = -91.1$ (*c* 1.1, DMSO)), prepared from L-(+)-ornithine by the Du Bois group,^b is greatly different from those reported in the literature^c [$[\alpha]_D^{22} = +128$ (*c* 1.05, CHCl₃)] and ours [$[\alpha]_D^{32} = +50.7$ (*c* 1.08, DMSO), $[\alpha]_D^{28} = +121.8$ (*c* 1.09, CHCl₃)].

- (a) Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935
- (b) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220.
- (c) Maguire, M. P.; Feldman, P. L.; Rapoport, H. J. Org. Chem. 1990, 55, 948.

(*R*)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide.

Prepared from D-(-)-ornithine hydrochloride as colorless needles (28% overall) by using a manner identical to (*S*)-4-methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide. $[\alpha]_D^{29}$ = -50.9 (c 1.01, DMSO), $[\alpha]_D^{29}$ = -123.8 (c 0.95, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, 2H, *J* = 8.4 Hz), 7.31 (d, 2H, *J* = 7.8 Hz), 5.99 (br s, 1H), 5.89 (br, s, 1H), 3.47-3.50 (m, 1H), 3.27-3.28 (m, 2H), 2.47-2.50 (m, 1H), 2.42 (s, 3H), 1.69-1.96 (m, 3H).; ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 143.7, 135.9, 129.8, 127.4, 53.3, 42.0, 28.5, 21.6, 20.8.; HRMS (EI): *m/z* Calcd for C₁₂H₁₆N₂O₃S 268.0882, found 268.0882.

Rh₂(S-nap)₄.

Prepared from $Rh_2(OAc)_4$ and (*S*)-4-methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide according to the procedure of Zalatan, D. N.; Du Bois, J. *J. Am. Chem. Soc.* **2008**, *130*, 9220. yield: 82%; $[\alpha]_D^{27}$ = +71.5 (c 0.2, CHCl₃); ¹H NMR (500 MHz, CD₃CN) δ 7.76 (d, 4H, *J* = 8.5 Hz), 7.67 (d, 4H, J = 8.5 Hz), 7.40 (d, 4H, J = 8.0 Hz), 7.32 (d, 4H, J = 8.0 Hz), 5.75-5.87 (m, 4H), 3.22-3.35 (m, 6H), 2.94 (m, 6H), 2.43 (s, 6H), 2.39 (s, 6H), 1.98-2.02 (m, 2H), 1.25-1.63(m, 14H).; HRMS (ESI): *m*/*z* Calcd for C₄₈H₆₀N₈O₁₂Rh₂S₄ 1274.1324, found 1274.1309.

The sign and magnitude of the optical rotation of $\mathbf{Rh}_2(S-\mathbf{nap})_4$ reported by the Du Bois group ($[\alpha]_D^{25} = -19.5 (c \ 1.0, \text{CHCl}_3)$)^a are greatly different from those of ours ($[\alpha]_D^{27} = +71.5 (c \ 0.2, \text{CHCl}_3)$). (a) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. **2008**, *130*, 9220.

Rh₂(*R*-nap)₄.

Prepared from $Rh_2(OAc)_4$ and (*R*)-4-methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide by using a manner identical to the procedure of Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220.

A 10 mL round bottom flask was charged with $Rh_2(OAc)_4$ (43.3 mg, 0.1 mmol), (*R*)-4-methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide (201 mg, 0.8 mmol), and 4 mL of chlorobenzene. The flask was fitted with a short-path distillation head and a 10 mL receiving flask. Chlorobenzene was slowly distilled under nitrogen until ~1 mL of solvent remained. The reaction was cooled and the receiving flask was emptied. The reaction flask was recharged with another 4 mL of chlorobenzene and the distillation procedure was performed a second time. After repeating this cycle two additional times, the supernatant (~1 mL) of the resulting dark purple suspension was load onto a silica gel column and purified by flash chromatography (dichloromethane : acetonitrile = 4:1). The isolated material was dissolved in 1.5 mL of acetone and concentrated under reduced pressure. The blue solid was allowed to stand under high vacuum at 80 °C for 12h to afford the desired product as a blue-green solid (95.1 mg, 76%).

 $[\alpha]_{D}^{29}$ = -70.5 (c 0.2, CHCl₃); ¹H NMR (500 MHz, CD₃CN) δ 7.77 (d, 4H, *J* = 8.5 Hz), 7.68 (d, 4H, *J* = 8.5 Hz), 7.40 (d, 4H, *J* = 8.0 Hz), 7.32 (d, 4H, *J* = 8.0 Hz), 5.79-5.87 (m, 4H), 3.19-3.35 (m, 6H), 2.94-2.97 (m, 6H), 2.43 (s, 6H), 2.39 (s, 6H), 1.97-1.99 (m, 2H), 1.26-1.59(m, 14H).; HRMS (ESI): *m*/*z* Calcd for C₄₈H₆₀N₈O₁₂Rh₂S₄ 1274.1324, found 1274.1300.

(S)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-4.

A mixture of sulfamate **3** (200 mg, 0.9 mmol), $Rh_2(R-nap)_4$ (24 mg, 0.02 mmol), and powdered 4Å molecular sieves (500 mg) was suspended in dry dichloromethane (2.0 mL). A single portion of PhI=O (240 mg, 1.1 mmol) was then added and the reaction mixture was stirred at room temperature for 2 h. The reaction mixture was loaded directly onto silica gel and purified by flash chromatography (*n*-hexane: ethyl acetate = 4:1) to afford desired product (168 mg, 85%) as a white crystal.

91.7% ee (Chiralcel OD-H, 8% isopropanol/hexanes, 1.0 mL/min, 210 nm, tr(major) = 27.9 min,

 $t_r(minor) = 33.9 \text{ min}$; $[\alpha]_D{}^{36} = -6.0 (c \ 1.0, \text{CHCl}_3)$; ¹H NMR (300 MHz, CDCl}3) δ 7.33-7.44 (m, 5H), 4.82-4.90 (m, 2H), 4.62-4.68 (m, 1H), 4.40 (br d, 1H, J = 9.2 Hz), 2.18-2.33 (m, 1H), 1.98-2.05 (m, 1H).; ¹³C NMR (75 MHz, CDCl_3) δ 138.0, 129.2, 128.9, 126.3, 71.9, 59.0, 30.2.; HRMS (EI) m/zCalcd for C₉H₁₁NO₃S 213.0460, found 213.0462.

(R)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (R)-4.

Prepared from sulfamate **3** (332 mg, 1.54 mmol) and $Rh_2(S-nap)_4$ catalyst (40.0 mg, 0.03 mmol) similar to the procedure for (*S*)-**4**. Purified by flash chromatography (*n*-hexane: ethyl acetate = 4:1) to afford desired product (263 mg, 80%) as a white crystal.

92.6% ee (Chiralcel OD-H, 8% isopropanol/hexanes, 1.0 mL/min, 210 nm, $t_r(minor) = 28.6$ min, $t_r(major) = 33.2$ min); $[\alpha]_D^{27} = +6.14$ (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.43 (m, 5H), 4.84-4.89 (m, 2H), 4.64-4.67 (m, 1H), 4.39 (br d, 1H, J = 9.0 Hz), 2.21-2.30 (m, 1H), 2.00-2.04 (m, 1H).; ¹³C NMR (125 MHz, CDCl₃) δ 138.1, 129.3, 129.1, 126.4, 72.0, 59.1, 30.3.; HRMS (EI): m/z Calcd for C₉H₁₁NO₃S 213.0460, found 213.0457.

Crystal structure data for absolute structure determination of oxathiazinane (*R*)-4: (4r).

Table 1. Crystal data and structure refinement for KSY-090528. Identification code 20090601a 0m Empirical formula C9 H11 N O3 S Formula weight 213.25 Temperature 296(2) K 0.71073 Å Wavelength Crystal system Triclinic P1 Space group Unit cell dimensions a = 5.89850(10) Å $\alpha = 107.7300(10)^{\circ}$. b = 9.6146(2) Å $\beta = 103.1540(10)^{\circ}$. c = 10.1578(2) Å $\gamma = 107.3550(10)^{\circ}$. Volume 490.553(16) Å3 Z 2 Density (calculated) 1.444 Mg/m3 0.310 mm-1 Absorption coefficient F(000) 224 Crystal size 0.28 x 0.22 x 0.13 mm³ Theta range for data collection 2.25 to 28.35° -7<=h<=7, -12<=k<=12, -13<=l<=13 Index ranges Reflections collected 8143 Independent reflections 3944 [R(int) = 0.0237] Completeness to theta = 28.35° 96.7% Multi-scan Absorption correction Max. and min. transmission 0.9609 and 0.9183 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 3944 / 3 / 254 Goodness-of-fit on F2 1.068 R1 = 0.0385, wR2 = 0.0904 Final R indices [I>2sigma(I)] R1 = 0.0498, wR2 = 0.0965 R indices (all data) Absolute structure parameter 0.02(6) Extinction coefficient 0.006(4) Largest diff. peak and hole 0.252 and -0.302 e.Å-3

Result File : C:\PenExe\TcWS\Ver6.3.0\Examples\KSY\090708-(r)nap-NH-20090708-224250.rst Sequence File : C:\PenExe\TcWS\Ver6.3.0\Examples\090708-(r)nap-NH.seq

DEFAULT REPORT

Peak #	Time [min]	Area [µV·s]	Height [µV]	Area [%]	BL	Adjusted Amount
1	2.986	414694.83	38984.66	0.69	BB	0.4147
2	3.421	4014.30	1060.56	0.01	BB	0.0040
3	4.254	6956.55	958.18	0.01	BB	0.0070
4	5.182	13411.67	1774.95	0.02	BB	0.0134
5	6.943	27831.98	2711.30	0.05	BB	0.0278
6	8.372	1572046.08	125173.21	2.63	BB	1.5720
7	10.758	26889.04	2403.15	0.04	BB	0.0269
8	13.897	212790.36	8769.50	0.36	BB	0.2128
9	25.432	93958.40	3330.76	0.16	BB	0.0940
10	27.930	55078771.07	916601.42	92.07	BB	55.0788
11	33.883	2372003.86	36263.36	3.97	BB	2.3720
		59823368.14	1.14e+06	100.00		59.8234

33192008.03 503857.88 100.00 33.1920

3-Cbz-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-7.

Oxathiazinane (*S*)-**4s** (50 mg, 0.24 mmol) was added to a solution of NaO^tBu (36 mg, 0.36 mmol) in DME (2.0 mL) at room temperature. The resulting suspension was stirred vigorously for 1.5 h following which time benzylchloroformate (71 μ L, 0.60 mmol) was added. After 10 h, the reaction was quenched by the addition of 1.0 mL of H₂O. The biphasic solution was extracted with EtOAc (3 times). The combined organic layer was washed successively with brine, and dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a residue which was subjected to flash chromatography on silica gel (*n*-hexane: ethyl acetate = 3:1) to afford desired product (75.6 mg, 91%) as a colorless oil.

[α]_D²⁸= -25.4 (c 0.52, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.41 (m, 10H), 5.75 (t, 1H, J = 4.2 Hz), 5.31 (s, 2H), 4.66-4.72 (m, 1H), 4.35-4.44 (m, 1H), 2.90-3.02 (m, 1H), 2.43-2.51 (m, 1H).; ¹³C NMR (75 MHz, CDCl₃) δ 152.1, 137.6, 134.7, 129.0, 128.6, 128.4, 127.9, 127.8, 125.5, 70.1, 69.5, 60.7, 28.2.; HRMS (EI): m/z Calcd for C₁₇H₁₇NO₅S 347.0827, found 347.0832.

(S)-3-(N-Cbz-amino)-3-phenylpropan-1-ol: (S)-8.

A solution of *N-Cbz*-oxathiazinane (*S*)-7 (60 mg, 0.17 mmol) in 2.0 mL of CH₃CN and 1.5 mL of H₂O was stirred vigorously at 75 °C for 24 h. After cooling the solution of room temperature, the mixture of 1 mL of 1M HCl and 1 mL of EtOAc was added and stirred at rt for 1 h, then basified with 1M NaOH. The biphasic solution was extracted with EtOAc (3 times). The combined organic layer was washed successively with brine, and dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a residue which was subjected to flash chromatography on silica gel (*n*-hexane: ethyl acetate = 3:1) to afford desired product (40.4 mg, 83%) as a white solid.

 $[\alpha]_D^{31}$ = -37.2 (c 0.4, CH₂Cl₂); ¹H NMR (300 MHz, CDCl₃) δ 7.28-7.35 (m, 10H), 5.32 (m, 1H), 5.14 (d, 1H, *J* = 12.0 Hz), 5.07 (d, 1H, *J* = 12.0 Hz), 3.69 (m, 2H), 2.61 (m, 1H), 2.05-2.11 (m, 1H), 1.85-1.93 (m, 1H).; ¹³C NMR (75 MHz, CDCl₃) δ 156.6, 141.7, 136.3, 128.8, 128.5, 128.2, 127.6, 126.4, 67.0, 59.2, 52.6, 39.0.; HRMS (EI): *m*/*z* Calcd for C₁₇H₁₉NO₃ 285.1365, found 285.1363.

(S)-3-Amino-3-phenyl-propan-1-ol: (S)-9.

Catalytic Pd/C was added to a solution of *N*-*Cbz* amino alcohol (*S*)-**8** (40.4 mg, 0.14 mmol) in EtOAc (3 mL). The reaction mixture was stirred at room temperature under H_2 atmosphere (1 atm) for 10 h. The Pd/C was removed by celite filtration and washed with dichloromethane. The combined organic layer was concentrated *in vacuo* to give a residue which was subjected to flash chromatography on silica gel (methanol only) to afford desired product (18.0 mg, 84%) as a colorless solid.

93% ee (Chiralcel OD-H, 10% isopropanol/hexanes, 1.0 mL/min, 210 nm, $t_r(minor) = 11.3$ min, $t_r(major) = 12.8$ min); $[\alpha]_D^{28} = -20.4$ (c 0.44, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.25-7.37 (m, 5H), 4.13 (dd, 1H, J = 4.5, 9.0 Hz), 3.78-3.85 (m, 2H), 2.63 (br s, 3H), 1.85-1.95 (m, 2H).; ¹³C NMR (125 MHz, CDCl₃) δ 146.2, 128.9, 127.3, 125.8, 62.4, 56.7, 39.6.; HRMS (EI): m/z Calcd for C₉H₁₃NO 151.0997, found 151.0979.

Commercial sample of (S)-9 from Acros Organics

 $[\alpha]_{D}^{27}$ = -22.0 (*c* 0.40, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.38 (m, 5H), 4.13 (dd, 1H, *J* = 5.1, 7.8 Hz), 3.77-3.89 (m, 2H), 2.46 (br s, 3H), 1.84-1.94 (m, 2H).; ¹³C NMR (75 MHz, CDCl₃) δ 146.2, 128.7, 127.2, 125.7, 62.4, 56.7, 39.5.

(S)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-5.

To a solution of (*S*)-4 (154 mg, 0.72 mmol) in DMF (3 mL) were added CH₃I (93 μ L, 1.5 mmol), K₂CO₃ (122 mg, 0.88 mmol) and a catalytic amount of *n*-Bu₄NI at 0 °C and the mixture was stirred at rt for 6h. The reaction mixture was diluted with ethyl acetate (30 mL) and H₂O (15 mL). The biphasic solution was extracted with ethyl acetate (3 times). The combined organic layer was washed successively with water and brine, and dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a residue which was subjected to flash chromatography on silica gel (*n*-hexane: ethyl acetate = 10:1) to afford desired product (81%) as a white crystal.

92.0% ee (Chiralcel OD-H, 10% isopropanol/hexanes, 1.2 mL/min, 210 nm, $t_r(major) = 18.5$ min, $t_r(minor) = 15.6$ min); $[\alpha]_D{}^{28} = -3.0$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.41 (m, 5H), 4.76-4.85 (m, 2H), 4.55-4.58 (m, 1H), 2.46-2.55 (m, 1H), 2.49 (s, 3H), 1.88-1.91 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.5, 129.3, 129.0, 127.6, 71.7, 64.3, 32.5, 28.1; HRMS (EI): *m/z* Calcd for C₁₀H₁₃NO₃S: 227.0616 found: 227.0611.

(R)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (R)-5.

Prepared from (*R*)-4 (201.2 mg, 0.95 mmol) and CH₃I (118 μ L, 1.9 mmol) similar to the procedure for (*S*)-5. Purified by flash chromatography (*n*-hexane: ethyl acetate = 10:1) to afford desired product (180 mg, 83%) as a white crystal.

91.1% ee (Chiralcel OD-H, 10% isopropanol/hexanes, 1.2 mL/min, 210nm, $t_r(major) = 18.5$ min, $t_r(minor) = 15.6$ min); $[\alpha]_D^{28} = +3.2$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.42 (m, 5H), 4.76-4.85 (m, 2H), 4.55-4.58 (m, 1H), 2.46-2.55 (m, 1H), 2.49 (s, 3H), 1.87-1.91 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.5, 129.2, 128.9, 127.6, 71.7, 64.2, 32.5, 28.0; HRMS (EI): *m/z* Calcd for C₁₀H₁₃NO₃S: 227.0616 found: 227.0612.

DEFAULT REPORT

Peak #	Time [min]	Area [µV·s]	Height [µV]	Area [%]	BL	Adjusted Amount
1	2.295	87316.07	8128.47	0.27	BV	0.0873
2	2.502	611725.92	52019.57	1.91	VV	0.6117
3	3.007	416060.76	38394.79	1.30	VV	0.4161
4	3.182	1130233.77	121445.66	3.53	W	1.1302
5	3.444	1148088.13	124270.29	3.59	W	1.1481
6	4.027	575280.35	36376.91	1.80	VB	0.5753
7	6.186	87167.12	5870.78	0.27	BB	0.0872
8	8.646	396464.99	17938.23	1.24	BB	0.3965
9	15.396	13801227.72	520243.29	43.14	BB	13.8012
10	18.325	13737322.58	426298.96	42.94	BB	13.7373
		31990887.43	1.35e+06	100.00		31.9909

Result File : C:\PenExe\TcWS\Ver6.3.0\Examples\KSY\dapoxetine\(S)MeN.rst

Peak #	Time [min]	Area [µV·s]	Height [µV]	Area [%]	BL	Adjusted Amount
1	2.524	521639.25	44088.26	1.67	BV	0.5216
2	3.203	2635894.33	231063.25	8.45	VB	2.6359
3	3.991	1310409.62	64882.65	4.20	BB	1.3104
4	5.701	1164518.41	40212.35	3.73	BB	1.1645
5	12.306	38537.09	1669.96	0.12	BB	0.0385
6	15.454	24379029.50	881375.45	78.16	BB	24.3790
7	18.583	1141353.56	31251.40	3.66	BB	1.1414
		31191381.76	1.29e+06	100.00		31.1914

(S)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-6.

The mixture of 1-naphtol (140 mg, 0.97 mmol) and NaH (42 mg, 0.97 mmol) in DMF (1 mL) was stirred at rt for 10 min. A solution of (*S*)-**5** (111 mg, 0.49 mmol) in DMF (1 mL) was added to a reaction mixture and stirred at rt for 1h. 1M HCl (1.5 mL, 5 eq) was added and stirred at rt for 2h, then basified with 2M NaOH. The reaction mixture was diluted with EA (10 mL) and H₂O (5 mL). The biphasic solution was extracted with ethyl acetate (3 times). The combined organic layer was washed successively with water and brine, and dried over anhydrous MgSO₄ and concentrated *in vacuo* to give a residue which was subjected to flash chromatography on silica gel (dichloromethane:methanol = 10:1) to afford desired product (120 mg, 84%) as orange oil.

91.2% ee (Chiralcel OD-H, 2% isopropanol/hexanes, 1.2 mL/min, 210nm, $t_r(major) = 12.6$ min, $t_r(minor) = 10.0$ min); $[\alpha]_D^{28} = +60.3$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.24-8.26 (m, 1H), 7.78-7.80 (m, 1H), 7.46-7.51 (m, 2H), 7.39-7.41 (m, 1H), 7.25-7.34 (m, 7H), 6.70 (d, 1H, J = 7.5 Hz), 4.13-4.17 (m, 1H), 3.97-4.02 (m, 1H), 3.90-3.92 (m, 1H), 2.41-2.47 (m, 1H), 2.33 (s, 3H), 2.17-2.2 3(m, 1H).; ¹³C NMR (125 MHz, CDCl₃) δ 154.6, 134.6, 128.8, 127.59, 127.55, 127.5, 126.5, 126.1, 126.0, 125.8, 125.3, 122.1, 120.3, 104.7, 65.5, 62.8, 37.2, 34.4.; HRMS (EI): m/z Calcd for C₂₀H₂₁NO: 291.1623 found: 291.1622.

(*R*)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (*R*)-6.

Prepared from (*R*)-5 (100 mg, 0.44 mmol) and 1-naphtol (127 mg, 0.88 mmol) similar to the procedure for (*S*)-6. Purified by flash chromatography (dichloromethane:methanol = 10:1) to afford desired product (111 mg, 87 %) as yellow oil.

92.5% ee (Chiralcel OD-H, 2% isopropanol/hexanes, 1.2 mL/min, 210nm, $t_r(major) = 12.6$ min, $t_r(minor) = 10.0$ min); $[\alpha]_D^{28} = -61.5$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.25-8.27 (m, 1H), 7.77-7.81 (m, 1H), 7.46-7.52 (m, 2H), 7.40-7.42 (m, 1H), 7.27-7.35 (m, 7H), 6.69 (d, 1H, *J* = 7.5 Hz), 4.12-4.16 (m, 1H), 3.92-4.00 (m, 2H), 2.44-2.50 (m, 1H), 2.34 (s, 3H), 2.19-2.25(m, 1H).; ¹³C NMR (75 MHz, CDCl₃) δ 154.6, 134.5, 128.6, 127.5, 127.4, 127.3, 126.4, 125.9, 125.6, 125.2, 122.0, 120.2, 104.6, 65.4, 62.7, 37.2, 34.4.; HRMS (EI): *m/z* Calcd for C₂₀H₂₁NO: 291.1623 found: 291.1627.

DEFAULT REPORT

Peak #	Time [min]	Area [µV⋅s]	Height [µV]	Area [%]	BL	Adjusted Amount
1	2.558	46556.23	12447.35	0.11	BV	0.0466
2	2.677	230887.62	30128.61	0.56	VB	0.2309
3	9.862	20600403.63	1.11e+06	49.70	BB	20.6004
4	12.490	20574928.77	863335.22	49.63	BB	20.5749
		41452776.24	2.01e+06	100.00		41.4528

1	9
	\circ

Peak #	Time [min]	Area [µV⋅s]	Height [µV]	Area [%]	BL	Adjusted Amount
1	0.467	107447.59	2479.01	0.55	DD	0 1074
2	2.555	48210.26	12619 38	0.35	BV	0.0482
3	2.652	323445.25	39063.09	1.65	VB	0.3234
4	4.098	12892.96	1513.71	0.07	BB	0.0129
5	5.678	95456.59	6196.29	0.49	BB	0.0955
6	6.628	47710.95	875.31	0.24	BB	0.0477
7	10.086	18153535.76	890932.03	92.63	BV	18.1535
8	11.428	101006.03	3855.13	0.52	VB	0.1010
9	12.924	708818.58	26705.54	3.62	BB	0.7088
		19598523.96	985238 50	100.00		19 5985

Result File : C:\PenExe\TcWS\Ver6.3.0\Examples\KSY\dapoxetine\(R)MeNH.rst Sequence File : C:\PenExe\TcWS\Ver6.3.0\Examples\3.seq

Peak #	Time [min]	Area [µV·s]	Height [µV]	Area [%]	BL	Adjusted Amount
1	2.556	42486.01	10688.94	0.17	BV	0.0425
2	2.667	283011.15	33672.88	1.10	VB	0.2830
3	4.139	13677.49	1929.50	0.05	BB	0.0137
4	5.654	107868.41	6929.80	0.42	BB	0.1079
5	6.358	24526.02	1120.56	0.10	BB	0.0245
6	9.975	1104328.39	60231.63	4.30	BB	1.1043
7	12.615	24004037.44	972475.75	93.44	BV	24.0040
8	14.478	109169.99	3469.59	0.42	VB	0.1092
		25689104.89	1.09e+06	100.00		25 6891

DI	ΞF	AULT REPORT	
Area	BL	Adjusted	

(S)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-1.

To a solution of (*S*)-**9** (54 mg, 0.19 mmol) in formic acid (38 μ L, 1.0 mmol) was added a 30% aqueous solution of formaldehyde (100 μ L, 1.0 mmol) and the reaction mixture was refluxed for 8h. After this time the solution was acidified with conc. HCl until pH=1 and basified with 4N NaOH. The reaction mixture was diluted with ethyl acetate and washed with aqueous NaHCO₃ solution. The organic phase was separated and dried over MgSO₄. After evaporation of solvent the crude residue was purified by flash chromatography (*n*-Hexane: Ethyl acetate = 1:3) to afford desired product (42.5 mg, 75%) as colorless oil.

91.8% ee (Chiralcel OD-H, 2% isopropanol/hexanes, 0.7 mL/min, 210nm, $t_r(major) = 10.1$ min, $t_r(minor) = 8.9$ min); $[\alpha]_D^{28} = +63.2$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.26-8.28 (m, 1H), 7.79-7.81 (m,1H), 7.28-7.52 (m,10H), 6.67 (d, 1H, J = 7.5 Hz), 4.07-4.12 (m, 1H), 3.91-3.95 (m, 1H), 3.62-3.65 (m, 1H), 2.63-2.70 (m, 1H), 2.26-2.34 (m, 1H), 2.28 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 154.8, 139.7, 134.7, 128.8, 128.4, 127.6, 127.5, 126.5, 126.1, 125.9, 125.3, 122.2, 120.2, 104.8, 67.9 (1C, C₃), 65.8 (1C, C₁), 43.0 (2C, C₄ + C₄), 33.2 (1C, C₂).; HRMS (EI): *m/z* Calcd for C₂₁H₂₃NO: 305.1780 found: 305.1765.

(R)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (R)-1.

Prepared from (*R*)-9 (52 mg, 0.18 mmol), formic acid (37 μ L) and formaldehyde (84 μ L) similar to the procedure for (*S*)-1. Purified by flash chromatography (dichloromethane:methanol = 10:1) to afford desired product (43 mg, 79%) as colorless oil.

91.2% ee (Chiralcel OD-H, 2% isopropanol/hexanes, 0.7 mL/min, 210 nm, $t_r(major) = 10.1$ min, $t_r(minor) = 8.9$ min); $[\alpha]_D^{28} = -67.0$ (c 0.3, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 8.24-8.26 (m, 1H), 7.78-7.80 (m,1H), 7.27-7.51 (m,10H), 6.66 (d, 1H, *J* = 7.5 Hz), 4.07-4.11 (m, 1H), 3.89-3.94 (m, 1H), 3.64-3.66 (m, 1H), 2.63-2.70 (m, 1H), 2.27-2.35 (m, 1H), 2.29 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 154.8, 139.5, 134.7, 128.8, 128.5, 127.7, 127.6, 126.5, 126.1, 125.9, 125.3, 122.2, 120.2, 104.8, 67.9 (1C, C₃), 65.8 (1C, C₁), 42.9 (2C, C₄ + C₄), 33.1 (1C, C₂).; HRMS (EI): *m/z* Calcd for C₂₁H₂₃NO: 305.1780 found: 305.1769.

Result File : C:\PenExe\Tc\WS\Ver6.3.0\Examples\KSY\dapoxetine\(racemic)dapoxetine.rst Sequence File : C:\PenExe\Tc\WS\Ver6.3.0\Examples\090911-6.seq

DEFAULT REPORT

Peak #	Time [min]	Area [µV⋅s]	Height [µV]	Area [%]	BL	Adjusted Amount	
1	4.424	92946.93	12790.35	0.32	BV	0.0929	
2	4.593	863841.54	51715.26	2.94	VB	0.8638	
3	8.832	14183424.77	1.01e+06	48.35	BB	14.1834	
4	10.005	14197220.36	919249.57	48.39	BB	14.1972	
		29337433 60	1 99e+06	100.00		29 3374	

Result File : C:\PenExe\Tc\WS\Ver6.3.0\Examples\KSY\dapoxetine\(S)dapoxetine.rst Sequence File : C:\PenExe\Tc\WS\Ver6.3.0\Examples\090911-5.seq

	DEFAUL			REPORT
eight µV]	Area [%]	BL	Adjusted Amount	

Peak Time # [min]		Area [µV·s]	Height [µV]	Area [%]	BL	Adjusted Amount
1	4.422	90153.62	12844.14	0.80	BV	0.0902
2	4.648	609826.45	37336.66	5.44	VB	0.6098
3	8.939	431134.31	32065.00	3.85	BB	0.4311
4	10.108	10071191.13	664195.51	89.90	BB	10.0712
		11202305.52	746441.31	100.00		11.2023

F	Peak #	Time [min]	Area [µV·s]	Height [µV]	Area [%]	BL	Adjusted Amount	
	1	4.422	45067.14	6729.87	0.47	BV	0.0451	
	2	4.583	803214.03	47198.45	8.42	VB	0.8032	
	3	9.066	8310331.53	588232.29	87.09	BB	8.3103	
	4	10.282	383169.66	25121.08	4.02	BB	0.3832	
			9541782.36	667281.70	100.00		9.5418	

