Supporting Information

Highly efficient, enantioselective syntheses of (S)-(+)- and (R)-(-)dapoxetine starting with 3-phenyl-1-propanol

Soyeong Kang and Hyeon-Kyu Lee*

[^0]
Table of Contents

1. General 4
2. Experimental procedures for the synthesis of compounds
(S)-4-Methyl- N-(2-oxo-piperidin-3-yl)-benzenesulfonamide 4
(R)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide 6
$\mathrm{Rh}_{2}(S \text {-nap })_{4}$ 6
$\mathrm{Rh}_{2}(R-n a p){ }_{4}$ 7
(S)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-4 7
(R)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: $(R)-4$ 8
3-Cbz-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-7 11
(S)-3-(N-Cbz-amino)-3-phenylpropan-1-ol: (S)-8 12
(S)-3-Amino-3-phenyl-propan-1-ol: (S)-9 12
(S)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-5 14
(R)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (R)-5 14
(S)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-6 17
(R)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (R)-6 17
(S)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-1 20
(R)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (R)-1 20
3. Table for the crystallographic data and ORTEP of (R)-4 8
4. Copies of ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (S)-4-Methyl- N -(2-oxo-piperidin-3-yl)-benzenesulfonamide 23
${ }^{13}$ C-NMR of (S)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide 24
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (R)-4-Methyl- N -(2-oxo-piperidin-3-yl)-benzenesulfonamide 25
${ }^{13} \mathrm{C}$-NMR of (R)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide 26
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathrm{Rh}_{2}(S \text {-nap })_{4}$ 27
${ }^{1} \mathrm{H}$-NMR of $\mathrm{Rh}_{2}(R \text {-nap })_{4}$ 28
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (S)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-4 29
${ }^{13} \mathrm{C}$-NMR of (S)-4-Phenyl-[1,2,3] oxathiazinane 2,2-dioxide: (S)-4 30
${ }^{1} \mathrm{H}$-NMR of (R)-4-Phenyl-[1,2,3] oxathiazinane 2,2-dioxide: $(R)-4$ 31
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of (R)-4-Phenyl-[1,2,3] oxathiazinane 2,2-dioxide: $(R)-4$ 32
${ }^{1}$ H-NMR of (S)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-5 33
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of (S)-3-Methyl-4-phenyl-[1,2,3] oxathiazinane 2,2-dioxide: (S)-5 34
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (R)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: $(R)-5$ 35
${ }^{13}$ C-NMR of (R)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: $(R)-5$ 36
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 3-Cbz-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-7 37
${ }^{13}$ C-NMR of 3-Cbz-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-7 38
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (S)-3-(N-Cbz-amino)-3-phenylpropan-1-ol: (S)-8 39
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of (S)-3-(N-Cbz-amino)-3-phenylpropan-1-ol: (S)-8 40
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (S)-3-Amino-3-phenyl-propan-1-ol: (S)-9 41
${ }^{13}$ C-NMR of (S)-3-Amino-3-phenyl-propan-1-ol: (S)-9 42
${ }^{1}$ H-NMR of Commercial sample of (S)-9 from Acros Organics 43
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of Commercial sample of (S)-9 from Acros Organics 44
${ }^{1}$ H-NMR of (S)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-6 45
${ }^{13}$ C-NMR of (S)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-6 46
${ }^{1}$ H-NMR of (R)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (R)-6 47
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of (R)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: $(R)-6$ 48
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (S)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-1 49
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of (S)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-1 50
${ }^{1}$ H-NMR of (R)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (R)-1 51
${ }^{13} \mathrm{C}$-NMR of (R)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (R)-1 52

General: All commercial reagents were used as obtained commercially unless otherwise noted. Reactions were performed using oven dried glassware under an atmosphere of nitrogen. Dichloromethane (DCM) was dried with CaH and distilled prior to use. Flash column chromatography was carried out on Fuji Chromatorex silica gel $(38-75 \mu \mathrm{~m})$. Analytical thin layer chromatography (TLC) was performed on Merck silica gel $60 \mathrm{~F}_{254}$ plates. Visualization of the developed chromatogram was accomplished with UV light and by staining with ethanolic phosphomolybdic acid (PMA) solution followed by heating.
Nuclear magnetic resonance (NMR) spectra were recorded using Bruker 500 MHz NMR instrument (${ }^{1} \mathrm{H}$ NMR at 500 MHz and ${ }^{13} \mathrm{C}$ NMR at 125 MHz) and Bruker 300 MHz NMR instrument $\left({ }^{1} \mathrm{H}\right.$ NMR at 300 MHz and ${ }^{13} \mathrm{C}$ NMR at 75 MHz). ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=\mathrm{broad}$), integration, coupling constants (Hz). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). High performance liquid chromatography (HPLC) was carried out on a Perkin Elmer series 200 HPLC equipped with a Chiralcel OD-H column. Specific rotations were measured on a Rudolph Autopol IV (Automatic polarimeter). High-resolution mass spectra were obtained from the center for chemical analysis in Korea Research Institute of Chemical Technology. Sulfamate ester 3 was prepared from the alcohol 2 according to a protocol reported by Du Bois and coworkers. ${ }^{\text {a }}$ Preparation of $\mathrm{Rh}_{2}(S-n a p)_{4}$ catalyst was reported by Du Bois and coworkers. ${ }^{\text {b }} \mathrm{Rh}_{2}(R \text {-nap })_{4}$ catalyst was prepared by reaction between $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ and (R)-3-tosylamino-valerolactam, which is obtained from unnatural $\mathrm{D}-(-)$ ornithine hydrochloride in a manner that is similar to the procedure employed for the preparation of $\mathrm{Rh}_{2}(S \text {-nap })_{4}$ catalyst from L-(+)-ornithine hydrochloride. ${ }^{\mathrm{b}, \mathrm{c}}$

(S)-4-Methyl- N-(2-oxo-piperidin-3-yl)-benzenesulfonamide.

Prepared from L-(+)-ornithine hydrochloride according to the procedure of Du Bois and coworkers. ${ }^{\text {b }}$

Acetyl chloride ($5.3 \mathrm{~mL}, 74.1 \mathrm{mmol}$) was slowly added over a 5 min period to an ice-cold suspension of L-(+)-ornithine hydrochloride ($5 \mathrm{~g}, 29.7 \mathrm{mmol}$) in 120 mL of MeOH . The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 10 min , the flask was then fitted with a reflux condenser, and the contents heated at $65{ }^{\circ} \mathrm{C}$ for

12 h . The clear, colorless solution was cooled to room temperature and concentrated under reduced pressure to give clear oil. This material was allowed to stand under high vacuum for 4 h prior to subsequent use; during this time the compound solidified. The solid mass was dissolved in 120 mL of MeOH to which $\mathrm{Et}_{3} \mathrm{~N}$ ($12.4 \mathrm{~mL}, 89.1 \mathrm{mmol}$) was then added. The reaction mixture was stirred at 65 ${ }^{\circ} \mathrm{C}$ for 2 h . Following this time, the solution was concentrated under reduced pressure and the isolated solid was placed under high vacuum for 3 h . The off-white mass was suspended in 100 mL of DCM and to this mixture was added pyridine ($4.8 \mathrm{~mL}, 59.4 \mathrm{mmol}$). The flask was set in an ice bath and charged with p-toluenesulfonyl chloride ($6.8 \mathrm{~g}, 35.6 \mathrm{mmol}$). The mixture was warmed slowly to room temperature, stirred for 8 h , and then concentrated under reduced pressure to an orange solid. This material was transferred to a separatory funnel with 200 mL of warm EtOAc and washed with 80 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (3 times). The organic layer was collected, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to a white solid. Recrystallization of this material using hot EtOAc furnished the desired lactam as colorless needles ($2.1 \mathrm{~g}, 26 \%$ overall).
$[\alpha]_{\mathrm{D}}{ }^{32}=+50.7(\mathrm{c} 1.08, \mathrm{DMSO}),[\alpha]_{\mathrm{D}}{ }^{28}=+121.8\left(\mathrm{c} 1.09, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78$ (d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}$), $7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.95(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 3.47-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ $3.28(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.66-2.05(\mathrm{~m}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.9, 143.6, 136.0, 129.7, 127.4, 53.3, 41.9, 28.5, 21.5, 20.8.; HRMS (EI): m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 268.0882$, found 268.0880.

The sign and magnitude of the optical rotation of (S)-4-methyl-N-(2-oxo-piperidin-3-yl)benzenesulfonamide ligand ($\mathbf{A}:[\alpha]_{D}{ }^{25}=-91.1$ (c 1.1, DMSO)), prepared from L-(+)-ornithine by the Du Bois group, ${ }^{b}$ is greatly different from those reported in the literature ${ }^{c}\left[[\alpha]_{D}{ }^{22}=+128\right.$ (c 1.05, $\left.\left.\mathrm{CHCl}_{3}\right)\right]$ and ours $\left[[\alpha]_{\mathrm{D}}{ }^{32}=+50.7\right.$ (c 1.08, DMSO), $\left.[\alpha]_{\mathrm{D}}{ }^{28}=+121.8\left(c 1.09, \mathrm{CHCl}_{3}\right)\right]$.

(a) Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935
(b) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220.
(c) Maguire, M. P.; Feldman, P. L.; Rapoport, H. J. Org. Chem. 1990, 55, 948.

(R)-4-Methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide.

Prepared from D-(-)-ornithine hydrochloride as colorless needles (28\% overall) by using a manner identical to (S)-4-methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide.
$[\alpha]_{\mathrm{D}}{ }^{29}=-50.9(\mathrm{c} 1.01, \mathrm{DMSO}),[\alpha]_{\mathrm{D}}{ }^{29}=-123.8\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}$, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.89(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 3.47-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.27-$ $3.28(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.96(\mathrm{~m}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.8, 143.7, 135.9, 129.8, 127.4, 53.3, 42.0, 28.5, 21.6, 20.8.; HRMS (EI): m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 268.0882$, found 268.0882

$\mathbf{R h}_{2}(\text { S-nap })_{4}$.

Prepared from $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ and (S)-4-methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide according to the procedure of Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220. yield: $82 \% ;[\alpha]_{\mathrm{D}}{ }^{27}=+71.5\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.76(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $7.67(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.40(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.32(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 5.75-5.87(\mathrm{~m}, 4 \mathrm{H}), 3.22-$ $3.35(\mathrm{~m}, 6 \mathrm{H}), 2.94(\mathrm{~m}, 6 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 1.98-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.63(\mathrm{~m}, 14 \mathrm{H}) . ;$ HRMS (ESI): m / z Calcd for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{Rh}_{2} \mathrm{~S}_{4}$ 1274.1324, found 1274.1309.

The sign and magnitude of the optical rotation of $\mathbf{R h}_{\mathbf{2}}(\mathbf{S}-\text { nap })_{4}$ reported by the Du Bois group $\left([\alpha]_{D}{ }^{25}\right.$ $\left.=-19.5\left(c 1.0, \mathrm{CHCl}_{3}\right)\right)^{\text {a }}$ are greatly different from those of ours $\left([\alpha]_{\mathrm{D}}{ }^{27}=+71.5\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right)\right)$.
(a) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220.

$\mathbf{R h}_{2}$ (\boldsymbol{R}-nap) $\mathbf{4}_{\text {. }}$

Prepared from $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ and (\boldsymbol{R})-4-methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide by using a manner identical to the procedure of Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 9220.

A 10 mL round bottom flask was charged with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(43.3 \mathrm{mg}, 0.1 \mathrm{mmol}),(R)-4$-methyl-N-(2-oxo-piperidin-3-yl)-benzenesulfonamide ($201 \mathrm{mg}, 0.8 \mathrm{mmol}$), and 4 mL of chlorobenzene. The flask was fitted with a short-path distillation head and a 10 mL receiving flask. Chlorobenzene was slowly distilled under nitrogen until $\sim 1 \mathrm{~mL}$ of solvent remained. The reaction was cooled and the receiving flask was emptied. The reaction flask was recharged with another 4 mL of chlorobenzene and the distillation procedure was performed a second time. After repeating this cycle two additional times, the supernatant $(\sim 1 \mathrm{~mL})$ of the resulting dark purple suspension was load onto a silica gel column and purified by flash chromatography (dichloromethane : acetonitrile $=4: 1$). The isolated material was dissolved in 1.5 mL of acetone and concentrated under reduced pressure. The blue solid was allowed to stand under high vacuum at $80{ }^{\circ} \mathrm{C}$ for 12 h to afford the desired product as a blue-green solid (95.1 $\mathrm{mg}, 76 \%)$.
$[\alpha]_{\mathrm{D}}{ }^{29}=-70.5\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.77(\mathrm{~d}, 4 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.68(\mathrm{~d}, 4 \mathrm{H}, J$ $=8.5 \mathrm{~Hz}), 7.40(\mathrm{~d}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.32(\mathrm{~d}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.79-5.87(\mathrm{~m}, 4 \mathrm{H}), 3.19-3.35(\mathrm{~m}, 6 \mathrm{H})$, 2.94-2.97 (m, 6H), $2.43(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 1.97-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.59(\mathrm{~m}, 14 \mathrm{H})$.; HRMS (ESI): m / z Calcd for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{Rh}_{2} \mathrm{~S}_{4}$ 1274.1324, found 1274.1300.

(S)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-4.

A mixture of sulfamate $3(200 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Rh}_{2}(R-\mathrm{nap})_{4}(24 \mathrm{mg}, 0.02 \mathrm{mmol})$, and powdered $4 \AA$ molecular sieves (500 mg) was suspended in dry dichloromethane (2.0 mL). A single portion of $\mathrm{PhI}=\mathrm{O}(240 \mathrm{mg}, 1.1 \mathrm{mmol})$ was then added and the reaction mixture was stirred at room temperature for 2 h . The reaction mixture was loaded directly onto silica gel and purified by flash chromatography $(n$-hexane: ethyl acetate $=4: 1)$ to afford desired product $(168 \mathrm{mg}, 85 \%)$ as a white crystal.
91.7% ee (Chiralcel OD-H, 8% isopropanol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=27.9 \mathrm{~min}$,
$\mathrm{t}_{\mathrm{r}}($ minor $\left.)=33.9 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{36}=-6.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.44(\mathrm{~m}, 5 \mathrm{H})$, 4.82-4.90 (m, 2H), 4.62-4.68 (m, 1H), $4.40(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 2.18-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.05(\mathrm{~m}$, $1 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.0,129.2,128.9,126.3,71.9,59.0,30.2 . ;$ HRMS (EI) m / z Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S} 213.0460$, found 213.0462.

(R)-4-Phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (R)-4.

Prepared from sulfamate $3(332 \mathrm{mg}, 1.54 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(S-n a p)_{4}$ catalyst $(40.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ similar to the procedure for $(S)-4$. Purified by flash chromatography $(n$-hexane: ethyl acetate $=4: 1)$ to afford desired product ($263 \mathrm{mg}, 80 \%$) as a white crystal.
92.6% ee (Chiralcel OD-H, 8% isopropanol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}(\mathrm{minor})=28.6 \mathrm{~min}$, t_{r} (major) $\left.=33.2 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{27}=+6.14\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.43(\mathrm{~m}, 5 \mathrm{H})$, 4.84-4.89 (m, 2H), 4.64-4.67 (m, 1H), $4.39(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 2.21-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.04(\mathrm{~m}$, 1H).; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 138.1,129.3,129.1,126.4,72.0,59.1,30.3 . ; \mathrm{HRMS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ 213.0460, found 213.0457.

Crystal structure data for absolute structure determination of oxathiazinane (\boldsymbol{R})-4: (4r).

Table 1. Crystal data and structure refinement for KSY-090528.

Result File : C:IPenExeITcWSIVer6.3.01ExamplesIKSY090708-(racemic)-NH.rst
Sequence File : C:IPenExelTcWSIVer6.3.01Examplesl090708-(racemic)-NH-20090708-170506.seq

Result File : C:IPenExelTcWSIVer6.3.0\ExamplesIKSYY090708-(r)nap-NH-20090708-224250.rst Sequence File : C:IPenExelTcWSIVer6.3.0\Examples1090708-(r)nap-NH.seq

Peak \#	Time [min]	Area [$\mu \mathrm{V} \cdot \mathrm{s}$]	Height $[\mu \mathrm{V}$]	Area [\%]		Adjusted Amount
1	2.986	414694.83	38984.66	0.69	BB	0.4147
2	3.421	4014.30	1060.56	0.01	BB	0.0040
3	4.254	6956.55	958.18	0.01	BB	0.0070
4	5.182	13411.67	1774.95	0.02	BB	0.0134
5	6.943	27831.98	2711.30	0.05	BB	0.0278
6	8.372	1572046.08	125173.21	2.63	BB	1.5720
7	10.758	26889.04	2403.15	0.04	BB	0.0269
8	13.897	212790.36	8769.50	0.36	BB	0.2128
9	25.432	93958.40	3330.76	0.16	BB	0.0940
10	27.930	55078771.07	916601.42	92.07	BB	55.0788
11	33.883	2372003.86	36263.36	3.97	BB	2.3720

Peak \#	Time [min]	Area $[\mu \mathrm{V} \cdot \mathrm{s}$]	Height $[\mu \mathrm{V}$]	Area [\%]		Adjusted Amount
1	2.977	306310.07	30921.18	0.92	BB	0.3063
2	3.510	10296.57	1455.60	0.03	BV	0.0103
3	3.754	23408.40	1156.35	0.07	VB	0.0234
4	5.368	7027.96	718.50	0.02	BV	0.0070
5	5.959	132701.34	3553.28	0.40	VB	0.1327
6	8.423	126860.59	3824.58	0.38	BV	0.1269
7	9.523	32360.81	1676.50	0.10	VB	0.0324
8	10.292	8945.54	443.22	0.03	BB	0.0089
9	15.441	44524.53	1426.57	0.13	BV	0.0445
10	16.242	152176.53	3873.25	0.46	VB	0.1522
11	21.618	147843.23	4034.24	0.45	BB	0.1478
12	26.506	76615.55	2004.32	0.23	BB	0.0766
13	28.564	1176540.77	20133.78	3.54	BB	1.1765
14	31.197	129215.92	3394.00	0.39	BV	0.1292
15	33.201	30817180.22	425242.48	92.85	VB	30.8172
		33192008.03	503857.88	100.00		33.1920

3-Cbz-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-7.

Oxathiazinane (S)-4s (50 mg, 0.24 mmol$)$ was added to a solution of $\mathrm{NaO}^{t} \mathrm{Bu}(36 \mathrm{mg}, 0.36 \mathrm{mmol})$ in DME (2.0 mL) at room temperature. The resulting suspension was stirred vigorously for 1.5 h following which time benzylchloroformate ($71 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$) was added. After 10 h , the reaction was quenched by the addition of 1.0 mL of $\mathrm{H}_{2} \mathrm{O}$. The biphasic solution was extracted with EtOAc (3 times). The combined organic layer was washed successively with brine, and dried over anhydrous MgSO_{4} and concentrated in vacuo to give a residue which was subjected to flash chromatography on silica gel (n-hexane: ethyl acetate $=3: 1$) to afford desired product $(75.6 \mathrm{mg}, 91 \%)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{28}=-25.4\left(\mathrm{c} 0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.41(\mathrm{~m}, 10 \mathrm{H}), 5.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.2$ $\mathrm{Hz}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 4.66-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.44(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.51(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.1,137.6,134.7,129.0,128.6,128.4,127.9,127.8,125.5,70.1,69.5$, 60.7, 28.2.; HRMS (EI): m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S} 347.0827$, found 347.0832.

(S)-3-(N-Cbz-amino)-3-phenylpropan-1-ol: (S)-8.

A solution of N -Cbz-oxathiazinane (S) $-7\left(60 \mathrm{mg}, 0.17 \mathrm{mmol}\right.$) in 2.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and 1.5 mL of $\mathrm{H}_{2} \mathrm{O}$ was stirred vigorously at $75^{\circ} \mathrm{C}$ for 24 h . After cooling the solution of room temperature, the mixture of 1 mL of 1 M HCl and 1 mL of EtOAc was added and stirred at rt for 1 h , then basified with 1 M NaOH . The biphasic solution was extracted with EtOAc (3 times). The combined organic layer was washed successively with brine, and dried over anhydrous MgSO_{4} and concentrated in vacuo to give a residue which was subjected to flash chromatography on silica gel (n-hexane: ethyl acetate $=3: 1$) to afford desired product ($40.4 \mathrm{mg}, 83 \%$) as a white solid.
$[\alpha]_{\mathrm{D}}{ }^{31}=-37.2\left(\mathrm{c} 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.35(\mathrm{~m}, 10 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H}), 5.14$ $(\mathrm{d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.85-$ $1.93(\mathrm{~m}, 1 \mathrm{H})$.; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6,141.7,136.3,128.8,128.5,128.2,127.6,126.4$, 67.0, 59.2, 52.6, 39.0.; HRMS (EI): m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} 285.1365$, found 285.1363 .

(S)-3-Amino-3-phenyl-propan-1-ol: (S)-9.

Catalytic Pd / C was added to a solution of $\mathrm{N}-\mathrm{Cbz}$ amino alcohol (S$)-\mathbf{8}(40.4 \mathrm{mg}, 0.14 \mathrm{mmol})$ in EtOAc $(3 \mathrm{~mL})$. The reaction mixture was stirred at room temperature under H_{2} atmosphere (1 atm) for 10 h . The Pd / C was removed by celite filtration and washed with dichloromethane. The combined organic layer was concentrated in vacuo to give a residue which was subjected to flash chromatography on silica gel (methanol only) to afford desired product ($18.0 \mathrm{mg}, 84 \%$) as a colorless solid.
93% ee (Chiralcel OD-H, 10% isopropanol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.3 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ major $\left.)=12.8 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{28}=-20.4\left(\mathrm{c} 0.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.37(\mathrm{~m}, 5 \mathrm{H})$, $4.13(\mathrm{dd}, 1 \mathrm{H}, J=4.5,9.0 \mathrm{~Hz}), 3.78-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.85-1.95(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.2,128.9,127.3,125.8,62.4,56.7,39.6$.; HRMS (EI): m/z Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}$ 151.0997, found 151.0979.

Commercial sample of (S)-9 from Acros Organics

$[\alpha]_{\mathrm{D}}{ }^{27}=-22.0\left(c 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=5.1$, 7.8 Hz), 3.77-3.89 (m, 2H), 2.46 (br s, 3H), 1.84-1.94 (m, 2H).; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.2$, $128.7,127.2,125.7,62.4,56.7,39.5$.

Result File : C:IPenExelTcWSIVer6.3.01ExamplesIKSYO90723test1.rst
Sequence File : C:IPenExelTcWSIVer6.3.0IExamples1090723test1.seq

Result File : C:IPenExelTcWSIVer6.3.0XExamplesIKSYO90723t3.rs
Sequence File : C:IPenExelTcWSIVer6.3.01Examples109072313.seq

Result File : C:IPenExelTcWSIVer6.3.01ExamplesIKSY090724-Acros98\%ee.rst
Sequence File : C:IPenExelTcWSIVer6.3.0\Examples1090724-Acros98\%ee.seq

号
Commercial sample of (S)-9 from Acros Organics

(S)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (S)-5.

To a solution of (S)-4 (154 mg, 0.72 mmol$)$ in DMF (3 mL) were added $\mathrm{CH}_{3} \mathrm{I}(93 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(122 \mathrm{mg}, 0.88 \mathrm{mmol})$ and a catalytic amount of $n-\mathrm{Bu}_{4} \mathrm{NI}$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 6 h . The reaction mixture was diluted with ethyl acetate $(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The biphasic solution was extracted with ethyl acetate (3 times). The combined organic layer was washed successively with water and brine, and dried over anhydrous MgSO_{4} and concentrated in vacuo to give a residue which was subjected to flash chromatography on silica gel (n-hexane: ethyl acetate $=$ $10: 1$) to afford desired product (81%) as a white crystal.
92.0% ee (Chiralcel OD-H, 10% isopropanol/hexanes, $1.2 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=18.5 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $\left.)=15.6 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{28}=-3.0\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.41(\mathrm{~m}, 5 \mathrm{H})$, 4.76-4.85 (m, 2H), 4.55-4.58 (m, 1H), 2.46-2.55 (m, 1H), 2.49 ($\mathrm{s}, 3 \mathrm{H}), 1.88-1.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 137.5,129.3,129.0,127.6,71.7,64.3,32.5,28.1$; HRMS (EI): m/z Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}: 227.0616$ found: 227.0611.

(R)-3-Methyl-4-phenyl-[1,2,3]oxathiazinane 2,2-dioxide: (R)-5.

Prepared from $(R)-4(201.2 \mathrm{mg}, 0.95 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(118 \mu \mathrm{~L}, 1.9 \mathrm{mmol})$ similar to the procedure for (S)-5. Purified by flash chromatography (n-hexane: ethyl acetate $=10: 1$) to afford desired product $(180 \mathrm{mg}, 83 \%)$ as a white crystal.
91.1% ee (Chiralcel OD-H, 10% isopropanol/hexanes, $1.2 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=18.5 \mathrm{~min}$, t_{r} (minor) $\left.=15.6 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{28}=+3.2\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.42(\mathrm{~m}, 5 \mathrm{H})$, 4.76-4.85 (m, 2H), 4.55-4.58 (m, 1H), 2.46-2.55 (m, 1H), 2.49 (s, 3H), 1.87-1.91 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.5,129.2,128.9,127.6,71.7,64.2,32.5,28.0 ;$ HRMS (EI): m/z Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}: 227.0616$ found: 227.0612 .

Result File : C:IPenExelTcWSIVer6.3.0\ExamplesiKSYidapoxetinel(racemic)MeN.rst Sequence File : C:IPenExelTcWSIVer6.3.01Examples $11-20090913-022331 . s e q$

DEFAULT REPORT

Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {[\mu V \cdot s]} \end{gathered}$	Height $[\mu \mathrm{V}]$	Area [\%]	BL	Adjusted Amount
1	2.295	87316.07	8128.47	0.27	BV	0.0873
2	2.502	611725.92	52019.57	1.91	VV	0.6117
3	3.007	416060.76	38394.79	1.30	VV	0.4161
4	3.182	1130233.77	121445.66	3.53	W	1.1302
5	3.444	1148088.13	124270.29	3.59	V	1.1481
6	4.027	575280.35	36376.91	1.80	VB	0.5753
7	6.186	87167.12	5870.78	0.27	BB	0.0872
8	8.646	396464.99	17938.23	1.24	BB	0.3965
9	15.396	13801227.72	520243.29	43.14	BB	13.8012
10	18.325	13737322.58	426298.96	42.94	BB	13.7373
		31990887.43	$1.35 \mathrm{e}+06$	0.00		31.9909

Result File : C:IPenExelTcWSIVer6.3.0\ExamplesIKSYlapoxetinel(S)MeN.rst
Sequence File : C:IPenExelTcWSIVer6.3.0iExamples11-20090913-041913.seq
(200

DEFAULT REPORT

Peak \#	Time [min]	Area [$\mu \mathrm{V} \cdot \mathrm{s}$]	Height [$\mu \mathrm{V}$]	Area [\%]	BL	Adjusted Amount
1	2.506	421272.48	42921.54	3.27	BB	0.4213
2	3.487	323229.36	33849.45	2.51	BB	0.3232
3	4.175	7068.46	1072.58	0.05	BB	0.0071
4	6.527	85088.59	4313.86	0.66	BB	0.0851
5	15.599	484780.93	19014.61	3.76	BB	0.4848
6	18.496	11577228.60	363527.18	89.76	BB	11.5772
		12898668.42	464699.21	100.00		12.8987

Result File : C:IPenExelTcWSIVer6.3.0\ExamplesIKSYMdapoxetinel(R)MeN.rst Sequence File : C:IPenExelTcWSIVer6.3.0\Examples13-20090913-035425.seq

DEFAULT REPORT

Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {[\mu \mathrm{V} \cdot \mathrm{~s}]} \end{gathered}$	Height [$\mu \mathrm{V}$]	Area [\%]		Adjusted Amount
1	2.524	521639.25	44088.26	1.67	BV	0.5216
2	3.203	2635894.33	231063.25	8.45	VB	2.6359
3	3.991	1310409.62	64882.65	4.20	BB	1.3104
4	5.701	1164518.41	40212.35	3.73	BB	1.1645
5	12.306	38537.09	1669.96	0.12	BB	0.0385
6	15.454	24379029.50	881375.45	78.16	BB	24.3790
7	18.583	1141353.56	31251.40	3.66	BB	1.1414
		31191381.76	$1.29 \mathrm{e}+06$	100.00		31.191

(S)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-6.

The mixture of 1-naphtol ($140 \mathrm{mg}, 0.97 \mathrm{mmol}$) and $\mathrm{NaH}(42 \mathrm{mg}, 0.97 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ was stirred at rt for 10 min . A solution of $(S)-5(111 \mathrm{mg}, 0.49 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ was added to a reaction mixture and stirred at rt for $1 \mathrm{~h} .1 \mathrm{M} \mathrm{HCl}(1.5 \mathrm{~mL}, 5 \mathrm{eq})$ was added and stirred at rt for 2 h , then basified with 2 M NaOH . The reaction mixture was diluted with $\mathrm{EA}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The biphasic solution was extracted with ethyl acetate (3 times). The combined organic layer was washed successively with water and brine, and dried over anhydrous MgSO_{4} and concentrated in vacuo to give a residue which was subjected to flash chromatography on silica gel (dichloromethane:methanol $=10: 1$) to afford desired product ($120 \mathrm{mg}, 84 \%$) as orange oil.
91.2% ee (Chiralcel OD-H, 2% isopropanol/hexanes, $1.2 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=12.6 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $\left.)=10.0 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{28}=+60.3\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24-8.26(\mathrm{~m}, 1 \mathrm{H})$, 7.78-7.80 (m, 1H), 7.46-7.51 (m, 2H), 7.39-7.41(m, 1H), 7.25-7.34 (m, 7H), $6.70(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz})$, 4.13-4.17 (m, 1H), 3.97-4.02 (m, 1H), 3.90-3.92(m, 1H), 2.41-2.47 (m, 1H), 2.33(s, 3H), 2.17-2.2 $3(\mathrm{~m}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,134.6,128.8,127.59,127.55,127.5,126.5,126.1$, 126.0, 125.8, 125.3, 122.1, 120.3, 104.7, 65.5, 62.8, 37.2, 34.4.; HRMS (EI): m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}$: 291.1623 found: 291.1622.

(R)-Methyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (R)-6.

Prepared from (R)-5 (100 mg, 0.44 mmol$)$ and 1-naphtol ($127 \mathrm{mg}, 0.88 \mathrm{mmol}$) similar to the procedure for $(S)-6$. Purified by flash chromatography (dichloromethane:methanol $=10: 1$) to afford desired product ($111 \mathrm{mg}, 87 \%$) as yellow oil.
92.5% ee (Chiralcel OD-H, 2% isopropanol/hexanes, $1.2 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=12.6 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $\left.)=10.0 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{28}=-61.5\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25-8.27(\mathrm{~m}, 1 \mathrm{H})$, 7.77-7.81 (m, 1H), 7.46-7.52 (m, 2H), 7.40-7.42 (m, 1H), 7.27-7.35 (m, 7H), 6.69 (d, 1H, J=7.5 Hz), 4.12-4.16 (m, 1H), 3.92-4.00 (m, 2H), 2.44-2.50 (m, 1H), 2.34 (s, 3H), 2.19-2.25(m, 1H).; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,134.5,128.6,127.5,127.4,127.3,126.4,125.9,125.6,125.2,122.0,120.2$, 104.6, 65.4, 62.7, 37.2, 34.4.; HRMS (EI): m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}: 291.1623$ found: 291.1627.

Result File : C:IPenExelTcWSIVer6.3.01ExamplesIKSYlapoxetinel(racemic)MeNH.rst Sequence File : C:IPenExelTcWSIVer6.3.0\Examples1090911-2-20090911-171844.seq

DEFAULT REPORT

Peak \#	Time [min]	Area [$\mu \mathrm{V} \cdot \mathrm{s}$]	Height [$\mu \mathrm{V}$]	Area [\%]	BL	Adjusted Amount
1	2.558	46556.23	12447.35	0.11	BV	0.0466
2	2.677	230887.62	30128.61	0.56	VB	0.2309
3	9.862	20600403.63	1.11e+06	49.70	BB	20.6004
4	12.490	20574928.77	863335.22	49.63	BB	20.5749
		41452776.24	$2.01 \mathrm{e}+0$	0.0		. 45

Result File : C:IPenExelTcWSIVer6.3.0\ExamplesIKSYdapoxetinel(S)MeNH.rst
Sequence File : C:IPenExelTcWSIVer6.3.0\Examplesl090911-5-20090911-193552.seq

DEFAULT REPORT

Peak \#	Time [min]	Area [$\mu \mathrm{V} \cdot \mathrm{s}$]	Height [$\mu \mathrm{V}$]	Area [\%]	BL	Adjusted Amount
1	2.556	42486.01	10688.94	0.17	BV	0.0425
2	2.667	283011.15	33672.88	1.10	VB	0.2830
3	4.139	13677.49	1929.50	0.05	BB	0.0137
4	5.654	107868.41	6929.80	0.42	BB	0.1079
5	6.358	24526.02	1120.56	0.10	BB	0.0245
6	9.975	1104328.39	60231.63	4.30	BB	1.1043
7	12.615	24004037.44	972475.75	93.44	BV	24.0040
8	14.478	109169.99	3469.59	0.42	VB	0.1092
		25689104.89	$1.09 \mathrm{e}+06$	100.00		25.6891

Result File : C:IPenExelTcWSIVer6.3.0IExamples\KSY/dapoxetinel(R)MeNH.rst Sequence File : C:IPenExelTcWSIVer6.3.0\Examples\3.seq

DEFAULT REPORT

Peak \#	Time [min]	Area $[\mu \mathrm{V} \cdot \mathrm{s}$]	Height $[\mu \mathrm{V}$]	Area [\%]	BL	Adjusted Amount
1	0.467	107447.58	3478.01	0.55	BB	0.1074
2	2.555	48210.26	12619.38	0.25	BV	0.0482
3	2.652	323445.25	39063.09	1.65	VB	0.3234
4	4.098	12892.96	1513.71	0.07	BB	0.0129
5	5.678	95456.59	6196.29	0.49	BB	0.0955
6	6.628	47710.95	875.31	0.24	BB	0.0477
7	10.086	18153535.76	890932.03	92.63	BV	18.1535
8	11.428	101006.03	3855.13	0.52	VB	0.1010
9	12.924	708818.58	26705.54	3.62	BB	0.7088
		19598523.96	985238.50	100.00		19.5985

(S)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (S)-1.

To a solution of $(S)-9(54 \mathrm{mg}, 0.19 \mathrm{mmol})$ in formic acid $(38 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was added a 30% aqueous solution of formaldehyde $(100 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ and the reaction mixture was refluxed for 8 h . After this time the solution was acidified with conc. HCl until $\mathrm{pH}=1$ and basified with 4 N NaOH . The reaction mixture was diluted with ethyl acetate and washed with aqueous NaHCO_{3} solution. The organic phase was separated and dried over MgSO_{4}. After evaporation of solvent the crude residue was purified by flash chromatography (n-Hexane: Ethyl acetate $=1: 3$) to afford desired product (42.5 $\mathrm{mg}, 75 \%$) as colorless oil.
91.8% ee (Chiralcel OD-H, 2% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=10.1 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $\left.)=8.9 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{28}=+63.2\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26-8.28(\mathrm{~m}, 1 \mathrm{H})$, 7.79-7.81 (m, 1H), 7.28-7.52 (m,10H), $6.67(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.07-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.95(\mathrm{~m}, 1 \mathrm{H})$, 3.62-3.65 (m, 1H), 2.63-2.70(m, 1H), 2.26-2.34 (m, 1H), $2.28(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $154.8,139.7,134.7,128.8,128.4,127.6,127.5,126.5,126.1,125.9,125.3,122.2,120.2,104.8,67.9$ $\left(1 \mathrm{C}, \mathrm{C}_{3}\right), 65.8\left(1 \mathrm{C}, \mathrm{C}_{1}\right), 43.0\left(2 \mathrm{C}, \mathrm{C}_{4}+\mathrm{C}_{4}\right), 33.2\left(1 \mathrm{C}, \mathrm{C}_{2}\right)$.; HRMS (EI): m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}$: 305.1780 found: 305.1765 .
(R)-Dimethyl-[3-(naphthalen-1-yloxy)-1-phenyl-propyl]-amine: (R)-1.

Prepared from $(R)-9(52 \mathrm{mg}, 0.18 \mathrm{mmol})$, formic acid $(37 \mu \mathrm{~L})$ and formaldehyde $(84 \mu \mathrm{~L})$ similar to the procedure for $(S) \mathbf{- 1}$. Purified by flash chromatography (dichloromethane:methanol $=10: 1$) to afford desired product ($43 \mathrm{mg}, 79 \%$) as colorless oil.
91.2% ee (Chiralcel OD-H, 2% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=10.1 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $\left.)=8.9 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{28}=-67.0\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.24-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.51(\mathrm{~m}, 10 \mathrm{H}), 6.66(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.07-$ $4.11(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,139.5,134.7,128.8,128.5,127.7,127.6,126.5,126.1$, $125.9,125.3,122.2,120.2,104.8,67.9\left(1 \mathrm{C}, \mathrm{C}_{3}\right), 65.8\left(1 \mathrm{C}, \mathrm{C}_{1}\right), 42.9\left(2 \mathrm{C}, \mathrm{C}_{4}+\mathrm{C}_{4}\right), 33.1\left(1 \mathrm{C}, \mathrm{C}_{2}\right)$. ; HRMS (EI): m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}: 305.1780$ found: 305.1769 .

Result File : C:IPenExelTcWSIVer6.3.0\ExamplesIKSY\dapoxetinel(racemic)dapoxetine.rst Sequence File : C:IPenExelTcWSIVer6.3.01Examples $1090911-6 . s e q$

DEFAULT REPORT

Peak \#	Time [min]	Area $[\mu \mathrm{V} \cdot \mathrm{s}]$	Height [$\mu \mathrm{V}$]	Area [\%]	BL	Adjusted Amount
1	4.424	92946.93	12790.35	0.32	BV	0.0929
2	4.593	863841.54	51715.26	2.94	VB	0.8638
3	8.832	14183424.77	$1.01 \mathrm{e}+06$	48.35	BB	14.1834
4	10.005	14197220.36	919249.57	48.39	BB	14.1972
		29337433.6	$1.99 \mathrm{e}+0$	0.00		29.33

Result File : C:IPenExelTcWSIVer6.3.0\ExamplesIKSYldapoxetinel(S)dapoxetine.rst
Sequence File : C:IPenExelTcWSIVer6.3.01Examples1090911-5.seq

DEFAULT REPORT

$\underset{\#}{\text { Peak }}$	Time [min]	$\begin{gathered} \text { Area } \\ {[\mu \mathrm{V} \cdot \mathrm{~s}]} \end{gathered}$	Height $[\mu \mathrm{V}]$	Area [\%]	BL	Adjusted Amount
1	4.422	90153.62	12844.14	0.80	BV	0.0902
2	4.648	609826.45	37336.66	5.44	VB	0.6098
3	8.939	431134.31	32065.00	3.85	BB	0.4311
4	10.108	10071191.13	664195.51	89.90	BB	10.0712
		11202305.52	746441.31	100.00		11.2023

DEFAULT REPORT

Peak \#	Time [min]	Area [$\mu \mathrm{V} \cdot \mathrm{s}$]	Height [$\mu \mathrm{V}$]	Area [\%]	BL	Adjusted Amount
1	4.422	45067.14	6729.87	0.47	BV	0.0451
2	4.583	803214.03	47198.45	8.42	VB	0.8032
3	9.066	8310331.53	588232.29	87.09	BB	8.3103
4	10.282	383169.66	25121.08	4.02	BB	0.3832
		9541782.36	667281.70	100.00		9.5418

($\varepsilon_{10 ด \supset}$ 'ZHWGL) yWN $J_{\varepsilon ı}$

-143.6270
-136.0264
-129.7493
-127.3730

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
\qquad
-143.6637

udd 0

∞

(ε IOOO 'zHWGL) yWN $\Omega_{\varepsilon เ}$

zH	$00 \cdot 1$
	$08 \cdot 0$
	${ }_{\text {WZ }}^{0}$
zHW	८عโ00¢T－00s
zHW	80szをとT－00s
	20091を¢\％$\stackrel{\text { L }}{ }$
ap	$06^{\text {＇}}$－
ขəsn	$08^{\circ} 6$
	H
	＝＝โ̧ Tanntl
	τ
วəs	$00000000 \cdot 1$
	ع．66z
วəsn	$00 \cdot 9$
pəsn	009．99
ววs	
z_{H}	SSS\＃TT．0
	L0S $205 \angle$
	${ }_{9}$
	${ }_{\text {¢ ¢ ¢ }}$
	ε ¢TJJ
	9¢559
	T－อย์ Tna uu
	โ ε＇IT
	600t6002
	I
	T60 ${ }^{- \text {xSx }}{ }^{-600 \tau}$

[^0]: Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, KOREA; Medicinal and Pharmaceutical Chemistry Major, University of Science and Technology, 113 Gwahango, Yuseong, Daejeon 305-333, KOREA. Tel: +82-42-860-7016; Fax: +82-42-861-0307; e-mail: leehk@krict.re.kr

