Supporting Information:

Operational boundaries for nitrite accumulation in nitrification based on minimum/maximum substrate concentrations that include effects of

Seongjun Park ${ }^{1}$, Wookeun Bae ${ }^{2 *}$ and Bruce E. Rittmann ${ }^{1}$

1. Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701 U.S.A, Seongjun.Park@asu.edu, Rittmann@asu.edu
2. Department of Civil \& Environmental Engineering, Hanyang University, Sa 1-Dong, Ansan, Gyunggi-Do, Republic of Korea, wkbae@hanyang.ac.kr

* Author for Correspondence: Wookeun Bae, wkbae@hanyang.ac.kr , +82-31-400-5148 (TEL), +82-31-417-8139 (FAX)

Section S1: Derivation of the equation of minimum substrate concentration curve

The derivation of the general MSC equation follows the steps of the traditional $\mathrm{S}_{\text {min }}$ derivation. First, the mass balance of biomass in a continuous flow reactor is shown in eq. A1

$$
\underbrace{\frac{\mathrm{dX}}{\mathrm{dt}} \cdot \mathrm{~V}}_{\text {Accumulation rate }}=\underbrace{\mathrm{Q}_{\mathrm{in}} \cdot \mathrm{X}^{\circ}-\mathrm{Q}_{\text {out }} \cdot \mathrm{X}_{\mathrm{a}}}_{\text {Advection rate of biomass }}+\underbrace{\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{E.D}}}{\left(\mathrm{~K}_{\text {E.D }}+\mathrm{S}_{\mathrm{E.D}}\right)} \cdot \frac{\mathrm{S}_{\mathrm{E.A}}}{\left(\mathrm{~S}_{\mathrm{E.A}}+\mathrm{S}_{\mathrm{E.A}}\right)} \cdot \mathrm{X}_{\mathrm{a}} \cdot \mathrm{~V}-\mathrm{b} \cdot \mathrm{X}_{\mathrm{a}} \cdot \mathrm{~V}}_{\text {Biological growth and decay rate }}
$$

If the system is at steady-state and influent flow flow rate is equal to effluent flow rate, eq. A1 transforms to eq. A2.

$$
\begin{equation*}
0=Q \cdot X^{\circ}-Q \cdot X_{a}+Y \cdot \hat{q} \cdot \frac{S_{E . D}}{\left(K_{E . D}+S_{E . D}\right)} \cdot \frac{S_{E . A}}{\left(S_{E . A}+S_{E . A}\right)} \cdot X_{a} \cdot V-b \cdot X_{a} \cdot V \tag{A2}
\end{equation*}
$$

Dividing by active biomass concentration, X_{a} and flow rate, Q , converts eq. A2 to eq. A 3 .

$$
\begin{equation*}
0=\frac{\mathrm{X}^{\circ}}{\mathrm{X}_{\mathrm{a}}}-1+\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{E} . \mathrm{D}}}{\left(\mathrm{~K}_{\mathrm{E.D}}+\mathrm{S}_{\mathrm{E.D}}\right)} \cdot \frac{\mathrm{S}_{\mathrm{E.A}}}{\left(\mathrm{~S}_{\mathrm{E.A}}+\mathrm{S}_{\mathrm{E.A}}\right)} \cdot \frac{\mathrm{V}}{\mathrm{Q}}-\mathrm{b} \cdot \frac{\mathrm{~V}}{\mathrm{Q}} \tag{A3}
\end{equation*}
$$

Since V/Q can be defined as the hydraulic retention time (HRT, θ), eq. A3 can be rewritten as eq. A4.

$$
\begin{equation*}
0=\frac{\mathrm{X}^{\circ}}{\mathrm{X}_{\mathrm{a}}}-1+\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{E} . \mathrm{D}}}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{D}}+\mathrm{S}_{\mathrm{E} . \mathrm{D}}\right)} \cdot \frac{\mathrm{S}_{\mathrm{E} . \mathrm{A}}}{\left(\mathrm{~S}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}\right)} \cdot \theta-\mathrm{b} \cdot \theta \tag{A4}
\end{equation*}
$$

The definition of $S_{\text {min }}$ in this system is the concentration at infinitely large HRT. Letting θ go to infinity converts eq. A4 to eq. A5a for $S_{D, \min }$ and eqn. A 5 b , for $\mathrm{S}_{\mathrm{A}, \min }$. Eqns. 3 a and 3 b in the main text are the same as eqns A5a and A5b.

$$
\begin{align*}
& 0=\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{D}, \min }}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{D}}+\mathrm{S}_{\mathrm{D} . \min }\right)} \cdot \frac{\mathrm{S}_{\mathrm{E} . \mathrm{A}}}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}\right)}-\mathrm{b} \tag{A5a}\\
& 0=\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{E} . \mathrm{D}}}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{D}}+\mathrm{S}_{\mathrm{E} . \mathrm{D}}\right)} \cdot \frac{\mathrm{S}_{\mathrm{A}, \min }}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{A}, \min }\right)}-\mathrm{b} \tag{A5b}
\end{align*}
$$

Section S2: Derivation of minimum electron donor-substrate concentration curve with FA and FNA inhibition

The general eq. A5a in Section S1 can be expanded to eq. B1 by adding the inhibition terms for FA and FNA.

$$
\begin{equation*}
0=\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{D}, \text { min }}}{\left[\mathrm{K}_{\mathrm{E} . \mathrm{D}} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FNA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{i}}}\right)+\mathrm{S}_{\mathrm{D}, \text { min }} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FNA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{i}}}+\frac{\mathrm{I}_{\mathrm{FA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FA}, \mathrm{i}}}\right)\right]} \cdot \frac{\mathrm{S}_{\mathrm{E} . \mathrm{A}}}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}\right)}-\mathrm{b} \tag{B1}
\end{equation*}
$$

Eq. B1 give eq. B2a for AOB. Since S_{FA} depends on the total concentration of ammonium-N and pH (eqns. 7a and 7b), the formula of $\mathrm{S}_{\mathrm{D}, \min }$ (which is total ammonium N) includes $\mathrm{f}(\mathrm{pH}) \cdot \mathrm{S}_{\mathrm{D}, \min }$ as eqn. B2a.

$$
0=\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{D}, \text { min }}}{\left[\mathrm{K}_{\mathrm{E} . \mathrm{D}} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FNA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{AOB}}}\right)+\mathrm{S}_{\mathrm{D}, \min } \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FNA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{AOB}}}+\frac{\mathrm{f}_{\mathrm{FA}}(\mathrm{pH}) \cdot \mathrm{S}_{\mathrm{D}, \text { min }}}{\mathrm{K}_{\mathrm{I}, \mathrm{FA}, A O B}}\right)\right]} \cdot \frac{\mathrm{S}_{\mathrm{E} . \mathrm{A}}}{\mathrm{~K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}}-\mathrm{b}
$$

Eq. B2a can be solved for $\mathrm{S}_{\mathrm{D} . \min }$ using a quadratic equation and the quadratic formula, Eqn. B2b.
$0=\mathrm{S}_{\mathrm{D}, \min }^{2} \cdot \mathrm{~b} \cdot \frac{\mathrm{f}_{\mathrm{FA}}(\mathrm{pH})}{\mathrm{K}_{\mathrm{I}, \mathrm{FA}, \mathrm{AOB}}}+\left[\mathrm{b} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FNA}}}{\mathrm{K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{AOB}}}\right)-\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{S}_{\mathrm{E} . \mathrm{A}}}{\mathrm{K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}}\right] \cdot \mathrm{S}_{\mathrm{D}, \min }+\mathrm{b} \cdot \mathrm{K}_{\mathrm{E} . \mathrm{D}} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FNA}}}{\mathrm{K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{AOB}}}\right)$

$$
\mathrm{S}_{\mathrm{D}, \min }=\frac{-\mathrm{Z}_{\mathrm{AOB}} \pm \sqrt{\mathrm{Z}_{\mathrm{AOB}}^{2}-4 \cdot \mathrm{~K}_{\mathrm{E} . \mathrm{D}} \cdot \frac{\mathrm{f}_{\mathrm{FA}}(\mathrm{pH})}{\mathrm{K}_{\mathrm{I}, \mathrm{FA}, \mathrm{AOB}}} \cdot \mathrm{~b}^{2} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FNA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{AOB}}}\right)}}{2 \cdot \frac{\mathrm{f}_{\mathrm{FA}}(\mathrm{pH})}{\mathrm{K}_{\mathrm{I}, \mathrm{FA}, \mathrm{AOB}}} \cdot \mathrm{~b}}
$$

in which

$$
\mathrm{Z}_{\mathrm{AOB}}=\mathrm{b} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FNA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{ENA}, \mathrm{AOB}}}\right)-\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{E} . \mathrm{A}}}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}\right)}, \mathrm{f}_{\mathrm{FA}}(\mathrm{pH})=\frac{17}{14} \frac{10^{\mathrm{pH}}}{\left[\exp \left(6334 /\left(273+{ }^{\circ} \mathrm{C}\right)\right)+10^{\mathrm{pH}}\right]}
$$

Similarly, for NOB, eq. B1 give eq. B3a

$$
0=\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{D}, \text { min }}}{\left[\mathrm{K}_{\mathrm{E} . \mathrm{D}} \cdot\left(1+\frac{\mathrm{f}_{\mathrm{FNA}}(\mathrm{pH}) \cdot \mathrm{S}_{\mathrm{D} . \text { min }}}{\mathrm{K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{NOB}}}\right)+\mathrm{S}_{\mathrm{D}, \text { min }} \cdot\left(1+\frac{\mathrm{f}_{\mathrm{FNA}}(\mathrm{pH}) \cdot \mathrm{S}_{\mathrm{D} . \min }}{\mathrm{K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{NOB}}}+\frac{\mathrm{I}_{\mathrm{FA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FA}, \mathrm{NOB}}}\right)\right]} \cdot \frac{\mathrm{S}_{\mathrm{E} . \mathrm{A}}}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}\right)}-\mathrm{b}
$$

$$
0=\mathrm{S}_{\mathrm{D}, \min }^{2} \cdot \mathrm{~b} \cdot \frac{\mathrm{f}_{\mathrm{FNA}}(\mathrm{pH})}{\mathrm{K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{NOB}}}+\left[\mathrm{b} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FA}, \mathrm{NOB}}}+\mathrm{f}_{\mathrm{FNA}}(\mathrm{pH}) \cdot \frac{\mathrm{K}_{\mathrm{E} . \mathrm{D}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FA}, \mathrm{NOB}}}\right)-\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{E} . \mathrm{A}}}{\mathrm{~K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}}\right] \cdot \mathrm{S}_{\mathrm{D}, \min }+\mathrm{b} \cdot \mathrm{~K}_{\mathrm{E} . \mathrm{D}}
$$

B3a

$$
\begin{gathered}
\mathrm{S}_{\mathrm{D}, \min }=\frac{-\mathrm{Z}_{\mathrm{NOB}} \pm \sqrt{\mathrm{Z}_{\mathrm{NOB}}^{2}-4 \cdot \mathrm{~K}_{\mathrm{E} . \mathrm{D}} \cdot \frac{\mathrm{f}_{\mathrm{FNA}}(\mathrm{pH})}{\mathrm{K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{NOB}}} \cdot \mathrm{~b}^{2}}}{2 \cdot \frac{\mathrm{f}_{\mathrm{FNA}}(\mathrm{pH})}{\mathrm{K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{NOB}}} \cdot \mathrm{~b}} \\
\mathrm{Z}_{\mathrm{NOB}}=\mathrm{b} \cdot\left(1+\frac{\mathrm{I}_{\mathrm{FA}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FA}, \mathrm{NOB}}}+\frac{\mathrm{f}_{\mathrm{FNA}}(\mathrm{pH}) \cdot \mathrm{K}_{\mathrm{E} . \mathrm{D}}}{\mathrm{~K}_{\mathrm{I}, \mathrm{FNA}, \mathrm{NOB}}}\right)-\mathrm{Y} \cdot \hat{\mathrm{q}} \cdot \frac{\mathrm{~S}_{\mathrm{E} . \mathrm{A}}}{\left(\mathrm{~K}_{\mathrm{E} . \mathrm{A}}+\mathrm{S}_{\mathrm{E} . \mathrm{A}}\right)}, \mathrm{f}_{\mathrm{FNA}}(\mathrm{pH})=\frac{47}{14} \frac{\left.\mathrm{exp}\left(-2300 /\left(273+{ }^{\circ} \mathrm{C}\right)\right) \times 10^{\mathrm{PH}}\right]+1}{[\exp }
\end{gathered}
$$

B3b

Here, since the root has the plus and minus sign, $\mathrm{S}_{\mathrm{D}, \min }$ has two value. We define the smaller value, $S_{D, \min }$ and the larger value, $S_{D, \max }$ in MSC curve. Finally, we get the eqs. 6 b and 6 c for each AOB and NOB, respectively. By the eqs. 6 b and 6 c , we also get Figure S 1 that shows the contour at pH 7 and pH 9.

b) pH 9

Figure S1. Contour of MSC curve between TAN and TNN concentration at pH 7 and 9. The values on the line are $\mathrm{DO}_{\text {min }}$.

