Supporting Information to

Estimation of Migration-time and Mobility Distributions in Organelle Capillary Electrophoresis with Statistical-Overlap Theory

by

Joe M. Davis*
Department of Chemistry and Biochemistry Southern Illinois University at Carbondale Carbondale, IL 62901 USA

and

Edgar A. Arriaga
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455 USA
*corresponding author
Current address: 733 Schloss Street
Wrightsville Beach, NC 28480
Phone: 9102564235
e-mail: chimicajmd@ec.rr.com

This Supporting Information contains five parts. Each part identifies the relevant section of the main article. The terminology is the same as the main article.

Part 1. Conversion between α and α_{e}

The conversions between saturation α and effective saturation α_{e} are mentioned in the paragraph of the main article after eq 2 b . They are appropriate for an exponential distribution of peak heights. Over the range, $0 \leq \alpha_{e} \leq 25, \alpha_{e}$ can be converted to α using the empirical expression ${ }^{1}$

$$
\begin{equation*}
\alpha=\frac{0.725 \alpha_{e}}{1+\delta_{1} \alpha_{e}^{\delta_{2}}} \tag{S-1}
\end{equation*}
$$

with $\delta_{1}=0.1942 \pm 0.0005$ and $\delta_{2}=0.930 \pm 0.001$. Over the range, $0 \leq \alpha \leq 3.85, \alpha$ is converted to α_{e} on dividing α by R_{s}^{*}, as expressed by eq 4 c in the main article.

Part 2. Standard deviation $\sigma_{m_{e}}$ of $m_{\boldsymbol{e}}$ distribution

The standard deviation $\sigma_{m_{e}}$ is first mentioned in the paragraph of the main article containing eq 4.

Theory. Consider a separation ensemble containing peaks of constant density and width, with peak numbers and migration times obeying Poisson statistics. Each member of the ensemble contains m peaks and p observed peaks. Consider equating p to

$$
\begin{equation*}
\bar{p}=\bar{m} \exp (-\alpha) \tag{S-2}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=4 \bar{m} \sigma R_{S}^{*} / X \tag{S-3}
\end{equation*}
$$

and solving for \bar{m}. (Eqs S-2 and S-3 are eqs 1 b and 1a, respectively, in the main article.) Here, \bar{m} and \bar{p} are the mean numbers of peaks and observed peaks in the ensemble, α is the saturation, σ is the peak standard deviation, R_{S}^{*} is the average minimum resolution (which depends on α), and X is the duration of the separation. We assume \bar{m} is the
only unknown, with σ, X, and R_{S}^{*} being known or calculable. The determined \bar{m} is interpreted as the estimated number of peaks, m_{e}.

We assume that m_{e} is distributed randomly about \bar{m}, just as p is distributed randomly about \bar{p}. The difference $\Delta m=m_{e}-\bar{m}$ is related to the difference $\Delta p=p-\bar{p}$ by the first-order Taylor series

$$
\begin{equation*}
\Delta m \approx \frac{\partial \bar{m}}{\partial \bar{p}} \Delta p=\frac{\partial \bar{m}}{\partial \alpha} \frac{\partial \alpha}{\partial \bar{p}} \Delta p \tag{S-4}
\end{equation*}
$$

where the final identity results from the chain rule (the derivatives are partials because σ / X is constant). The theory of the propagation of errors ${ }^{2}$ is applied to J independent members of the ensemble by adding the squares of the left- and right-hand sides of eq S-4 and dividing by J

$$
\begin{equation*}
J^{-1} \sum_{i=1}^{J}\left(m_{e \dot{i}}-\bar{m}\right)^{2} \approx J^{-1}\left[\frac{\partial \bar{m}}{\partial \alpha} \frac{\partial \alpha}{\partial \bar{p}}\right]^{2} \sum_{i=1}^{J}\left(p_{i}-\bar{p}\right)^{2} \tag{S-5}
\end{equation*}
$$

where p_{i} and $m_{e \dot{i}}$ are the p and m_{e} values of the $i^{\text {th }}$ ensemble member. The derivatives are factored out of the sum in eq S-5, because they are the same for every ensemble member. As J approaches infinity, eq S-5 has the limit

$$
\begin{equation*}
\sigma_{m_{e}}^{2}=\left[\frac{\partial \bar{m}}{\partial \alpha} \frac{\partial \alpha}{\partial \bar{p}}\right]^{2} \sigma_{p}^{2} \tag{S-6}
\end{equation*}
$$

where $\sigma_{m_{e}}^{2}$ and σ_{p}^{2} are the variances of m_{e} and p, respectively. For peaks that are Poisson distributed, σ_{p}^{2} is

$$
\begin{equation*}
\sigma_{p}^{2}=\bar{m} \exp (-\alpha)[1-2 \alpha \exp (-\alpha)] \tag{S-7}
\end{equation*}
$$

(Eq S-7 is eq 3 in the main article.)
The derivatives in eq S-6 are evaluated simply. In accordance with eqs S-2 and S-3, \bar{m} and \bar{p} equal

$$
\begin{equation*}
\bar{m}=\alpha /\left(z R_{S}^{*}\right) ; \bar{p}=\alpha \exp (-\alpha) /\left(z R_{S}^{*}\right) \tag{S-8}
\end{equation*}
$$

with $z=4 \sigma / X$. For constant peak widths (i.e., constant z)

$$
\begin{equation*}
\frac{\partial \bar{m}}{\partial \alpha}=\bar{m}\left[\alpha^{-1}-d \ln R_{S}^{*} / d \alpha\right] \tag{S-9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \bar{p}}{\partial \alpha}=\bar{m} \exp (-\alpha)\left(\alpha^{-1}-1-d \ln R_{S}^{*} / d \alpha\right) \tag{S-10}
\end{equation*}
$$

where $d \ln R_{S}^{*} / d \alpha$ is $\left[d R_{S}^{*} / d \alpha\right] / R_{S}^{*}$.
We want the reciprocal of eq S-10, $\partial \alpha / \partial \bar{p}$, which in combination with eqs S-6 and S-9 gives

$$
\begin{equation*}
\sigma_{m_{e}}^{2}=[g(\alpha)]^{2} \sigma_{p}^{2} \tag{S-11a}
\end{equation*}
$$

with

$$
\begin{equation*}
g(\alpha)=\frac{\alpha^{-1}-d \ln R_{S}^{*} / d \alpha}{\exp (-\alpha)\left[\alpha^{-1}-1-d \ln R_{S}^{*} / d \alpha\right]} \tag{S-11b}
\end{equation*}
$$

where $g(\alpha)$ is the reciprocal of the slope, $\partial \bar{p} / \partial \bar{m}$, of the \bar{p} vs \bar{m} curve. When combined with eq S-7, the square root of eq S-11a gives $\sigma_{m_{e}}$ as a function of \bar{m} and α

$$
\begin{equation*}
\sigma_{m_{e}}=(\bar{m}[1-2 \alpha \exp (-\alpha)])^{1 / 2} \frac{\exp (\alpha / 2)\left[\alpha^{-1}-d \ln R_{S}^{*} / d \alpha\right]}{\alpha^{-1}-1-d \ln R_{s}^{*} / d \alpha} \tag{S-12}
\end{equation*}
$$

The coefficient of variation $(C V), 100 \sigma_{m_{e}} / \bar{m}$, can be calculated from eq S-12. On substituting the left-hand side of eq S-8 for \bar{m} in eq S-12 and the $C V$, we obtain

$$
\begin{align*}
& \sigma_{m_{e}}(\sigma / X)^{1 / 2}=\frac{1}{2}\left(\frac{\alpha}{R_{S}^{*}}[1-2 \alpha \exp (-\alpha)]\right)^{1 / 2} \frac{\exp (\alpha / 2)\left[\alpha^{-1}-d \ln R_{S}^{*} / d \alpha\right]}{\alpha^{-1}-1-d \ln R_{S}^{*} / d \alpha} \tag{S-13a}\\
& \frac{C V}{(\sigma / X)^{1 / 2}}=200\left(\frac{R_{S}^{*}}{\alpha}[1-2 \alpha \exp (-\alpha)]\right)^{1 / 2} \frac{\exp (\alpha / 2)\left[\alpha^{-1}-d \ln R_{S}^{*} / d \alpha\right]}{\alpha^{-1}-1-d \ln R_{S}^{*} / d \alpha} \tag{S-13b}
\end{align*}
$$

which are eqs 4 a and 4 b in the main article. Both R_{S}^{*} and $d \ln R_{S}^{*} / d \alpha$ can be evaluated from eq 4 c in that article.

The denominator of the final factor in eq S-13 is the negative of the bracketed term in eq 5 of the main article. The latter is proportional to the slope, $\partial \bar{p} / \partial \bar{m}$. Thus, $\sigma_{m_{e}}$ and the $C V$ approach infinity as $\partial \bar{p} / \partial \bar{m}$ approaches zero.

In accordance with Poisson statistics, the standard deviation σ_{m} of the number of peaks in the ensemble is $\sqrt{\bar{m}}$. It differs from $\sigma_{m_{e}}$, which is the standard deviation of the estimated numbers of peaks m_{e}. The ratio $\sigma_{m_{e}} / \sigma_{m}$ is calculated from eq S-12 as

$$
\begin{equation*}
\frac{\sigma_{m_{e}}}{\sigma_{m}}=(1-2 \alpha \exp (-\alpha))^{1 / 2} \frac{\exp (\alpha / 2)\left[\alpha^{-1}-d \ln R_{S}^{*} / d \alpha\right]}{\alpha^{-1}-1-d \ln R_{S}^{*} / d \alpha} \tag{S-1}
\end{equation*}
$$

and depends only on α.
Results and discussion. Figure S -1a is a graph of the ratio $\sigma_{m_{e}} / \sigma_{m}$ vs saturation α, as calculated from eq S-14. As the saturation approaches zero, the ratio approaches one. This is expected, since at zero saturation all peaks are resolved and $p=m=m_{e}$ for each ensemble member. As α increases, $\sigma_{m_{e}} / \sigma_{m}$ rapidly increases (e.g, $\sigma_{m_{e}}=3.40 \sigma_{m}$ at α $=1)$ and the precision of m_{e} decreases.

As discussed in the main article, the poor precision of m_{e} at high saturation results from the decreasing slope $\partial \bar{p} / \partial \bar{m}$, which maps small random fluctuations of p into large random fluctuations of m_{e}. Figure $\mathrm{S}-1 \mathrm{~b}$ is a graph of $g(\alpha)$ vs α, where $g(\alpha)$, eq S-11b, is the reciprocal of this slope. It resembles Figure S -1a but increases with α even more rapidly. Values of $g(\alpha)$ agree with the reciprocal slope determined numerically from the graph of \bar{p} vs \bar{m}.

Part 3. Monte-Carlo simulation of $\boldsymbol{m}_{\boldsymbol{e}}$ distribution

The Monte-Carlo simulations are mentioned in the main article after eq 4 c .

Procedures. To characterize the m_{e} distribution, 2×10^{5} Monte-Carlo simulations of p and m, and calculations of m_{e}, were made. In each simulation, a Poisson distributed number m of Gaussian peaks having constant standard deviation σ and exponentially random heights spanned an interval of duration X, with peak overlap producing p observed peaks (maxima). This p then determined m_{e} via eqs S-2 and S-3 in Part 2 of the Supporting Information. Discrete distributions were built from the p, m, and m_{e} values. Further details are given in the Procedures section of the main article.

Results and Discussion. The panels in Figure S-2 are graphs of probability vs p, m, and m_{e} at different saturations α, as determined for $\sigma / X=8 \times 10^{-5}$. All distributions are discrete but are shown as continuous functions for simplicity. At low saturation (e.g., $\alpha=0.2$), the m and m_{e} distributions are almost identical. As α increases, the m_{e} distribution becomes broader than the m distribution, and its average shifts slightly downward from the mean of the m distribution, \bar{m}. The shift occurs, because eq S-2 slightly underestimates peak overlap as α increases. Values of $\sigma_{m_{e}}$ calculated from eq S-12 in Part 2 of the Supporting Information and from moments analysis of the m_{e} distributions are reported in the panels. At low α, excellent agreement is found. At higher α, eq S-12 overpredicts the standard deviation of m_{e}. In all cases, $\sigma_{m_{e}}$ exceeds the standard deviation of the m distribution, which is $\sqrt{\bar{m}}$ (and calculable from the \bar{m} 's reported in the panels). Further verification of eq S-12 is provided in the main article.

Part 4. Equations for migration-time distributions $\boldsymbol{f}(\boldsymbol{\zeta})$

The equations are mentioned in the main article at the end of the first paragraph in the section, "Analysis of Migration-Time Distributions", under Procedures. All migrationtime distributions $f(\zeta)$ are models, have unit area, and are bound by the reduced times, $\zeta=0$ and $\zeta=1$. Normalization coefficients were obtained by integrating $f(\zeta)$ between these bounds. Various coefficients were selected by trial and error to obtain the desired
appearance of $f(\zeta)$. Equations are given for the reduced migration times ζ_{c} of peaks. All random numbers R are uniform and bound by the integers, 0 and 1 .

Gaussian $f(\zeta)$. The Gaussian migration-time distribution is

$$
\begin{equation*}
f(\zeta)=\left(2 \pi \sigma_{G}^{2}\right)^{-1} \exp \left[-(\zeta-\mu)^{2} /\left(2 \sigma_{G}^{2}\right)\right] \tag{S-15a}
\end{equation*}
$$

with $\mu=0.5$ and $\sigma_{G}=0.125$. A peak migration time ζ_{c} was calculated with the BoxMuller transform ${ }^{3}$

$$
\begin{equation*}
\zeta_{c}=\mu+\sigma_{G}\left[\sqrt{-2 \ln R_{1}} \sin \left(2 \pi R_{2}\right)\right] \tag{S-15b}
\end{equation*}
$$

where R_{1} and R_{2} are independent random numbers (the radicand in eq $\mathrm{S}-15 \mathrm{~b}$ is positive because $\ln R_{1}$ is negative).

Strictly, eq S-15a is not normalized between $\zeta=0$ and $\zeta=1$. However, the area between these bounds is $\operatorname{erf}(4 / \sqrt{2}) \approx 0.9999^{+}$, where erf is the error function. The very small fraction ($<0.01 \%$) of peak migration times generated by eq S-15b outside the bounds was not used; its discard had negligible effect on results.

Bimodal $f(\zeta)$. The bimodal migration-time distribution is

$$
\begin{equation*}
f(\zeta)=A_{1}\left\{\zeta \exp \left(-\kappa_{1} \zeta\right)+(1-\zeta) \exp \left(-\kappa_{2}[1-\zeta]^{2}\right)\right\} \tag{S-16a}
\end{equation*}
$$

with κ_{1} and κ_{2} equaling constants (in the main article, $\kappa_{1}=6.5$ and $\kappa_{2}=8.5$). The normalization constant A_{1} is

$$
\begin{equation*}
A_{1}=\left\{\left[1-\exp \left(-\kappa_{2}\right)\right] /\left(2 \kappa_{2}\right)-\exp \left(-\kappa_{1}\right) / \kappa_{1}+\left[1-\exp \left(-\kappa_{1}\right)\right] / \kappa_{1}^{2}\right\}^{-1} \tag{S-16b}
\end{equation*}
$$

A peak migration time ζ_{c} was determined by solving

$$
\begin{gather*}
\left(\kappa_{1}\right)^{-2}-\exp \left(-\kappa_{2}\right) /\left(2 \kappa_{2}\right)-\exp \left(-\kappa_{1} \zeta_{c}\right)\left(\zeta_{c}+\kappa_{1}^{-1}\right) / \kappa_{1} \tag{S-16c}\\
+\exp \left(-\kappa_{2}\left[1-\zeta_{c}\right]^{2}\right) /\left(2 \kappa_{2}\right)-R / A_{1}=0
\end{gather*}
$$

using bisection, with R equaling a random number. Eq $\mathrm{S}-16 \mathrm{c}$ is based on a transformation of random numbers into an arbitrary distribution ${ }^{4}$ (here, into eq S-16a).

Asymmetric $f(\zeta)$. The asymmetric migration-time distribution is

$$
\begin{equation*}
f(\zeta)=A_{2} \zeta \exp \left(-\kappa_{3} \zeta\right) \tag{S-17a}
\end{equation*}
$$

with κ_{3} equaling a constant (in the main article, $\kappa_{3}=3.5$). The normalization constant A_{2} is

$$
\begin{equation*}
A_{2}=\left\{\left[1-\exp \left(-\kappa_{3}\right)\right] / \kappa_{3}^{2}-\exp \left(-\kappa_{3}\right) / \kappa_{3}\right\}^{-1} \tag{S-17b}
\end{equation*}
$$

A peak migration time ζ_{c} was determined by solving

$$
\begin{equation*}
\left[1-\exp \left(-\kappa_{3} \zeta_{c}\right)\right] / \kappa_{3}^{2}-\zeta_{c} \exp \left(-\kappa_{3} \zeta_{c}\right) / \kappa_{3}-R / A_{2}=0 \tag{S-17c}
\end{equation*}
$$

using bisection, with R equaling a random number. Eq S-17c is based on the same transformation as eq S-16c.

Constant $f(\zeta)$. The constant migration-time distribution is

$$
\begin{equation*}
f(\zeta)=1 \tag{S-18a}
\end{equation*}
$$

A peak migration time ζ_{c} was determined as

$$
\begin{equation*}
\zeta_{c}=R \tag{S-18b}
\end{equation*}
$$

with R equaling a random number.

Part 5. Least square fits to graphs of $\alpha_{t}, \alpha_{e, t}$, and $\log \left(\bar{m}_{t}\right)$ vs $\log (\sigma / X)$

The fits are mentioned in the main article at the end of the section, " Threshold Values of \bar{p} versus \bar{m} Curve", in the Results and Discussion. Let $s=\log (\sigma / X)$. The graphs in Figure 3a of the main article can be estimated from the polynomial fits

$$
\begin{gather*}
\alpha_{t}=-0.9530-0.9848 s-0.1442 s^{2}-0.007830 s^{3} \tag{S-19}\\
\alpha_{e, t}=-1.423-1.287 s-0.0877 s^{2} \tag{S-20}\\
\log \left(\bar{m}_{t}\right)=-1.986-1.949 s-0.1718 s^{2}-0.01102 s^{3} \tag{S-21}
\end{gather*}
$$

with correlation coefficients of 0.99998 or larger.

References

1. Davis, J.M.; Carr, P.W. Anal. Chem. 2009, 81, 1198-1207.
2. Bevington, P.R. Data Reduction and Error Analysis for the Physical Sciences; McGraw Hill Book Company: New York, 1969, pp. 56-60.
3. Dahlquist, G.; Bjorck, A. Numerical Methods; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1974, p. 453.
4. Ibid., p. 452.

Figure S-1. a) Graph of $\sigma_{m_{e}} / \sigma_{m}$ vs saturation α (eq S-14). b) Graph of $g(\alpha)$ vs α (eq $\mathrm{S}-11 \mathrm{~b}$), with R_{S}^{*} equal to eq 4 c of the main article.

Figure S-2. Graphs of discrete probability distributions vs p, m, and m_{e}, as determined by Monte-Carlo simulations (p, m) and solutions to eqs S-2 and S-3 $\left(m_{e}\right)$ in Part 2 of the Supporting Information. Dashed, bold, and normal-weight curves are the p, m, and m_{e} distributions, respectively. In b) -d) different abscissas are used for p, and for m and m_{e}, to reduce unused space. $\sigma / X=8 \times 10^{-5}$. a) $\alpha=0.2$. b) $\alpha=0.4$. c) $\alpha=0.6$. d) $\alpha=0.8$.

