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 This Supporting Information contains five parts.  Each part identifies the relevant 

section of the main article.  The terminology is the same as the main article. 

 

Part 1.   Conversion between !  and !e  

 The conversions between saturation !  and effective saturation !e  are mentioned in 

the paragraph of the main article after eq 2b.  They are appropriate for an exponential 

distribution of peak heights.  Over the range, 0 !"e !  25, !e  can be converted to !  

using the empirical expression1 

  ! =
0.725!e

1+"1!e
"2

 (S-1) 

with !1 = 0.1942 ± 0.0005  and !2 = 0.930 ± 0.001 .  Over the range, 0 !" !  3.85, ! is 

converted to !e  on dividing !  by Rs
* , as expressed by eq 4c in the main article. 

 

Part 2.  Standard deviation 

 

!me
 of 

 

me  distribution 

 The standard deviation 

 

!me  is first mentioned in the paragraph of the main article 

containing eq 4. 

 Theory.  Consider a separation ensemble containing peaks of constant density and 

width, with peak numbers and migration times obeying Poisson statistics.  Each member 

of the ensemble contains 

 

m  peaks and 

 

p  observed peaks.  Consider equating 

 

p  to 

  

 

p = m exp(!")  (S-2) 

where 

  

 

! = 4m "Rs

*
/ X  (S-3) 

and solving for 

 

m .  (Eqs S-2 and S-3 are eqs 1b and 1a, respectively, in the main article.)  

Here, 

 

m  and 

 

p  are the mean numbers of peaks and observed peaks in the ensemble, 

 

!  is 

the saturation, 

 

!  is the peak standard deviation, 

 

Rs
*  is the average minimum resolution 

(which depends on 

 

! ), and 

 

X  is the duration of the separation.  We assume 

 

m  is the 
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only unknown, with 

 

! , 

 

X , and 

 

Rs
*  being known or calculable.  The determined 

 

m  is 

interpreted as the estimated number of peaks, 

 

me . 

 We assume that 

 

me  is distributed randomly about 

 

m , just as 

 

p  is distributed 

randomly about 

 

p .  The difference 

 

!m  = 

 

me  - 

 

m  is related to the difference 

 

!p = 

 

p  - 

 

p  

by the first-order Taylor series 

  

 

!m "
#m 

#p 
!p =

#m 

#$

#$

#p 
!p  (S-4) 

where the final identity results from the chain rule (the derivatives are partials because 

 

! / X  is constant).  The theory of the propagation of errors2 is applied to 

 

J  independent 

members of the ensemble by adding the squares of the left- and right-hand sides of eq S-4 

and dividing by 

 

J   
 

  

 

J
!1

(me,i ! m )
2 " J

!1 #m 

#$

#$

#p 

% 

& 
' 

( 

) 
* 

i =1

J

+
2

(pi ! p )
2

i =1

J

+  (S-5) 

where 

 

pi  and 

 

me,i  are the 

 

p  and 

 

me  values of the ith ensemble member.  The derivatives 

are factored out of the sum in eq S-5, because they are the same for every ensemble 

member.  As 

 

J  approaches infinity, eq S-5 has the limit 
 

  

 

!me

2
=

"m 

"#

"#

"p 

$ 

% 
& 

' 

( 
) 

2

! p
2  (S-6) 

where 

 

!
m
e

2

and 

 

! p
2  are the variances of 

 

me  and 

 

p , respectively.  For peaks that are 

Poisson distributed, 

 

! p
2  is 

  

 

! p
2

= m exp("# )[1" 2# exp("# )]  (S-7) 

(Eq S-7 is eq 3 in the main article.) 

 The derivatives in eq S-6 are evaluated simply.  In accordance with eqs S-2 and S-3, 

 

m  and 

 

p  equal 

  

 

m = ! / (zRs
*
); p = ! exp("! ) / (zRs

*
)  (S-8) 
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with 

 

z = 4! / X .  For constant peak widths (i.e., constant 

 

z ) 
 

  

 

!m 

!"
= m "

#1
# d lnRs

*
/d"[ ]  (S-9) 

and 

  

 

!p 

!"
= m exp(#" ) "

#1
#1# dlnRs

*
/d"( )  (S-10) 

where 

 

dlnRs
*
/d!  is 

 

[dRs
*
/d! ] /Rs

* . 

 We want the reciprocal of eq S-10, 

 

!" /!p , which in combination with eqs S-6 and 

S-9 gives 
  

 

!me

2
= g(")[ ]

2
! p
2  (S-11a) 

with 

  

 

g(!) =
!
"1

" dlnRs
*
/d!

exp("!)[!"1
"1" d lnRs

* /d! ]
 (S-11b) 

where 

 

g(!)  is the reciprocal of the slope, 

 

!p /!m , of the 

 

p  vs 

 

m  curve.  When 

combined with eq S-7, the square root of eq S-11a gives 

 

!me
 as a function of 

 

m  and 

 

!  
 

  

 

!me
= m [1" 2# exp("# )]( )

1/2 exp(# / 2)[#
"1

" d lnRs

*
/d# ]

#
"1

"1" d ln Rs
* /d#

 (S-12) 

The coefficient of variation (

 

CV ), 100

 

!me
/

 

m , can be calculated from eq S-12.   On 

substituting the left-hand side of eq S-8 for 

 

m  in eq S-12 and the 

 

CV , we obtain 
 

  !me (! / X)
1/2

=
1

2

"

Rs
*
[1# 2" exp(#" )]

$

%
&

'

(
)

1/2
exp(" / 2)["#1 # d lnRs

* / d" ]

"#1 #1# d lnRs
* / d"

 (S-13a) 

  

 

CV

(! /X )1/2
= 200

Rs
*

"
[1# 2" exp(#" )]

$ 

% 
& 

' 

( 
) 

1/2
exp(" / 2)["#1# d ln Rs

*
/ d" ]

" #1 #1# d ln Rs
*
/ d"

 (S-13b) 
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which are eqs 4a and 4b in the main article.  Both 

 

Rs
*  and 

 

dlnRs
*
/d!  can be evaluated 

from eq 4c in that article. 

 The denominator of the final factor in eq S-13 is the negative of the bracketed term in 

eq 5 of the main article.  The latter is proportional to the slope, 

 

!p /!m .  Thus, 

 

!me
 and 

the 

 

CV  approach infinity as 

 

!p /!m  approaches zero. 

 In accordance with Poisson statistics, the standard deviation 

 

!m  of the number of 

peaks in the ensemble is 

 

m .  It differs from 

 

!me
, which is the standard deviation of the 

estimated numbers of peaks 

 

me .  The ratio 

 

!me
/

 

!m  is calculated from eq S-12 as 
 

  

 

!m
e

!m

= 1" 2#exp("#)( )
1/2 exp(# / 2)[#

"1
" d lnRs

*
/d# ]

#
"1

"1" d lnRs
* /d#

 (S-14) 

and depends only on 

 

! . 

 Results and discussion.  Figure S-1a is a graph of the ratio 

 

!me
/

 

!m  vs saturation 

 

! , 

as calculated from eq S-14.  As the saturation approaches zero, the ratio approaches one.  

This is expected, since at zero saturation all peaks are resolved and 

 

p  = 

 

m  = 

 

me  for each 

ensemble member.  As 

 

!  increases, 

 

!me
/

 

!m  rapidly increases (e.g, 

 

!me
 = 3.40

 

!m  at 

 

!  

= 1) and the precision of 

 

me  decreases. 

 As discussed in the main article, the poor precision of 

 

me  at high saturation results 

from the decreasing slope 

 

!p /!m , which maps small random fluctuations of 

 

p  into large 

random fluctuations of 

 

me .  Figure S-1b is a graph of 

 

g(!)  vs 

 

! , where 

 

g(!) , eq S-11b, 

is the reciprocal of this slope.  It resembles Figure S-1a but increases with 

 

!  even more 

rapidly.  Values of 

 

g(!)  agree with the reciprocal slope determined numerically from the 

graph of 

 

p  vs 

 

m . 

 

Part 3.  Monte-Carlo simulation of 

 

me  distribution 

 The Monte-Carlo simulations are mentioned in the main article after eq 4c. 
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 Procedures.  To characterize the 

 

me  distribution, 2 x 105 Monte-Carlo simulations of 

 

p  and 

 

m , and calculations of 

 

me , were made.  In each simulation, a Poisson distributed 

number 

 

m  of Gaussian peaks having constant standard deviation 

 

!  and exponentially 

random heights spanned an interval of duration 

 

X , with peak overlap producing 

 

p  

observed peaks (maxima).  This 

 

p  then determined 

 

me  via eqs S-2 and S-3 in Part 2 of 

the Supporting Information.  Discrete distributions were built from the 

 

p , 

 

m , and 

 

me  

values.  Further details are given in the Procedures section of the main article. 

 Results and Discussion.  The panels in Figure S-2 are graphs of probability vs 

 

p , 

 

m , 

and 

 

me  at different saturations 

 

! , as determined for 

 

! / X  = 8 x 10-5.  All distributions 

are discrete but are shown as continuous functions for simplicity.  At low saturation (e.g., 

 

!  = 0.2), the 

 

m  and 

 

me  distributions are almost identical.  As 

 

!  increases, the 

 

me  

distribution becomes broader than the 

 

m  distribution, and its average shifts slightly 

downward from the mean of the m  distribution, 

 

m .  The shift occurs, because eq S-2 

slightly underestimates peak overlap as 

 

!  increases.  Values of 

 

!me
 calculated from eq 

S-12 in Part 2 of the Supporting Information and from moments analysis of the 

 

me  

distributions are reported in the panels.  At low 

 

! , excellent agreement is found.  At 

higher 

 

! , eq S-12 overpredicts the standard deviation of 

 

me .  In all cases, 

 

!me
 exceeds 

the standard deviation of the 

 

m  distribution, which is 

 

m  (and calculable from the 

 

m 's 

reported in the panels).  Further verification of eq S-12 is provided in the main article. 

 

Part 4.  Equations for migration-time distributions 

 

f (! )  

 The equations are mentioned in the main article at the end of the first paragraph in the 

section, “Analysis of Migration-Time Distributions”, under Procedures.  All migration-

time distributions 

 

f (! )  are models, have unit area, and are bound by the reduced times, 

 

!  = 0 and 

 

!  = 1.  Normalization coefficients were obtained by integrating 

 

f (! )  between 

these bounds.  Various coefficients were selected by trial and error to obtain the desired 
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appearance of 

 

f (! ) .  Equations are given for the reduced migration times 

 

!c  of peaks.  

All random numbers R  are uniform and bound by the integers, 0 and 1. 

 Gaussian 

 

f (! ) .  The Gaussian migration-time distribution is 

  

 

f (! ) = (2"#G
2
)
$1
exp[$(! $ µ)

2
/ (2#G

2
)]  (S-15a) 

with 

 

µ  = 0.5 and 

 

!G  = 0.125.  A peak migration time 

 

!c  was calculated with the Box-

Muller transform3 

  

 

!c = µ +"G #2 lnR1 sin(2$R2)[ ]  (S-15b) 

where 

 

R1 and 

 

R2  are independent random numbers (the radicand in eq S-15b is positive 

because 

 

lnR1  is negative). 

 Strictly, eq S-15a is not normalized between 

 

!  = 0 and 

 

!  = 1.  However, the area 

between these bounds is erf(

 

4 / 2 ) 

 

! 0.9999+, where erf is the error function.  The very 

small fraction (< 0.01%) of peak migration times generated by eq S-15b outside the 

bounds was not used; its discard had negligible effect on results. 

 Bimodal 

 

f (! ) .  The bimodal migration-time distribution is 

  

 

f (! ) = A1 ! exp("# 1! ) + (1" !) exp("# 2[1"! ]
2
){ } (S-16a) 

with 

 

!1  and 

 

!2  equaling constants (in the main article, 

 

!1  = 6.5 and 

 

!2  = 8.5).  The 

normalization constant 

 

A1 is 

  

 

A1 = [1! exp(!" 2)] / (2" 2) ! exp(!"1) /"1+ [1! exp(!"1)] /"1
2{ }

!1
 (S-16b) 

A peak migration time 

 

!c  was determined by solving 
 

  

 

(!1)
"2 " exp("!2) / (2!2) " exp("!1#c )(#c +!1

"1) /!1

+exp("!2[1"#c ]
2) / (2!2) " R / A1 = 0

 (S-16c) 

using bisection, with 

 

R equaling a random number.  Eq S-16c is based on a 

transformation of random numbers into an arbitrary distribution4 (here, into eq S-16a). 

 Asymmetric 

 

f (! ) .  The asymmetric migration-time distribution is 

  

 

f (! ) = A2! exp("# 3! )  (S-17a) 
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with 

 

!3  equaling a constant (in the main article, 

 

!3  = 3.5).  The normalization constant 

 

A2 is 

  

 

A2 = [1! exp(!" 3)] /"3
2
! exp(!" 3) /" 3{ }

!1
 (S-17b) 

A peak migration time 

 

!c  was determined by solving 

  

 

[1! exp(!" 3#c)] /"3
2 ! #c exp(!" 3#c) /" 3 ! R / A2 = 0  (S-17c) 

using bisection, with 

 

R equaling a random number.  Eq S-17c is based on the same 

transformation as eq S-16c. 

 Constant 

 

f (! ) .  The constant migration-time distribution is 

  

 

f (! ) = 1 (S-18a) 

A peak migration time 

 

!c  was determined as 

  

 

!c = R  (S-18b) 

with 

 

R equaling a random number. 

 

Part 5.  Least square fits to graphs of ! t , !e,t , and log(mt ) vs log(! / X)  

 The fits are mentioned in the main article at the end of the section, “ Threshold 

Values of p  versus m  Curve”, in the Results and Discussion.  Let s  = log(! / X ).  The 

graphs in Figure 3a of the main article can be estimated from the polynomial fits 

  !t = "0.9530 " 0.9848s " 0.1442s
2
" 0.007830s

3  (S-19) 

  !e,t = "1.423"1.287s " 0.0877s
2  (S-20) 

  log(mt ) = !1.986 !1.949s ! 0.1718s2 ! 0.01102s3  (S-21) 

with correlation coefficients of 0.99998 or larger. 
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Figure S-1.  a)  Graph of !me /!m  vs saturation !  (eq S-14).  b)  Graph of g(! )  vs !  

(eq S-11b), with Rs
*  equal to eq 4c of the main article.
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Figure S-2.  Graphs of discrete probability distributions vs p , m , and me , as determined 

by Monte-Carlo simulations ( p , m ) and solutions to eqs S-2 and S-3 (me ) in Part 2 of 

the Supporting Information.  Dashed, bold, and normal-weight curves are the p , m , and 

me  distributions, respectively.  In b) – d) different abscissas are used for p , and for m  

and me , to reduce unused space.  ! / X  = 8 x 10-5.  a)  ! = 0.2 . b)  ! = 0.4 . c)  ! = 0.6 . 

d)  ! = 0.8 . 
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