Heats of Formation of XeF₃⁺, XeF₃⁻, XeF₅⁺, XeF₇⁺, XeF₇⁻, and XeF₈ from High Level Electronic Structure Calculations

Daniel J. Grant, Tsang-Hsiu Wang, David A. Dixon,*,[†]

Department of Chemistry, University of Alabama, Tuscaloosa, AL 35487-0336

Karl O. Christe

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089

Supporting Material. CCSD(T)/aV*n*Z total energies (E_h) as a function of basis set (Table SM-1); CCSD(T)/awCV*n*Z total energies (E_h) as a function of basis set (Table SM-2); Calculated MP2 and CCSD(T) with the aVTZ basis set geometry parameters of the xenon fluoride molecules and their ions (Table SM-3); *T*₁ diagnostics calculated at the CCSD(T)/aVQZ level (Table SM-4); Calculated F⁺ and F⁻ affinities (Table SM-5); Calculated heats of reaction for loss of F₂ from the cationic, neutral and anionic xenon fluorides (Table SM-6); Calculated CCSD(T)/aVTZ and experimental geometries of the krypton fluoride molecules and their ions (Figure SM-1).

[†] E-mail address: dadixon@bama.ua.edu

Molecule	Basis Set	Energy
$\operatorname{XeF_3}^+(C_{2\nu})$	aVDZ	-626.736544
	aVTZ	-627.058242
	aVQZ	-627.162668
	CBS (DTQ)	-627.222122
$\operatorname{XeF}_{3}(C_{2v})$	aVDZ	-627.136494
	aVTZ	-627.447757
	aVQZ	-627.551167
	CBS (DTQ)	-627.610297
$\operatorname{XeF_3}(C_s)$	aVDZ	-627.290996
	aVTZ	-627.603399
	aVQZ	-627.708918
	CBS (DTQ)	-627.769436
$\operatorname{XeF_3}(C_{2v})$	aVDZ	-627.289741
	aVTZ	-627.601554
	aVQZ	-627.706878
	CBS (DTQ)	-627.767285
$\operatorname{XeF_5}^+(C_{4v})$	aVDZ	-825.916031
	aVTZ	-826.423761
	aVQZ	-826.587511
	CBS (DTQ)	-826.680627
$\operatorname{XeF}_5(C_{4v})$	aVDZ	-826.307448
	aVTZ	-826.793645
	aVQZ	-826.953584
	CBS (DTQ)	-827.044871
$\operatorname{XeF_{7}^{+}}(D_{5h})$	aVDZ	-1025.004290
	aVTZ	-1025.695687
	aVQZ	-1025.916391
	CBS (DTQ)	-1026.041646
$\operatorname{XeF}_{7}(C_{2\nu})$	aVDZ	-1025.708092
	aVTZ	-1026.366555
	aVQZ	-1026.584442
	CBS (DTQ)	-1026.708939
$\operatorname{XeF}_{7}(D_{5h})$	aVDZ	-1025.709358

Table SM-1. CCSD(T) Total Energies (E_h) as a Function of the Basis Set.^{a,b}

aVTZ	-1026.365922
aVQZ	-1026.583562
CBS (DTQ)	-1026.707958
aVDZ	-1025.707895
aVTZ	-1026.366442
aVQZ	-1026.584313
CBS (DTQ)	-1026.708796
aVDZ	-1125.004373
aVTZ	-1125.776607
aVQZ	-1126.025515
CBS (DTQ)	-1126.167040
	aVTZ aVQZ CBS (DTQ) aVDZ aVTZ aVQZ CBS (DTQ) aVDZ aVTZ aVQZ CBS (DTQ)

^a Dissociation is with respect to RCCSD(T) atoms for closed shell atoms and R/UCCSD(T) for open shell atoms. Symmetry equivalencing of the p_x , p_y and p_z orbitals was not imposed in the atomic calculations. The Xe RECP has a 28 electron core, leaving 26 electrons to be explicitly treated.

^b CBS (DTQ) values from Eq. 1 (see text) obtained with the aVnZ basis sets with n = D, T, Q.

Molecule	Basis Set	Energy
$\operatorname{XeF}(C_{\infty v})$	awCVDZ	-428.556602
	awCVTZ	-429.070331
	awCVQZ	-429.281393
	CBS (DTQ) _{CV}	-429.406318
$\operatorname{XeF}_2(D_{\infty h})$	awCVDZ	-528.101771
	awCVTZ	-528.723365
	awCVQZ	-528.963850
	CBS (DTQ) _{CV}	-529.104926
$\operatorname{XeF_3}^+(C_{2\nu})$	awCVDZ	-627.290432
	awCVTZ	-628.027599
	awCVQZ	-628.295103
	CBS (DTQ) _{CV}	-628.450439
$\operatorname{XeF}_3(C_{2v})$	awCVDZ	-627.688558
	awCVTZ	-628.414911
	awCVQZ	-628.682648
	CBS (DTQ) _{CV}	-628.838516
$\operatorname{XeF_3}(C_s)$	awCVDZ	-627.842653
	awCVTZ	-628.570622
	awCVQZ	-628.840537
	CBS (DTQ) _{CV}	-628.997821
$\operatorname{XeF_3}(C_{2\nu})$	awCVDZ	-627.841391
	awCVTZ	-628.568832
	awCVQZ	-628.838574
	CBS (DTQ) _{CV}	-628.995760
$\operatorname{XeF}_4(D_{4h})$	awCVDZ	-727.355872
	awCVTZ	-728.196262
	awCVQZ	-728.496113
	CBS (DTQ) _{CV}	-728.669737
$\operatorname{XeF_5}^+(C_{4\nu})$	awCVDZ	-826.552488
	awCVTZ	-827.523179
	awCVQZ	-827.854095
	CBS (DTQ) _{CV}	-828.044199
$\operatorname{XeF}_5(C_{4v})$	awCVDZ	-826.941706

Table SM-2. CCSD(T) Total Energies (E_h) as a Function of the Basis Set.^{a,b}

	awCVTZ	-827.888068
	awCVQZ	-828.216991
	CBS (DTQ) _{CV}	-828.406594
$\operatorname{XeF}_{5}(D_{5h})$	awCVDZ	-827.157465
	awCVTZ	-828.103578
	awCVQZ	-828.434351
	CBS (DTQ) _{CV}	-828.625215
$\operatorname{XeF}_6(O_h)$	awCVDZ	-926.599019
	awCVTZ	-927.658496
	awCVQZ	-928.019200
	CBS (DTQ) _{CV}	-928.226368
$\operatorname{XeF}_6(C_{3\nu})$	awCVDZ	-926.587101
	awCVTZ	-927.656393
	awCVQZ	-928.018669
	CBS (DTQ) _{CV}	-928.226558
$\operatorname{XeF}_6(C_{2\nu})$	awCVDZ	-926.582604
	awCVTZ	-927.654675
	awCVQZ	-928.016872
	CBS (DTQ) _{CV}	-928.224611
$\operatorname{XeF_{7}^{+}}(D_{5h})$	awCVDZ	-1025.718973
	awCVTZ	-1026.921037
	awCVQZ	-1027.313874
	CBS (DTQ) _{CV}	-1027.537817
$\operatorname{XeF}_{7}(C_{2v})$	awCVDZ	-1026.424880
	awCVTZ	-1027.590504
	awCVQZ	-1027.982763
	CBS (DTQ) _{CV}	-1028.207584
$\operatorname{XeF}_{7}(D_{5h})$	awCVDZ	-1026.425424
	awCVTZ	-1027.589245
	awCVQZ	-1027.981130
	CBS (DTQ) _{CV}	-1028.205761
$\operatorname{XeF}_{7}(C_{3v})$	awCVDZ	-1026.424753
	awCVTZ	-1027.590427
	awCVQZ	-1027.982717
	CBS (DTQ) _{CV}	-1028.207557
$\operatorname{XeF}_{8}(D_{4d})$	awCVDZ	-1125.759749

awCVTZ	-1127.062694
awCVQZ	-1127.486749
CBS (DTQ) _{CV}	-1127.728299

^a Dissociation is with respect to RCCSD(T) atoms for closed shell atoms and R/UCCSD(T) for open shell atoms. Symmetry equivalencing of the p_x , p_y and p_z orbitals was not imposed in the atomic calculations. The Xe RECP has a 28 electron core, leaving 26 electrons to be explicitly treated.

^b CBS (DTQ) values from Eq. 1 (see text) obtained with the awCV*n*Z basis sets with n = D, T, Q.

Table SM-3. Calculated MP2 and CCSD(T) with the aVTZ Basis Set Geometry Parameters of the Xenon Fluoride Molecules and their Ions. Bond Distances in Å and Bond Angles in Degrees.

Molecule	Method	R _e (Å)	∠FXeF (deg)
XeF^+	MP2	1.8674	
	CCSD(T)	1.8830	
	expt. ^a	1.872(17)	
$XeF_{3}^{+}(C_{2\nu})^{b}$	MP2	1.8830/1.8380	83.3
	CCSD(T)	1.8907/1.8528	83.0
	expt. ^c	1.88(1)/1.83(1)	81.0(1)
$\operatorname{XeF}_{3}(C_{2\nu})^{b}$	MP2	1.8534/3.3811	89.9
	CCSD(T)	1.9743/2.3221	90.2
$\operatorname{XeF_3}^{-}(C_s)^{d}$	MP2	2.4921/2.0596/1.9911	120.4/73.1
	CCSD(T)	2.5098/2.0729/2.0021	121.0/72.4
$\operatorname{XeF_3}^{-}(C_{2\nu})^{\mathrm{b}}$	MP2	2.1129/2.1726	145.2
	CCSD(T)	2.0195/2.6613	93.8
$\operatorname{XeF_5}^+(C_{4v})^{\mathrm{b}}$	MP2	1.8111/1.8439	82.8
	CCSD(T)	1.8202/1.8491	82.6
	expt. ^e	1.813(7)/1.843(8)	79.2(4)ax-eq
$\operatorname{XeF}_{5}(C_{4v})^{b}$	MP2	3.6967/1.9498	89.9
	CCSD(T)	2.2276/1.9348	89.4
$\operatorname{XeF_7}^+(D_{5h})^{\mathrm{f}}$	MP2	1.8337/1.8899	180.0/72.0
	CCSD(T)	1.8074/1.8661	180.0/72.0
$\operatorname{XeF}_{7}(C_{2\nu})^{\mathrm{g}}$	MP2	1.9879/1.9945/2.0255	78.8/143.2
	CCSD(T)	1.9641/1.9815/2.0341	78.2/142.9
	expt. ^h	1.842/1.890/2.189	
$\operatorname{XeF}_{7}(D_{5h})^{\mathrm{f}}$	MP2	1.9781/2.0160	180.0/72.0
	CCSD(T)	1.9708/2.0078	180.0/72.0
$\operatorname{XeF_7}^{-}(C_{3\nu})^{\mathrm{g}}$	MP2	2.0312/2.0086/1.9865	74.9/130.9
	CCSD(T)	2.0441/2.0046/1.9667	75.4/131.3
	expt. ^h	2.100/1.932/1.970	

$\mathrm{XeF}_{8}\left(D_{4d} ight)^{\mathrm{i}}$	MP2	1.8952	73.1/77.9	
	CCSD(T)	1.8984	73.0/78.0	
$\operatorname{KrF}_{3}(C_{2\nu})^{b}$	MP2	1.8899/2.5941	93.6	
	CCSD(T)	1.8989/2.6020	93.5	
$\operatorname{KrF}_{5}(D_{5h})$	MP2	1.9942	72.0	
	CCSD(T)	1.9772	72.0	
$\operatorname{KrF}_{7}(D_{5h})^{\mathrm{f}}$	MP2	1.8771/1.9972	180.0/72.0	
-	CCSD(T)	1.9186/2.0133	180.0/72.0	

^a Bartlett, N.; Gennis, M. Gibler, D. D.; Morrell, B. K.; Zalkin, A. *Inorg. Chem.* **1973**, *12*, 1717.

^b Bond distance corresponds to $r(Xe-F_a)$ and $r(Xe-F_e)$ in the $C_{2\nu}$ or $C_{4\nu}$ structures. Angle corresponds to $\angle F_aXeF_e$. The long Xe-F_a distances in XeF₃ and XeF₅ at the MP2 level are due to the fact that they are unbound with respect to XeF₂ and XeF₄ respectively.

^c McKee, D. E.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 8, 1713.

^d Bond distances correspond to $r(Xe-F_1)$, $r(Xe-F_2)$ and $r(Xe-F_3)$. See Figure 1.

^e Leary, K.; Templeton, D. H.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 1726.

^f Bond distances correspond to $r(Xe-F_a)$ and $r(Xe-F_e)$ in the D_{5h} structure.

^g Bond distances correspond to $r(Xe-F_1)$, $r(Xe-F_2)$, and $r(Xe-F_3)$. Angles correspond to $\angle F_1XeF_2$ and $\angle F_1XeF_3$ See Figure 1.

^h Ellern, A.; Mahjoub, A-R.; Seppelt, K. Angew. Chem. Int. Ed. Engl. 1996, 35, 1123.

ⁱ First \angle FXeF angles is between adjacent F atoms on the same square face, while the second is between F atoms on separate planes.

Molecule	T ₁ Diagnostics
$\operatorname{XeF_3^+}(C_{2\nu})$	0.018
$\operatorname{XeF}_{3}(C_{2\nu})$	0.034
$\operatorname{XeF_3}(C_{\mathrm{s}})$	0.030
$\operatorname{XeF}_{3}(C_{2v})$	0.018
$\operatorname{XeF_5}^+(C_{4\nu})$	0.018
$\operatorname{XeF}_{5}(C_{4v})$	0.031
$\operatorname{XeF_{7}^{+}}(D_{5h})$	0.016
$\operatorname{XeF}_{7}(C_{2v})$	0.018
$\operatorname{XeF}_{7}(D_{5h})$	0.018
$\operatorname{XeF}_7(C_{3\nu})$	0.018
$\operatorname{XeF}_{8}(D_{4d})$	0.015

Table SM-4. T_1 Diagnostics Calculated at the CCSD(T)/aVQZ Level.

Molecule	FPA	FA
Xe	1651.1	6.3
XeF ₂	155.3	19.9
XeF ₄	172.7	59.1
XeF ₆	132.5	75.0
Kr	119.7 ^a	3.8 ^a
KrF ₂	104.5 ^a	16.8 ^a
KrF ₄	100.1 ^a	35.5 ^a
KrF ₆		45.2 ^a

Table SM-5. Calculated F^+ (FPA) and F^- (FA) Affinities in kcal/mol at 0 K.

^a Dixon, D. A.; Wang, T-H.; Grant , D. J.; Peterson , K. A.; Christe, K. O., *Inorg. Chem.* **2007**, *46*, 10016. The heats of formation of F^+ and F^- are 420.2 and -59.96 kcal/mol respectively.

Reaction	ΔH _{rxn}
$XeF_3^+ \rightarrow XeF^+ + F_2$	14.8
$XeF_5^+ \to XeF_3^+ + F_2$	37.8
$XeF_5^+ \to XeF^+ + 2F_2$	52.6
$XeF_7^+ \to XeF_5^+ + F_2$	-24.1
$XeF_7^+ \to XeF_3^+ + 2F_2$	13.7
$XeF_7^+ \to XeF^+ + 3F_2$	28.5
$XeF_2 \rightarrow Xe + F_2$	24.6
$XeF_4 \rightarrow Xe + F_2$	20.4
$XeF_4 \rightarrow Xe + 2F_2$	45.0
$XeF_6 \rightarrow Xe + F_2$	16.1
$XeF_6 \rightarrow Xe + 2F_2$	36.5
$XeF_6 \rightarrow Xe + 3F_2$	61.0
$XeF_8 \rightarrow Xe + F_2$	-22.3
$XeF_8 \rightarrow Xe + 2F_2$	-6.2
$XeF_8 \rightarrow Xe + 3F_2$	14.2
$XeF_8 \rightarrow Xe + 4F_2$	38.7
$XeF_3 \rightarrow XeF + F_2$	38.2
$XeF_5 \rightarrow XeF_3 + F_2$	59.6
$XeF_5^- \rightarrow XeF^- + 2F_2$	97.8
$XeF_7 \rightarrow XeF_5 + F_2$	31.9
$XeF_7 \rightarrow XeF_3 + 2F_2$	91.5
$XeF_7 \rightarrow XeF^2 + 3F_2$	129.7

Table SM-6. Calculated Heats of Reaction for Loss of F_2 from the Cationic, Neutral and Anionic Xenon Fluorides in kcal/mol at 0 K.

Figure Captions

Figure SM-1. Calculated CCSD(T)/aVTZ and experimental geometries in parenthesis of the krypton fluoride molecules and their ions (bond lengths in angstroms and bond angles in degrees. The structures for KrF^+ , KrF^- , KrF_2 , KrF_3^+ , KrF_4 , KrF_5^+ , and KrF_6 taken from

Dixon, D. A.; Wang, T-H.; Grant , D. J.; Peterson , K. A.; Christe, K. O., Inorg. Chem.

2007, 46, 10016. Experimental geometry for KrF₂ from Murchinson, C.; Reichman, S.;

Anderson, D.; Overend, J.; Schreiner, F. J. Am. Chem. Soc. 1968, 90, 5690.

Figure SM-1.

← INCREASING FORMAL POSITIVE CHARGE

▲ INCREACING COORDINATION NUMBER