Supporting Information

Morphologies of self-organizing regioregular conjugated polymer/fullerene aggregates in thin film solar cells

Mao-Yuan Chiu, U-Ser Jeng, Ming-Shin Su and Kung-Hwa Wei*

The radius of gyration (R_g) of a PCBM aggregate can be determined from the scattering peak intensity, using the Guinier approximation

$$I(Q) = I(0) \exp\left(-\frac{Q^2 R_g^2}{3}\right)$$
 (1)

where I(Q) is the scattering intensity; I(0) is the zero-angle scattering intensity; Q is the scattering vector; and R_g is the radius of gyration of the PCBM clusters. Figure S3 presents plots of $\ln I(Q)$ versus Q^2 that were fitted using Equation 1 (solid lines) in the low-Q range. The values of R_g can be extracted from the slopes $(-R_g^2/3)$ of the fitted lines.

The out-of-plane electron and hole mobilities were determined by fitting the dark current density-voltage curves of the devices into the space-charge-limited current (SCLC) model, based on the equation

$$J = \frac{9}{8} \varepsilon_o \varepsilon_r \mu_{h(e)} \frac{V^2}{L^3}$$

where ε_0 is the permittivity of free space, ε_r is the dielectric constant of the materials, $\mu_{h(e)}$ is the hole (electron) mobility, V is the voltage drop across the device, and L is

the active layer thickness.

Figure S1 GISAXS pattern of the P3HT/PCBM blend film incorporating 55 wt%

PCBM and a schematic representation of the device structure.

Figure S2 Profiles of azimuthal angles at $Q_{(100)}$, extracted from the GISAXS 2D pattern. Inset: Defining the spread angle of the P3HT chains on the substrates. When the P3HT molecules were aligned edge- and face-on to the substrates, the azimuthal angles were designated as 0 and 90°, respectively.

Figure S3 Plots of $\ln I(Q)$ versus Q^2 for the GISAXS data of P3HT/PCBM films, measured with a large sample-to-detector distance of 3219 mm for an improved low-Q resolution. The data are fitted using the Guinier approximation (solid lines). Polydispersity effect of the PCBM aggregation is estimated using the two fitted lines for the upper- $(R_{\rm g}^{-1})$ and lower-limit $(R_{\rm g}^{-2})$; the fitted $R_{\rm g}$ values are summarized in the Table below. Averaged $R_{\rm g}$ values are used in the text.

PCBM by weight	$R_{\rm g}^{-1}$ (nm)	$R_{\rm g}^{\ 2} ({\rm nm})$	R _g average (nm)
in P3HT			
38%(1:0.6)	18.7	17.2	18.0
44%(1:0.8)	22.4	18.3	20.4
50%(1:1)	25.3	17.9	21.6
55%(1:1.2)	29.6	14.2	21.9

Figure S4: Dark *J–V* curves for (a) electron- and (b) hole-dominated carrier devices of P3HT/PCBM incorporating various PCBM loadings, annealed at 150 °C for 15 min.

Figure S5: Current density-voltage characteristics under illumination of devices incorporating P3HT films containing various weight percentages of PCBM, after annealing at 150 °C for 15 min.

