Supporting Information

Morphologies of self-organizing regioregular conjugated

polymer/fullerene aggregates in thin film solar cells

Mao-Yuan Chiu, U-Ser Jeng, Ming-Shin Su and Kung-Hwa Wei*

The radius of gyration $\left(R_{\mathrm{g}}\right)$ of a PCBM aggregate can be determined from the scattering peak intensity, using the Guinier approximation

$$
\begin{equation*}
I(Q)=I(0) \exp \left(-\frac{Q^{2} R_{g}{ }^{2}}{3}\right) \tag{1}
\end{equation*}
$$

where $I(Q)$ is the scattering intensity; $I(0)$ is the zero-angle scattering intensity; Q is the scattering vector; and R_{g} is the radius of gyration of the PCBM clusters. Figure S 3 presents plots of $\ln I(Q)$ versus Q^{2} that were fitted using Equation 1 (solid lines) in the low- Q range. The values of R_{g} can be extracted from the slopes $\left(-R_{\mathrm{g}}{ }^{2} / 3\right)$ of the fitted lines.

The out-of-plane electron and hole mobilities were determined by fitting the dark current density-voltage curves of the devices into the space-charge-limited current (SCLC) model, based on the equation

$$
J=\frac{9}{8} \varepsilon_{o} \varepsilon_{r} \mu_{h(e)} \frac{V^{2}}{L^{3}}
$$

where ε_{0} is the permittivity of free space, ε_{r} is the dielectric constant of the materials, $\mu_{\mathrm{h}(\mathrm{e})}$ is the hole (electron) mobility, V is the voltage drop across the device, and L is
the active layer thickness.

Figure S1 GISAXS pattern of the P3HT/PCBM blend film incorporating $55 \mathrm{wt} \%$

PCBM and a schematic representation of the device structure.

Figure S2 Profiles of azimuthal angles at $Q_{(100)}$, extracted from the GISAXS 2D
pattern. Inset: Defining the spread angle of the P3HT chains on the substrates. When
the P3HT molecules were aligned edge- and face-on to the substrates, the azimuthal angles were designated as 0 and 90°, respectively.

Figure S3 Plots of $\ln I(Q)$ versus Q^{2} for the GISAXS data of P3HT/PCBM films, measured with a large sample-to-detector distance of 3219 mm for an improved low- Q resolution. The data are fitted using the Guinier approximation (solid lines).

Polydispersity effect of the PCBM aggregation is estimated using the two fitted lines for the upper- $\left(R_{\mathrm{g}}{ }^{1}\right)$ and lower-limit $\left(R_{\mathrm{g}}{ }^{2}\right)$; the fitted R_{g} values are summarized in the Table below. Averaged R_{g} values are used in the text.

PCBM by weight in P3HT	$R_{\mathrm{g}}{ }^{1}(\mathrm{~nm})$	$R_{\mathrm{g}}{ }^{2}(\mathrm{~nm})$	$R_{\mathrm{g}}{ }^{\text {average }}(\mathrm{nm})$
$38 \%(1: 0.6)$	18.7	17.2	18.0
$44 \%(1: 0.8)$	22.4	18.3	20.4
$50 \%(1: 1)$	25.3	17.9	21.6
$55 \%(1: 1.2)$	29.6	14.2	21.9

Figure S4: Dark $J-V$ curves for (a) electron- and (b) hole-dominated carrier devices of

P3HT/PCBM incorporating various PCBM loadings, annealed at $150^{\circ} \mathrm{C}$ for 15 min .

Figure S5: Current density-voltage characteristics under illumination of devices incorporating P3HT films containing various weight percentages of PCBM, after annealing at $150^{\circ} \mathrm{C}$ for 15 min .

