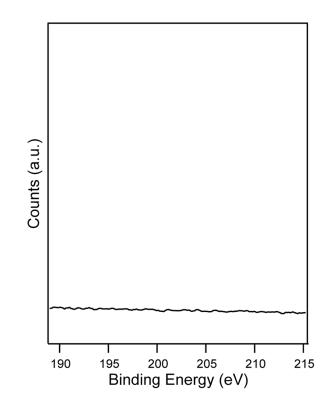
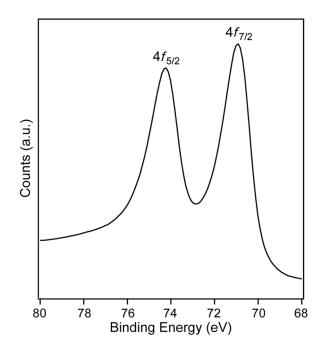
Tailored Electrochemical Synthesis of 2D-Hexagonal, Lamellar, and Cage-type Mesostructured Pt Thin Films with Extra-large Periodicity


Azusa Takai,[†] Yusuke Yamauchi, $*^{\dagger, \ddagger, \$}$ and Kazuyuki Kuroda $*^{\dagger}$

[†] Faculty of Science & Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555, JAPAN.


[‡] World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN.

[§] Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, JAPAN.

AUTHOR EMAIL ADDRESS: Yamauchi.Yusuke@nims.go.jp (YY) and kuroda@waseda.jp (KK)

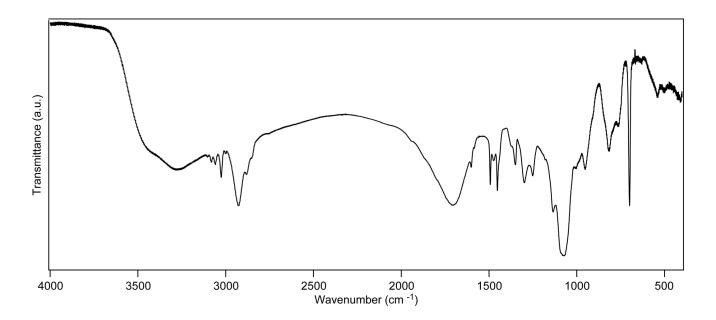


Figure S1. XPS spectrum of a mesoporous Pt film prepared from a precursor solution including 0.50 ml of Pt aqueous solution. No peak due to Cl $2p_{3/2}$ is observed around 198 eV which is attributed to chloride ions of H₂PtCl₆, indicating that the un-deposited Pt species are removed by washing with THF and water.

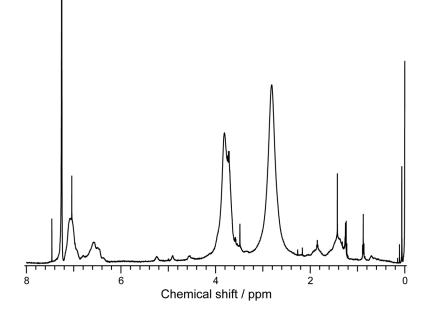


Figure S2. XPS spectrum of a mesoporous Pt film with 2D-hexagonal symmetry prepared from a precursor solution including 0.50 ml of Pt aqueous solution.

Figure S3

Figure S3. IR spectrum of a LLC film prepared from a precursor solution including 0.50 ml of Pt aqueous solution. The characteristic absorption band around 1079 cm⁻¹ assigned to C-O stretching vibration of EO groups is slightly shifted to lower energy, which is an evidence for the formation of hydrogen bonding between EO groups and Pt aqua complexes.³³

Figure S4. Liquid-state ¹H NMR spectrum of LLC films prepared from a precursor solution including 0.50 ml of Pt aqueous solution. The characteristic signals due to THF at $\delta = 1.8$ and 3.7 ppm are not observed in the spectrum, proving the evaporation during the LLC formation (the amount of remaining HF is under the limit of detection).