Supplementary Information:

Probing molecular motion by double-quantum $\left({ }^{13} \mathrm{C},{ }^{13} \mathrm{C}\right)$ solid-state NMR spectroscopy: Application to ubiquitin

Robert Schneider ${ }^{1}$, Karsten Seidel ${ }^{1}$, Manuel Etzkorn ${ }^{1}$, Adam Lange ${ }^{1}$, Stefan Becker ${ }^{1}$, and Marc Baldus ${ }^{2 *}$
${ }^{1}$ Max-Planck-Institute for Biophysical Chemistry, Department for NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany and
${ }^{2}$ Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Current address: KS: Polymer Physics (GKP/R), BASF SE, 67056 Ludwigshafen, Germany; ME: Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, 240 Longwood Ave, Boston, MA 02115
*To whom correspondence should be addressed: m.baldus@uu.nl

Supplementary Methods

Details of spin system simulations

In GAMMA simulations, the two spins contributing to the 2 Q coherence of interest and any ${ }^{13} \mathrm{C}$ spins directly bonded to them were considered. This yielded 2 -spin simulations for the TEE ester tail, 3-spin simulations for Ala and Ser and 4-spin simulations for the other unbranched amino acids as well as for the tyrosine moiety of TEE. For residues with longer sidechains (e.g. Lys), separate 4 -spin simulations were conducted for sidechain 2 Q coherence buildups (e.g. considering $\mathrm{C} \beta, \mathrm{C} \gamma, \mathrm{C} \delta$, and $\mathrm{C} \varepsilon$ for fitting an experimental ($\mathrm{C} \gamma, \mathrm{C} \delta$) buildup). Extended geometry was assumed, with Euler angles (α, β, γ) for the PAS \rightarrow MOL transformation set to $\left(0^{\circ}, 90^{\circ}, 0^{\circ}\right),\left(68^{\circ}, 90^{\circ}, 0^{\circ}\right)$, and $\left(0^{\circ}, 90^{\circ}, 0^{\circ}\right)$ for dipolar tensors connecting spins $(1,2),(2,3)$, and $(3,4)$ of a 4 -spin system, respectively. In simulations of a bent Lys sidechain conformation (see Fig. SI 3 a), these Euler angles were set to $\left(0^{\circ}, 90^{\circ}, 0^{\circ}\right)$, $\left(78^{\circ}, 90^{\circ}, 0^{\circ}\right)$, and $\left(156^{\circ}, 90^{\circ}, 0^{\circ}\right)$, respectively. All dipolar couplings were considered in the setup of the system Hamiltonian for 2- to 4 -spin systems. Bond lengths for aliphatic carbons were set to $1.52 \AA$ (corresponding to a dipolar coupling constant $d_{C C}$ of 2160 Hz in the static case), and an additional scalar coupling of 40 Hz between directly bonded nuclei was considered. For aromatic carbons, a bond length of $1.4 \AA$ was assumed. Chemical shifts used for individual nuclei were experimental resonance assignments in case of TEE simulations or average values from the BioMagResBank ${ }^{1}$ (BMRB) database in case of amino acid simulations.

For amino acids with branched sidechains, i.e. Ile, Leu, and Val, 5 -spin systems had to be considered. For example, for fitting Ile $(\mathrm{C} \beta, \mathrm{C} \gamma 1)$ or $(\mathrm{C} \beta, \mathrm{C} \gamma 2)$ buildups, a spin system consisting of $\mathrm{C} \alpha, \mathrm{C} \beta, \mathrm{C} \gamma 1$, $\mathrm{C} \gamma 2$, and $\mathrm{C} \delta 1$ was simulated. Corresponding Euler angles (α, β, γ) for the PAS \rightarrow MOL transformation of dipolar coupling tensors were as follows:

Dipolar tensor	α	β	γ
$(\mathrm{C} \alpha, \mathrm{C} \beta)$	0	90	0
$(\mathrm{C} \beta, \mathrm{C} 11)$	-68	90	0
$(\mathrm{C} \beta, \mathrm{C} \gamma 2)$	51	37	0
$(\mathrm{C} 1, \mathrm{C} \delta 1)$	0	90	0

Only one-bond dipolar couplings were considered in 5-spin simulations for computational reasons, which had no effect on initial rate buildup characteristics (data not shown). As above, an additional scalar coupling contribution of 40 Hz between bonded nuclei was included in the calculations.

For simulations of an amino acid side chain including chemical shift anisotropy (Fig. SI 3 b), extended geometry was again assumed as above. Isotropic chemical shift values were chosen to correspond to aspartic acid or asparagine ($\mathrm{C}^{\prime} 176 \mathrm{ppm}, \mathrm{C} \alpha 52.7 \mathrm{ppm}, \mathrm{C} \beta 37 \mathrm{ppm}, \mathrm{C} \gamma 178.7 \mathrm{ppm}$). Principal axis values ($\sigma_{\mathrm{xx}}, \sigma_{\mathrm{yy}}, \sigma_{\mathrm{zz}}$) for CSA tensors were taken from ref. 2 and were set to (in ppm) $(253,178,97)$ for $\mathrm{C}^{\prime},(29,58,71)$ for $\mathrm{C} \alpha,(49,44,18)$ for $\mathrm{C} \beta$, and $(255,181,100)$ for $\mathrm{C} \gamma . \mathrm{C}^{\prime}$ and $\mathrm{C} \gamma$ values were adapted from values for alanine in ref. 2 to match BMRB isotropic shifts for aspartic acid / asparagine. $\mathrm{C}^{\prime}, \mathrm{C} \alpha$ and $\mathrm{C} \gamma$ tensor orientations were as described in refs. 3,4. That is, for the $\mathrm{C} \alpha$ CSA tensor, the axis with the largest principal value formed an angle of 76° with the $\mathrm{C} \alpha-\mathrm{H} \alpha$ bond, and the one with the intermediate principal value formed an angle of 60° with the $\mathrm{C} \alpha-\mathrm{N}$ bond. For C^{\prime} and $\mathrm{C} \gamma$ CSA tensors, the axis with the intermediate principal value was oriented parallel to the $\mathrm{C}^{\prime}-\mathrm{O}$ bond, and (for C^{\prime}) the axis with the smallest principal value was perpendicular to the peptide bond plane. This led to Euler angles (α, β, γ) for the PAS \rightarrow MOL transformation of $\mathrm{C}^{\prime}, \mathrm{C} \alpha$ and $\mathrm{C} \gamma$ CSA tensors of $\left(90^{\circ}, 77^{\circ},-60^{\circ}\right),\left(51^{\circ}, 67^{\circ}, 90^{\circ}\right)$, and $\left(90^{\circ}, 20^{\circ},-120^{\circ}\right)$, respectively. C β CSA tensor orientation was varied around a sphere in 20 steps, leading to the different buildup curves in Figure SI 3 b.

Supplementary Figures

Figure SI 1: Cutouts of 2D (2Q,1Q) correlation experiments on TEE for SPC5 DQ excitation and reconversion times each of $564 \mu \mathrm{~s}$ (a) and $923 \mu \mathrm{~s}$ (b).

Figure SI 2: Theoretical signal evolution for spin 1 (2-spin system, (a)) and spin 2 (4-spin system, (b)) in a $2 \mathrm{D}(2 \mathrm{Q}, 1 \mathrm{Q})$ correlation experiment for variable order parameters S. Intensities shown are calculated for double-quantum coherences between spins 1 and 2 (a) and between spins 2 and 3 (b), respectively, and are normalized to the maximum. 2 QE and 2 QR times of length $t_{m i x}$ each were simulated for the SPC5 sequence 5 . In (b), all one- and multi-bond dipolar (${ }^{13} \mathrm{C},{ }^{13} \mathrm{C}$) couplings were scaled by the same order parameter.

vs.

Figure SI 3: (a) Comparison of simulated (2Q,1Q) crosspeak buildups for a lysine sidechain $(\mathrm{C} \beta, \mathrm{C} \gamma, \mathrm{C} \delta, \mathrm{C} \varepsilon) 4$-spin system with extended geometry (solid lines) and with bent geometry (dashed lines). $\mathrm{C} \beta \mathrm{C} \gamma-\mathrm{C} \beta$ (left) and $\mathrm{C} \gamma \mathrm{C} \delta-\mathrm{C} \gamma$ (right) crosspeak buildups are shown. (b) Comparison of (2Q,1Q) crosspeak buildup simulations for an aspartic acid / asparagine ($\mathrm{C}^{\prime}, \mathrm{C} \alpha, \mathrm{C} \beta, \mathrm{C} \gamma$) 4-spin system with and without chemical shift anisotropy. An extended geometry was again assumed. Buildups for $\mathrm{C} \alpha \mathrm{C} \beta-\mathrm{C} \alpha$ (left) and $\mathrm{C} \alpha \mathrm{C} \beta-\mathrm{C} \beta$ (right) crosspeaks are shown. Dashed black lines with crosses represent buildups obtained if all nuclei have isotropic chemical shift tensors ($\mathrm{C}^{\prime} 176 \mathrm{ppm}, \mathrm{C} \alpha 52.7 \mathrm{ppm}, \mathrm{C} \beta 37 \mathrm{ppm}, \mathrm{C} \gamma$ $178.7 \mathrm{ppm})$. Colored lines are buildups resulting from assuming anisotropic chemical shift tensors for all four nuclei (see Supplementary Methods). C β CSA tensor orientation was varied around a sphere in 20 steps, leading to the different buildup curves.

Figure SI 4: (a) Plot of Ubi-P $(\mathrm{C} \beta, \mathrm{C} \gamma) S_{C C}$ order parameters from Table SI 1. Open symbols indicate values with fit RMSDs >0.1 or that were obtained from signals not fully resolved in spectra. Solid line indicates an $S_{C C}$ value of 0.80 below which the most mobile 17% of determined $S_{C C}$ values are found. Secondary structure of ubiquitin as found in the crystal structure (PDB: 1UBQ) is sketched at the top. (b) Comparison of Ubi-P $(\mathrm{C} \beta, \mathrm{C} \gamma) S_{C C}$ (filled symbols) and Ubi-M $S_{H C}$ order parameters ${ }^{6}$ (open symbols). $S_{H C}$ values plotted are averaged over $\mathrm{C} \beta$ and $\mathrm{C} \gamma$ nuclei if both values are available. Solid line as in (a); dotted line denotes the upper limit $\left(S_{H C}=0.53\right)$ for the most mobile 21% of $(\mathrm{C} \beta, \mathrm{C} \gamma)$ pairs detected in Ubi-M.

Figure SI 5: Per-residue percentage of expected correlations $\left(\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)\right.$ distances up to $3.5 \AA$, only nonmethyl ${ }^{13} \mathrm{C}$ nuclei) which are absent from the Ubi-P CHHC spectrum with $180 \mu \mathrm{~s}$ mixing time. Red bars denote residues where backbone or sidechain nuclei with elevated dynamics are involved in absent CHHC correlations (see Table SI 3). Gray bars denote absent correlations involving residue Gly53 for which no $(\mathrm{C} \alpha, \mathrm{C} \beta) S_{C C}$ order parameter can be determined. Other absent correlations are shown as black bars.

Figure SI 6: Sum of $C^{\prime}, C \alpha$, and $C \beta$ chemical-shift differences between Ubi-P and Ubi-M as determined in ref. 7 (bars, bottom), as shown in Figure 5 in the main text. Above, Ubi-P $(\mathrm{C} \alpha, \mathrm{C} \beta) S_{C C}$ (top) and Ubi-M $(\mathrm{C} \alpha, \mathrm{C} \beta) S_{H C}$ (second from top) order parameters are given as in Figure 4 in the main text, with the most mobile 20% of residues in each dataset marked by red circles, and their cutoff values (dashed lines). Third panel from top shows the normalized relative difference of ($\mathrm{C} \alpha, \mathrm{C} \beta$) $S_{C C}$ and $S_{H C}$ order parameters, $\Delta \mathrm{S}_{\text {rel, norm }}$, as defined in Methods in the main text. Residues with $\Delta \mathrm{S}_{\text {rel,norm }}$ values above the average (dashed line) are marked in red. Residues marked by red bars in the bottom panel and in Figure 5 in the main text exhibit either $S_{C C}$ or $S_{H C}$ order parameters (or both) below the 20% cutoff or $\Delta S_{\text {rel,norm }}$ values above the average. No mobility data could be obtained for residues denoted by gray bars; available dynamics data for residues with black bars do not indicate heightened mobility.

Figure SI 7: (a) Average backbone RMSD per residue of the 10 calculated Ubi-P structures with lowest overall energy to their mean coordinates. (b) Average backbone RMSD per residue of the 10 lowest-energy calculated Ubi-P structures to the ubiquitin crystal structure (PDB: 1UBQ). Bars for residues $71-76$ for which no restraints are available are truncated at $10 \AA$. (c) Number of CHHC restraints per residue obtained by PASD, counting only restraints unique in terms of the ${ }^{13} \mathrm{C}$ nuclei involved (total 208 unambiguous, 1186 ambiguous). Interresidue restraints are counted in both residues involved. Black: unambiguous restraints; gray: ambiguous restraints.

Figure SI 8: (a) Sum of $C^{\prime}, C \alpha$, and $C \beta$ chemical-shift differences between Ubi-M as determined in ref. 8 and Ubi-P. (b) Sausage plot of the ensemble of 20 lowest-energy structures of Ubi-M from ref. 8 (gray, PDB: 2JZZ) aligned with the ensemble of 10 lowest-energy Ubi-P structures discussed in the main text, also as sausage plot (blue). Only residues 1-70 are shown. Residues with largest RMSD deviations are labeled, as well as the N-terminus. (c) Backbone RMSD per residue between the mean structures of the Ubi-P and Ubi-M ${ }^{8}$ ensembles. Bars for residues $71-76$ for which no restraints are available are truncated at $10 \AA$.

Figure SI 9: Fractional accessible surface area (ASA) per residue as determined for the ubiquitin crystal structure (PDB: 1UBQ) by the VADAR web server ${ }^{9}$ used with standard settings. Fractional ASA is defined as the observed ASA for a residue (in \AA^{2}) divided by its ASA in an extended Gly-Xaa-Gly peptide. The Pearson correlation coefficient of fractional ASA with $(\mathrm{C} \alpha, \mathrm{C} \beta) S_{C C}$ values along the ubiquitin sequence is 0.16 .

Figure SI 10: (a) Number of close crystal contacts per residue for the ubiquitin crystal structure (PDB: 1UBQ). Addition of protons to 1 UBQ and construction of the crystal unit cell with neighboring molecules were performed using PyMOL ${ }^{10}$. The graph shows the number of protons in a neighboring
ubiquitin molecule that are within $6 \AA$ of any proton of a given ubiquitin residue, divided by the number of protons in that residue. (b) Sum of $\mathrm{C}^{\prime}, \mathrm{C} \alpha$, and $\mathrm{C} \beta$ chemical-shift differences between Ubi-P and Ubi-M as determined in ref. 7, color-coded for low $S_{C C}$ or $S_{H C}$ order parameters or high $\Delta \mathrm{S}_{\text {rel,norm }}$ values as shown in Figure 5 in the main text and in Figure SI 6. Gray boxes indicate regions with large preparation-dependent changes in ssNMR shifts or dynamics for which comparably few crystal contacts are detected. However, no direct correlation between intermolecular interactions and elevated dynamics and / or chemical-shift changes is apparent. See main text for details.

Supplementary Tables

Residue	Mean (C $\alpha, C \beta$) S ${ }_{c c}$	Error	Mean ($\mathrm{C} \beta, \mathrm{C} \gamma$) S_{cc}	Error
M1	0.80	0.1	0.80	0.05
Q2	-	-	-	-
13	0.85	0.05	0.78	0.10
F4	1.00	0.05	-	-
V5	-	-	0.90	0.05
K6	-	-	-	-
T7	1.00	<0.05	0.98	0.05
L8	0.90	0.1	-	-
T9	0.98	0.05	-	-
G10	-	-	-	-
K11	-	-	-	-
T12	-	-	-	-
113	0.78	0.05	-	-
T14	-	-	-	-
L15	0.90	0.1	0.80	0.05
E16	-	-	-	-
V17	0.90	0.1	0.95	0.05
E18	0.83	0.05	-	-
P19	0.93	0.05	0.80	0.1
S20	-	-	-	-
D21	-	-	-	-
T22	1.00	0.05	0.93	0.05
123	0.88	0.05	-	-
E24	0.88	0.05	-	-
N25	1.00	0.05	-	-
V26	0.93	0.05	0.98	0.25
K27	0.93	0.05	0.80	0.05
A28	1.00	< 0.05	-	-
K29	-	-	0.80	0.05
130	0.90	0.05	0.85	0.05
Q31	0.95	0.05	-	-
D32	-	-	-	-
K33	-	-	-	-
E34	0.78	0.05	0.95	0.10
G35	-	-	-	-
136	0.75	0.05	-	0.05
P37	0.93	0.05	-	0.05
P38	0.90	0.05	-	0.05
D39	-	-	-	-
Q40	-	-	-	-
Q41	-	-	-	-
R42	-	-	-	-
L43	0.85	0.05	0.78	0.05
144	0.83	0.05	-	-
F45	1.00	0.1	-	-
A46	1.00	< 0.05	-	-
G47	-	-	-	-
K48	-	-	-	-
Q49	-	-	-	-
L50	0.98	0.05	0.83	0.05
E51	-	-	-	-

Residue	Mean (C $\alpha, \mathbf{C} \boldsymbol{\beta}) \mathbf{S}_{\mathbf{c c}}$	Error	Mean (C $\beta, \mathbf{C} \boldsymbol{\gamma}) \mathbf{S}_{\mathbf{c c}}$	Error
D52	-	-	-	-
G53	-	-	-	-
R54	0.83	0.05	-	-
T55	0.95	0.05	1.00	<0.05
L56	0.93	0.05	0.83	0.1
S57	1.00	0.05	-	-
D58	-	-	-	-
Y59	-	-	-	-
N60	1.00	0.05	-	-
I61	0.90	0.05	0.85	0.1
Q62	-	-	-	-
K63	0.83	0.05	0.80	0.20
E64	0.90	0.05	0.85	0.05
S65	1.00	0.05	-	-
T66	-	-	-	-
L67	0.90	0.05	0.73	0.05
H68	-	-	-	-
L69	0.90	0.05	0.63	0.15
V70	-	-	0.85	0.05
L71	-	-	-	-
R72	-	-	-	-
L73	-	-	-	-
R74	-	-	-	-
G75	-			-
G76	-			-

Table SI 1: Backbone $(\mathrm{C} \alpha, \mathrm{C} \beta)$ and sidechain $(\mathrm{C} \beta, \mathrm{C} \gamma) S_{C C}$ order parameters determined for Ubi-P. Listed are all determined $S_{C C}$ order parameters for $(\mathrm{C} \alpha, \mathrm{C} \beta)$ and $(\mathrm{C} \beta, \mathrm{C} \gamma)$ pairs. If the S values of simulations fitting best to individual crosspeak buildups ($\mathrm{C} \alpha$ and $\mathrm{C} \beta$ or $\mathrm{C} \beta$ and $\mathrm{C} \gamma$, respectively) are different, the average is given. Errors were determined as described in Methods in the main text. For threonine residues, $(\mathrm{C} \beta, \mathrm{C} \gamma)$ corresponds to $(\mathrm{C} \beta, \mathrm{C} \gamma 2)$; for all residues with $\mathrm{C} \gamma 1$ and $\mathrm{C} \gamma 2$ nuclei, the $(\mathrm{C} \beta, \mathrm{C} \gamma 1) S_{C C}$ value is given.

(${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$) distance restraints	
Total	1210
Unambiguous restraints	368
Unique (${ }^{13} \mathrm{C},{ }^{13} \mathrm{C}$) pairs involved	208
Intraresidue	68
Sequential	33
Medium-range	37
Long-range	70
Ambiguous restraints	842
Unique ($\left.{ }^{13} \mathrm{C},{ }^{13} \mathrm{C}\right)$ pairs involved	1186
Intraresidue	170
Sequential	174
Medium-range	249
Long-range	593
Distance violations (>0.5 A)	0
Dihedral angle restraints	92
Dihedral violations ($>5^{\circ}$)	2
Energies (kcal/mol)	
Total	1098.6 ± 4.2
CHHC	28.0 ± 1.3
Dihedral	11.6 ± 2.1
Coordinate precision and accuracy (residues 1-70)	
Average RMSD to mean coordinates (\AA)	
Backbone atoms	0.49
Heavy atoms	0.87
Average RMSD to 1UBQ coordinates (Å)	
Backbone atoms	1.79
Heavy atoms	2.54
Ramachandran statistics (excluding Pro,Gly)	
Residues in most favored regions (\%)	86.7
Residues in allowed regions (\%)	9.4
Residues in generously allowed regions (\%)	2.6
Residues in disallowed regions (\%)	1.4

Table SI 2: Structural statistics for the 10 calculated Ubi-P structures with lowest overall energy. The residue difference $i-j$ of two nuclei involved in medium-range distance restraints is $2 \leq i-j \leq 4$ and i $j \geq 5$ for long-range restraints.

Correlation			Comment
13 ILE CB	-	33 LYS CD	Ile13 ($\mathrm{C} \alpha, \mathrm{C} \beta) \mathrm{S}_{\mathrm{CC}}<0.85$; mobile Lys sidechain
19 PRO CA	-	56 LEU CB	
19 PRO CB	-	57 SER CA	
19 PRO CB	-	57 SER CB	
22 THR CB	-	24 GLU CB	
22 THR CB	-	53 GLY CA	Gly53 possibly mobile
26 VAL CA	-	29 LYS+CG	mobile Lys sidechain
26 VAL CA	-	29 LYS+ CD	mobile Lys sidechain
33 LYS + CG	-	34 GLU CG	Glu34 ($\mathrm{C} \alpha, \mathrm{C} \beta$) $\mathrm{S}_{\mathrm{cc}}<0.85$; mobile Lys sidechain (Lys33 (C $\gamma, \mathrm{C} \delta$) correlation not found in (2Q,1Q) spectra)
57 SER CA	-	57 SER CB	

Table SI 3: List of non-methyl $\left({ }^{13} \mathrm{C},{ }^{13} \mathrm{C}\right)$ correlations expected in the Ubi-P CHHC spectrum with 180 μ s mixing time (associated $\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)$ distance in the crystal structure (PDB: 1UBQ) below $3.5 \AA$) but absent from the spectrum. Right column indicates for which of these mobile moieties are (possibly) involved (red or gray bars in Fig. SI 5).

References

(1) Ulrich, E. L.; Akutsu, H.; Doreleijers, J. F.; Harano, Y.; Ioannidis, Y. E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; Nakatani, E.; Schulte, C. F.; Tolmie, D. E.; Wenger, R. K.; Yao, H.; Markley, J. L. Nucleic Acids Research 2007, 36, D402-D408.
(2) Wei, Y. F.; Lee, D. K.; Ramamoorthy, A. Journal of the American Chemical Society 2001, 123, 6118-6126.
(3) Sun, H. H.; Sanders, L. K.; Oldfield, E. Journal of the American Chemical Society 2002, 124, 5486-5495.
(4) Yao, X. L.; Hong, M. Journal of the American Chemical Society 2002, 124, 2730-2738.
(5) Hohwy, M.; Rienstra, C. M.; Jaroniec, C. P.; Griffin, R. G. Journal of Chemical Physics 1999, 110, 7983-7992.
(6) Lorieau, J. L.; McDermott, A. E. Journal of the American Chemical Society 2006, 128, 11505-11512.
(7) Seidel, K.; Etzkorn, M.; Heise, H.; Becker, S.; Baldus, M. ChemBioChem 2005, 6, 16381647.
(8) Manolikas, T.; Herrmann, T.; Meier, B. H. Journal of the American Chemical Society 2008, 130, 3959-3966.
(9) Willard, L.; Ranjan, A.; Zhang, H. Y.; Monzavi, H.; Boyko, R. F.; Sykes, B. D.; Wishart, D. S. Nucleic Acids Research 2003, 31, 3316-3319.
(10) DeLano, W. L. DeLano Scientific, Palo Alto, CA, USA 2002.

