A PGSE-NMR study of molecular self-diffusion in lamellar phases doped with polyoxometalates

Andreas S. Poulos¹, Doru Constantin¹, Patrick Davidson^{1,*}, Marianne Impéror¹, Patrick Judeinstein^{1,2}, Brigitte Pansu¹

Supplementary Information

Supporting Information Available:

Figure S1 of the ^{31}P NMR spectrum of a doped L_{α} phase.

Figure S2 of the ³¹P PGSE-NMR decays.

This information is available free of charge via the Internet at http://pubs.acs.org/

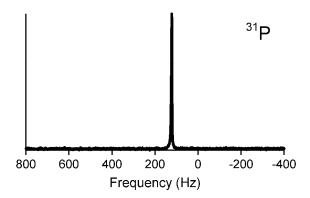


Figure S1: ^{31}P NMR spectrum of a doped L_{α} phase. The width of the $PO_4{}^{3-}$ peak is approximately 3 Hz.

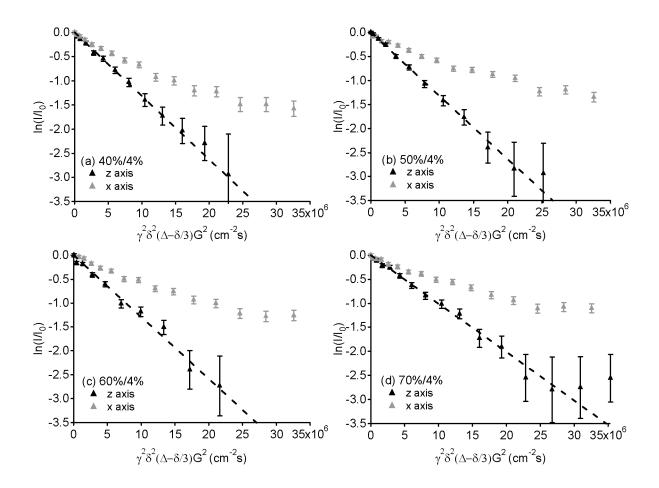


Figure S2: ³¹P PGSE-NMR decays for aligned samples with $\phi_{POM} = 3.5\%$ and A) $\phi_{Surf} = 40\%$, B) $\phi_{Surf} = 50\%$, C) $\phi_{Surf} = 60\%$, and D) $\phi_{Surf} = 70\%$. The black triangles correspond to a gradient applied along the z-axis direction, and the grey triangles along the x- or y-axis directions (Diffusion time $\Delta = 50$ ms). The diffusion anisotropy is clearly demonstrated by the change of gradient. The dotted lines are linear fits to the data using the Stejskal-Tanner equation.