Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase

Kirk E. Hevener ${ }^{\dagger \pi}$, Mi-Kyung Yunin, Jianjun Qi ${ }^{\dagger}$, Iain D. Kerr ${ }^{\dagger}$, Kerim Babaoglu ${ }^{\ddagger}$, Julian G. Hurdle ${ }^{\dagger}$, Kanya Balakrishna ${ }^{\dagger}$, Stephen W. White*, Richard E. Lee ${ }^{\dagger \neq *}$
† Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 847 Monroe Ave, Rm327 Johnson Bldg, Memphis, TN 38163

* Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000,Memphis, TN 38105.
† Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, TN 38105
§ Department of Molecular Sciences, University of Tennessee Health Science Center, 658 Madison Ave, G01 Molecular Science Bldg, Memphis, TN 38163

』 These authors contributed equally to this work

* Authors to whom correspondence should be addressed.

SWW: Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105. Tel: (901) 595 3040; Email: stephen.white@stjude.org

REL: Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000,Memphis, TN 38105. Tel: (901) 595 6617; Email: Richard.Lee@stjude.org

Figure S1 UNITY pharmacophore filters applied to DHPS. a) Surface volume constraint. b) Donor and Acceptor Constraints

Figure S2 Unity query \# 1, Maybridge database. .. 4
Figure S3 Unity query \#2, NCI database. ... 4
Scheme S1 Synthetic Scheme and methods for compounds 2 and 4............................... 5
Table S1 Statistics of data collection. ... 9
Table S2 Statistics of refinement .. 10

b

Figure S1 UNITY pharmacophore filters applied to DHPS. a) Surface volume constraint.
b) Donor and Acceptor Constraints.

Figure S2 Unity query \# 1, Maybridge database.

Figure S3 Unity query \#2, NCI database.

Scheme S1

Conctons anc reaçents a $\mathrm{CH}_{3} \mathrm{NHNH}_{2} \mathrm{H}_{2} \mathrm{O}$ ref ux 3 h k Nethy oxa acet c Acc Dethy Ester $\mathrm{H}_{2} \mathrm{O}$ ref ux 3h c (1) $5 \% \mathrm{NaOH}$ THF RT overn çht (2) 1 NHC c $\mathrm{NaHS}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} 135^{\circ} \mathrm{C} 6 \mathrm{he} \mathrm{CH} 331 \mathrm{NNaOH} 50 \% \mathrm{EtOH}$ RT 3h f $\mathrm{NaNO}_{2} \mathrm{H}_{2} \mathrm{O} 40^{\circ} \mathrm{C} 2 \mathrm{NAcOH} 2 \mathrm{~h}$ c NaH DNSO RT $70 \mathrm{~h} \mathrm{~h} 55 \% \mathrm{NH}_{2} \mathrm{NH}_{2} \mathrm{NeOH}$ ref ux 4 h NeOH ref ux 20h (1) 05 NNaOH RT overn çht (2) 1 NHC

Scheme S1 Synthesis scheme utilized in the synthesis of the known DHPS inhibitors 2 \&4.

Synthesis Methods

General Methods: The reactions were monitored by thin layer chromatography (TLC) on pre-coated Merck $60 \mathrm{~F}_{254}$ silica gel plates and visualized by UV detection. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ARX-300 or Varian INOVA-500 spectrometers. Chemical shifts are reported in ppm (δ) relative to residual solvent peak or internal standard (tetramethylsilane) and coupling constants (J) are reported in hertz (Hz). Mass spectra were recorded on a Bruker Esquire LC/MS using ESI.

The synthesis schemes for compounds $\mathbf{2} \& \mathbf{4}$ is described in Scheme S1, the experimental methods and analytical data follows:

2-amino-6-(1-methylhydrazinyl)pyrimidin-4(3H)-one (i)

To a mixture of 2-Amino-4-chloro-6-hydroxypyrimidine ($3.50 \mathrm{~g}, 24.14 \mathrm{mmol}$) in water (180 ml) was added methylhydrazine $(5.40 \mathrm{~g}, 117.14 \mathrm{mmol}$) and refluxed for 3 h . The reaction solution was cooled to room temperature and filtered to give crystal i, 3.30g, yield 88.2%. ${ }^{1} \mathrm{HNMR}$ (DMSO-do, 300MHz) $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{ss}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{CNMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 75 \mathrm{MHz}\right) \delta 165.86,163.10,154.21,92,75.84 . \mathrm{MS}(E S I): 178.2\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.

Ethyl 2- (7-amino-1-methyl-4,5-dioxo-1,4,5,6-tetrahydropyrimido (4,5-c) pyridazin-3-yl) propanoate (ii)
To a mixture of $\mathbf{i}(3.00 \mathrm{~g}, 19.35 \mathrm{mmol})$ in water $(150 \mathrm{ml})$ was added Methyloxalacetic Acid Diethyl Ester ($7.80 \mathrm{~g}, 38.61 \mathrm{mmol}$). The reaction mixture was refluxed for 3 h , then cooled to $70^{\circ} \mathrm{C}$ and filtered to give white solid 62.98 g, yield 52.6%. ${ }^{1} \mathrm{HNMR}$ (DMSO-d, 300 MHz) δ $10.9(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=\mathrm{Hz}), 3.78(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.15$ ($3 \mathrm{H}, \dagger, \mathrm{J}=7.5 \mathrm{~Hz}$). MS (ESI): $316.3\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.

2-(7-amino-1-methyl-4,5-dioxo-1,4,5,6-tetrahydropyrimido(4,5-c)pyridazin-3-yl)propanoic acid (2)

To a solution of ii $(0.3 \mathrm{~g}, 1.02 \mathrm{mmol})$ in $\mathrm{THF}(10 \mathrm{ml})$ was added $5 \% \mathrm{NaOH}$ solution (7 ml) at RT and stirred overnight, followed by solvent evaporation. The resulting solution was acidified with 1 N HCl to $\mathrm{pH} 4 \sim 5$ and filtered to give white solid 2 239mg, yield 88.5\%. ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta 10.96(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, 3 \mathrm{H}$, J=7.0Hz). ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 173.68,166.78,159.42,157.44,155.38,154.42$, 100.68, 40.88, 40.00, 14.17. MS (ESI): 288 ($\mathrm{M}^{+}+\mathrm{Na}$)

2-amino-6-(methylthio)pyrimidin-4(3H)-one (iv)

To a solution of 2-Amino-4-chloro-6-hydroxypyrimidine (3.0g, 21mmol) in ethane-1,2-diol (12 ml) was added NaHS ($4.8 \mathrm{~g}, 86 \mathrm{mmol}$), and slowly heated to $135^{\circ} \mathrm{C}$ and stirred for 6 h . After cooling to RT, 30 ml of E†OH and 15 ml of acetic acid were added, and stirred overnight at RT. The reaction mixture was filtered, washed with E†OH to give yellow solid iii 3.1 g which was directly used in the next step reaction without further purification. To a solution of above product (21 mmol) in 1 N NaOH (18 ml) and $50 \% \mathrm{EtOH}$ (60 ml) was added $\mathrm{CH}_{3} \mathrm{l}$ ($3.1 \mathrm{~g}, 22 \mathrm{mmol}$) and stirred for 3 h at RT, filtered, the solid was washed with water to give yellow solid iv 2.03 g , yield 62.4%. ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta 10.56(1 \mathrm{H}$, s), $6.58(2 \mathrm{H}, \mathrm{s}), 5.36(1 \mathrm{H}, \mathrm{s}), 2.32(3 \mathrm{H}, \mathrm{s}) . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 158\left(\mathrm{M}^{+}+1\right)$.

2-amino-6-(methylthio)-5-nitrosopyrimidin-4(3H)-one (v)
A mixture of iv $(1.59 \mathrm{~g}, 10.13 \mathrm{mmol})$ and $\mathrm{NaNO}_{2}(1.55 \mathrm{~g}, 22.46 \mathrm{mmol})$ in water (30 ml) was stirred at $40^{\circ} \mathrm{C}$ to allow for disolution. Then to this mixture was added $2 \mathrm{~N} \mathrm{AcOH}(15 \mathrm{ml})$ slowly maintaining the temperature at $40^{\circ} \mathrm{C}$. The reaction mixture was then kept stirring for 2 h at $40^{\circ} \mathrm{C}$, cooled to RT, filtered, washed with water to give blue solid $\mathbf{v} 1.78 \mathrm{~g}$, yield 94.7\%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 300 \mathrm{MHz}$) $\delta 11.61$ ($1 \mathrm{H}, \mathrm{s}$), 8.71 ($1 \mathrm{H}, \mathrm{s}$), 7.38 ($1 \mathrm{H}, \mathrm{s}$), 2.26 ($3 \mathrm{H}, \mathrm{s}$). MS (ESI) m/z: $185\left(\mathrm{M}^{-}\right)$.

Methyl 4-(3-($1,3-d i o x o i s o i n d o l i n-2-y l) p r o p o x y) b e n z o a t e ~(v i) ~$

400 mg ($90 \%, 66.67 \mathrm{mmol}$) of NaH was slowly added to DMSO (20ml). To this basic reaction solution was added a solution of Methyl 4-hydroxybenzoate ($2.28 \mathrm{~g}, 15 \mathrm{mmol}$) in DMSO (15 ml) and stirred for 3 h at RT. Then a solution of N -(3-Bromopropyl) phthalimide (4.0 g , 15 mmol) in DMSO (13 ml) was added dropwise at RT. The reaction mixture was kept stirring for 70h, quenched the reaction solution with water, filtered, washed with water
to give white solid vi, 4.54g, yield 89.3\%. ${ }^{1 H N M R}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz})$, $7.84(2 \mathrm{H}, \mathrm{dd}, \mathrm{Jl}=5.0 \mathrm{~Hz}, \mathrm{~J} 2=3.0 \mathrm{~Hz})$) 7.72 ($2 \mathrm{H}, ~ d d, ~ J 1=5.0 \mathrm{~Hz}, \mathrm{~J} 2=3.0 \mathrm{~Hz}$), 6.80 (2H, d, J=9.0Hz), $4.09(2 \mathrm{H}, \dagger, \mathrm{J}=6.5 \mathrm{~Hz}), 3.92(2 \mathrm{H}, \dagger, \mathrm{J}=6.5 \mathrm{~Hz}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.21(2 \mathrm{H}, \mathrm{m})$.

Methyl 4-(3-aminopropoxy)benzoate (vii)

To a solution of vi (340mg, 1.0 mmol) in MeOH (10 ml) was added 55% hydrazine (116 mg) and refluxed for $4 h$, then extracted with EtOAc and washed with 1 N NaOH , water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give oil vii 148 mg , yield 70.8%. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.98(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{d}, 9.0 \mathrm{~Hz}), 4.11(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.922$ (2H, t, 7.0Hz), 1.95 (2H, m), 1.28 (br, 2H). MS (ESI) m/z: $210\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Methyl 4-(3-(2-amino-5-nitroso-6-oxo-7,6-dihydropyrimidin-4-ylamino)propoxy)benzoate (viii)

To a solution of vii ($140 \mathrm{mg}, 0.67 \mathrm{mmol}$) in MeOH (12 ml) was added 10 (125 mg ,
0.67 mmol) and refluxed for 20 h , cooled to RT, and filtered, washed with MeOH to give tan powder solid 15 224mg, yield 96.3\%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 500 \mathrm{MHz}$) $\delta 12.60(1 \mathrm{H}, \mathrm{s}), 10.82$ (1H, s), 8.21 ($1 \mathrm{H}, \mathrm{s}$), 7.91 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}$), $7.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{s}), 4.11(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=6.0 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.58(2 \mathrm{H}, \mathrm{m}) 2.02(2 \mathrm{H}, \mathrm{m}), \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 346(\mathrm{M})$.

4-(3-(2-amino-5-nitroso-6-oxo-1,6-dihydropyrimidin-4-ylamino)propoxy)benzoic acid(4) $170 \mathrm{mg}(0.49 \mathrm{mmol})$ of vii was disolved in 0.5 N NaOH solution (4 ml) and stirred overnight at RT, then acidified by 1 N HCl and filtered, washed with water to give tan powder solid 16 152mg, yield 91.3\%. ${ }^{1} \mathrm{HNMR}$ (MDSO-do, 500 MHz) 12.60 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}$), 10.83 (1 H , s), $8.24(1 \mathrm{H}, \mathrm{s}), 7.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{s}), 4.09(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz})$, $3.58(2 \mathrm{H}, \mathrm{m}), 2.02(2 \mathrm{H}, \mathrm{m}) . \mathrm{MS}(E S I) \mathrm{m} / \mathrm{z}: 334\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Table S1 Statistics of data collection.

Parameter	Compound 2	Compound 3	Compound 4	Compound 5	Compound 6	Compound 7
Space group	P6222	$\mathrm{Pb}_{2} 22$	P6222	P6222	P6222	P6222
Unit cell dimensions (\AA) a, b, c	97.5, 97.5, 263.8	98.8, 98.8, 263.9	96.8, 96.8, 263.6	97.5, 97.5, 264.0	97.9, 97.9, 262.9	97.5, 97.5, 261.6
Resolution range(Å) ${ }^{\text {a }}$	50.0-2.32(2.4-2.32)	50.0-2.3(2.38-2.3)	50.0-2.1(2.18-2.1)	80.3-2.4(2.53-2.4)	84.8-2.5(2.64-2.5)	50.0-2.4(2.49-2.4)
$\mathrm{R}_{\text {sym }}{ }^{\text {ab }}$	0.057(0.206)	0.070(0.208)	$0.094(0.347)$	0.065(0.280)	0.091 (0.281)	0.087(0.171)
$1 / \square^{\text {a }}$	40.0(4.7)	35.9(9.6)	29.7(2.0)	23.0(6.3)	19.6(4.6)	33.9(11.5)
Completeness(\%) ${ }^{\text {a }}$	92.2(57.6)	89.0(52.0)	96.5(89.6)	100.0(100.0)	98.7(92.3)	90.2(54.1)
Redundancy ${ }^{\text {a }}$	8.0(5.9)	12.3(9.4)	13.5(6.4)	10.9(11.1)	11.4(7.7)	11.1(8.7)
Unique reflectionos	30,565	30,569	41,961	30,034	26,335	27,556
Parameter	Compound 10	Compound 11	Compound 16	Compound 17	Compound 18	Compound 19
Space group	P6222	P6222	P6222	P6222	P6222	P6222
Unit cell dimensions (Å) a, b, c	97.7, 97.7, 263.6	98.1,98.1, 263.9	99.3, 99.3, 264.4	99.2, 99.2, 262.1	98.3, 98.3, 263.1	99.3, 99.3, 263.1
Resolution range(Å) ${ }^{\text {a }}$	50.0-2.4(2.49-2.4)	50.0-2.0(2.07-2.0)	50.0-2.2(2.28-2.2)	50.0-2.3(2.38-2.3)	50.0-2.4(2.49-2.4)	50.0-2.6(2.69-2.6)
$\mathrm{R}_{\text {sym }}{ }^{\text {ab }}$	$0.101(0.309)$	0.102(0.346)	0.099(0.350)	$0.113(0.326)$	$0.049(0.132)$	0.066(0.160)
$1 / \square^{\text {a }}$	19.0(1.6)	32.3(3.1)	29.4(3.6)	26.5(4.6)	47.5(10.8)	38.2(7.1)
Completeness(\%)a	88.5(58.2)	94.2(60.8)	97.7(91.7)	89.8(56.2)	91.5(57.9)	93.9(62.0)
Redundancy ${ }^{\text {a }}$	7.6(2.9)	11.5(6.7)	12.0(7.7)	10.5(6.0)	11.9(8.4)	11.9(7.2)
Unique reflectionos	26,492	48,615	39,203	30,988	27,831	22,826

a Values in parentheses refer to the highest resolution shell.
${ }^{\mathrm{b}} \mathrm{R}_{\text {sym }}=\sum \mid(1-\langle |>) \mid / \sum(1)$, where $/$ is the observed intensity.

TableS 2 Statistics of refinement.

Parameter	Compound 2	Compound 3	Compound 4	Compound 5	Compound 6	Compound 7
Resolution range(Å)	50.0-2.32	50.0-2.4	50.0-2.2	50.0-2.5	50.0-2.5	50-2.4
No. of reflection	28,987	27,239	35,180	25,244	24,997	25,876
Completeness(\%)	92.2	93.2	97.3	99.9	100.0	91.5
$R_{\text {work }} / \mathrm{R}_{\text {free }}{ }^{\text {c }}$	0.205/0.264	$0.221 / 0.268$	0.217 / 0.279	0.224 / 0.269	0.236 / 0.278	0.225 / 0.280
No. of atoms Protein	4,050	4,165	4,176	4,073	4,138	4,169
Non-protein	199	134	303	147	156	164
Mean B overall (A^{2})	61	67	53	69	47	59
Rmsd from ideal values						
Bond lengths(Å)	0.022	0.019	0.021	0.022	0.007	0.012
Bond angles(${ }^{\circ}$)	1.872	1.862	1.909	2.116	1.071	1.302
Ramanchandran plot						
Most favored region(\%)	91.4	92.3	91.5	90.7	90.9	92.5
Additional allowed	8.4	7.5	8.5	9.1	8.6	7.5
region(\%)						
Generously allowed	0.2	0.2	0.0	0.2	0.4	0.0
region(\%)						
Disallowed region(\%)	0.0	0.0	0.0	0.0	0.0	0.0

Table S2, Cont. Statistics of Refinement

[^0]
[^0]: c Rfree is the R value obtained for a test set of reflections consisting of randomly selected 5% subset of the data set excluded from refinement.

