Supporting Information

Highly Fluorescent BODIPY Dyes Modulated with Spirofluorene Moieties
Toshiyuki Kowada, Shuhei Yamaguchi, and Kouichi Ohe*
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto
University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
ohe@scl.kyoto-u.ac.jp

Experimental Section

General. Unless otherwise specified, all reagents were purchased from a chemical supplier and used without further purification. Tetrahydrofuran (THF) was distilled over benzophenone ketyl under nitrogen atmosphere. N,N-Dimethylformamide (DMF) was distilled over MS4A under nitrogen atmosphere. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried and collected using a Grubbs-type solvent purification system manufactured by Glass Contour. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a JEOL AL-300 (300 MHz for ${ }^{1} \mathrm{H}$, and 75.5 MHz for ${ }^{13} \mathrm{C}$) instrument or a JEOL EX-400 (400 MHz for ${ }^{1} \mathrm{H}$, and 100 MHz for ${ }^{13} \mathrm{C}$) instrument. IR spectra were obtained on a JASCO 460 plus FT/IR spectrometer. Mass spectra were measured with a JEOL JMS-SX102A. Analytical thin-layer chromatography (TLC) was performed on Merck 60F254 silica plates and visualized by UV light. Column chromatography was carried out on Silicycle SilicaFlash F60 60-63 $\mu \mathrm{m}$ (230-400 mesh) silica gel. Preparative HPLC was carried out with a Japan Analytical Industry Co., Ltd, LC-908 chromatograph using a JAIGEL-1H and -2H GPC columns. UV-visible absorption spectra were recorded on a JASCO V-570 UV-vis-NIR spectrometer. Emission spectra were measured with a Jobin Yvon-Horiba FluoroMax-3. Degassed spectral grade solvents were used for the measurements. Absolute fluorescence quantum yields were determined by the calibrated integrating sphere system. Cyclic voltammetry (CV) was performed on a BAS ALS 610C-S electrochemical analyzer. The CV cell consisted of a glassy carbon electrode, a Pt wire counter electrode, and an
$\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode. The measurement was carried out under argon atmosphere using solutions of samples $(1 \mathrm{mM})$ and 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ as a supporting electrolyte with a scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$. The redox potentials were calibrated with ferrocene as an internal standard.

9-(2-Bromophenyl)-9H-fluoren-9-ol (1) ${ }^{1}$

The solution of 1-bromo-2-iodobenzene ($34.9 \mathrm{~g}, 124 \mathrm{mmol}$) in dry THF (120 mL) was cooled to $-40^{\circ} \mathrm{C}$. To the solution was added dropwise 1.0 M THF solution of isopropyl magnesium bromide $(120 \mathrm{~mL})$, prepared from isopropyl bromide and magnesium turnings. After stirring for 3 h , 9-fluorenone ($14.4 \mathrm{~g}, 80.0 \mathrm{mmol}$) in dry THF (80 mL) was added over 25 min and stirred at room temperature for 12 h . The reaction mixture was quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(100 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers were combined, washed with brine $(2 \times 50 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under reduced pressure to give a mixture of white solid and yellow oil. The crude product was purified by washing with hexane and the filtrate was purified with column chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$-hexane, 1:20) to give $1(25.6 \mathrm{~g}, 95 \%)$ as a white solid; mp $145.2-146.0^{\circ} \mathrm{C}$. IR (KBr) 767, 920, 1005, 1157, 1333, 1448, 1604, 3063, $3571 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.13-7.25(\mathrm{~m}, 5 \mathrm{H})$, $7.36-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=83.0$, $120.2,120.9,123.9,127.0,128.3,129.0,129.1,129.2,134.3,140.8,141.3,148.6$.

9-(2-Bromophenyl)-9-(N -tosylpyrrol-3-yl)-9H-fluorene (2)

To a solution of $\mathbf{1}(9.72 \mathrm{~g}, 28.8 \mathrm{mmol})$ and N-tosylpyrrole $(6.94 \mathrm{~g}, 31.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ $\mathrm{mL})$ was added $\mathrm{AlCl}_{3}(4.39 \mathrm{~g}, 32.9 \mathrm{mmol})$ portionwise, and the solution was stirred at room temperature for 3 h . The reaction mixture was quenched with water (60 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layers were combined, washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under
reduced pressure to give white solid. The crude product was purified by washing with CHCl_{3}-hexane (1:1) and the filtrate was purified with column chromatography on SiO_{2} (EtOAc-hexane, 1:20) to give $2(14.5 \mathrm{~g}, 93 \%)$ as a white solid; mp $210.2-211.0^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) 605,674$, $746,1065,1101,1172,1253,1371,1464,1596 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.36(\mathrm{~s}, 3 \mathrm{H})$, $6.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.01-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.40(\mathrm{~m}, 11 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.6,60.4,115.6,119.3,120.4,121.5,123.0$, $124.7,126.76,126.81,127.4,127.5,128.6,129.9,131.8,132.1,135.4,136.0,141.1,142.1,144.9$, 149.8. HRMS (FAB): calcd for $\mathrm{C}_{30} \mathrm{H}_{23}{ }^{81} \mathrm{BrNO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 542.0616, Found 542.0609.

1'-Tosylspiro[fluorene-9,4'(1'H)-indeno[1,2-b]pyrrole (3a) and 2^{\prime}-Tosylspiro[fluorene-9,4'(2'H)-indeno[1,2-c]pyrrole (3b)

A flame dried flask was charged with $2(14.5 \mathrm{~g}, 26.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(7.57 \mathrm{~g}, 54.8 \mathrm{mmol})$, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(930 \mathrm{mg}, 0.805 \mathrm{mmol})$, and dry DMF $(200 \mathrm{~mL})$ under nitrogen atmosphere. The solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was cooled down to room temperature and filtered through a short silica gel pad. After an addition of water $(150 \mathrm{~mL})$, the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layers were combined, washed with brine $(7 \times 50 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under reduced pressure to give a mixture of white solid and brawn oil. The crude product was purified by washing with CHCl_{3}-hexane (1:1) to give 3a $(7.77 \mathrm{~g}, 63 \%)$ as a white solid. The residue was purified with GPC $\left(\mathrm{CHCl}_{3}\right)$ to afford $\mathbf{3 b}(739 \mathrm{mg}$, 6%) as a white solid.

3a: A white solid; mp 256.5-257.3 ${ }^{\circ} \mathrm{C}$. IR (KBr) 670, 699, 749, 1113, 1173, 1192, 1380, 1446, 1462, $1596,3128 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 5.86(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=7.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta 21.6,60.2,108.7,119.5,120.0,123.5,123.6,125.7$, $126.76,126.81,127.6,127.7,127.8,130.0,134.0,135.9,138.2,139.9,141.8,145.1,146.4,152.5$. S3

HRMS (FAB): calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right), 460.1371$, Found 460.1364 .

3b: A white solid; mp 212.7-213.6 ${ }^{\circ} \mathrm{C}$. IR (KBr) 673, 752, 1053, 1089, 1166, 1187, 1362, 1446, 1595, $3063 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.39(\mathrm{~s}, 3 \mathrm{H}), 6.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{dd}, J=7.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.26$ $(\mathrm{m}, 3 \mathrm{H}), 7.32-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 21.6,60.4,110.0,113.5,119.9,121.4,124.1,124.3,126.8,127.4$, $127.69,127.72,127.8,129.9,135.3,135.4,136.1,138.7,140.8,144.8,149.6,153.2$ HRMS (FAB): calcd for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right), 460.1371$, Found 460.1382.

Spiro[fluorene-9,4'(1'H)-indeno[1,2-b]pyrrole (sp-FIP)

To a solution of $\mathbf{3 a}(7.52 \mathrm{~g}, 16.4 \mathrm{mmol})$ in THF $(300 \mathrm{~mL})$ and $\mathrm{MeOH}(100 \mathrm{~mL})$ was added 10% aqueous solution of $\mathrm{NaOH}(66 \mathrm{~mL})$, and the solution was stirred at $65^{\circ} \mathrm{C}$ for 3 h . After cooling to ambient temperature, MeOH was removed under reduced pressure and the residue was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under reduced pressure to give brawn solid. The crude product was purified by washing with CHCl_{3}-hexane (1:1) and the filtrate was purified with column chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}$-hexane, $1: 15)$ to give sp-FIP $(4.96 \mathrm{~g}, 99 \%)$ as a pale blue solid; $\mathrm{mp} 183.5-184.5^{\circ} \mathrm{C}$. IR (KBr) 748, 1444, 1606, 3060, $3414 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.79(\mathrm{dd}, J=1.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.86(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{dd}$, $J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=7.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.41$ (br s, 1H). ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=60.7,103.9,115.8,119.8,121.9,123.6,123.8,124.3$, 127.0, 127.4, 127.5, 133.7, 135.4, 137.8, 141.7, 148.5, 153.0. HRMS (FAB): calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right), 306.1283$, Found 306.1288.

A typical procedure for synthesis of 4a-e.

To a solution of sp-FIP ($611 \mathrm{mg}, 2.00 \mathrm{mmol}$) and aldehyde (1.00 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$
was added two drops of TFA, and the solution was stirred at room temperature for $2-6 \mathrm{~h}$ under nitrogen atmosphere. The reaction mixture was quenched with 5% aqueous solution of $\mathrm{NaHCO}_{3}(25$ $\mathrm{mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with brine $(2 \times 15 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc}-$ hexane, 1:15) to afford 4.

4a: A purple solid (86% yield); $\mathrm{mp}>300^{\circ} \mathrm{C}$. IR (KBr) 729, 747, 1280, 1338, 1444, 1474, 1520, 1604, $3059,3436 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.90(\mathrm{~s}, 6 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.65$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.85$ (m, 6H), 7.07-7.19 (m, 10H), 7.32 (dd, $J=7.3,7.3$ $\mathrm{Hz}, 4 \mathrm{H}$), $7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.15(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=40.5,44.6,60.9$, 103.1, 112.6, 115.6, 119.8, 123.6, 123.8, 123.9, 126.9, 127.3, 127.5, 129.0, 129.2, 133.6, 135.5, 137.2, 137.7, 141.6, 148.5, 149.5, 152.5. HRMS (FAB): calcd for $\mathrm{C}_{55} \mathrm{H}_{40} \mathrm{~N}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 742.3222 , Found 742.3237.

4b: A bluish purple solid (quantitative yield); $\mathrm{mp}>300^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}) 729,747,1031,1175,1250,1445$, $1474,1509,1605,3060,3419 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.76(\mathrm{~s}, 3 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.51$ $(\mathrm{s}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.86(\mathrm{~m}, 8 \mathrm{H}), 7.08-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.32(\mathrm{dd}, J=7.3,7.7 \mathrm{~Hz}$, $4 \mathrm{H}), 7.78$ (d, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}$), 8.17 (br s, 2H). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=44.8,55.2,60.9$, 103.3, 114.1, 115.7, 119.8, 123.67, 123.74, 124.1, 127.0, 127.4, 127.5, 129.5, 133.4, 133.7, 135.4, 137.1, 137.4, 141.7, 148.4, 152.6, 158.6. HRMS (FAB): calcd for $\mathrm{C}_{54} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right), 729.2906$, Found 729.2916.

4c: A bluish purple solid (66% yield); $\mathrm{mp}>300^{\circ} \mathrm{C}$. IR (KBr) 728, 746, 1280, 1444, 1474, 1510, 1605, $3058,3410 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.30(\mathrm{~s}, 3 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.85(\mathrm{~m}, 6 \mathrm{H}), 7.08-7.21(\mathrm{~m}, 12 \mathrm{H}), 7.33(\mathrm{dd}, J=7.3,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.78(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 4 \mathrm{H}$), 8.17 (br s, 2H). ${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}): $\delta=21.0,45.2,60.9,103.3,115.7$, 119.8,
123.6, 123.8, 124.1, 127.0, 127.4, 127.5, 128.4, 129.4, 133.6, 135.4, 136.7, 137.0, 137.4, 138.4, 141.7, 148.4, 152.6. HRMS (FAB): calcd for $\mathrm{C}_{54} \mathrm{H}_{37} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 713.2957, Found 713.2977.

4d: A bluish purple solid (54% yield); $\mathrm{mp}>300^{\circ} \mathrm{C}$. IR (KBr) 728, 746, 1280, 1444, 1486, 1606, 3059, $3411 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.41(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.78-6.84(\mathrm{~m}, 6 \mathrm{H}), 7.05-7.37(\mathrm{~m}, 16 \mathrm{H}), 7.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.18(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=45.0,60.9,103.6,115.8,119.9,121.0,123.6,123.7,124.3,127.0,127.46,127.55,130.2$, 131.7, 133.8, 135.3, 136.1, 137.7, 140.4, 141.7, 148.2, 152.6. HRMS (FAB): calcd for $\mathrm{C}_{53} \mathrm{H}_{33}{ }^{79} \mathrm{BrN}_{2}$ $\left(\mathrm{M}^{+}\right)$, 776.1827, Found 776.1838.

4e: A pale purple solid (70% yield); $\mathrm{mp}>300^{\circ} \mathrm{C}$. IR (KBr) 747, 1104, 1281, 1444, 1608, 1720, 3056, $3415 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.86(\mathrm{~s}, 3 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.65-6.85(\mathrm{~m}, 6 \mathrm{H}), 7.09-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.92(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 8.27 (br s, 2 H). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=45.6,52.1,60.9,103.7$, 115.8, 119.9, 123.6, 123.7, 124.4, 127.1, 127.5, 127.6, 128.5, 129.0, 130.0, 133.8, 135.2, 135.7, 137.8, 141.7, 146.6, 148.2, 152.6, 166.7. HRMS (FAB): calcd for $\mathrm{C}_{55} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 757.2855, Found 757.2858.

A typical procedure for synthesis of BODIPY dyes 5a-e.

To a solution of $\mathbf{4 a - e}(0.52 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise DDQ $(119 \mathrm{mg}$, $0.52 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the solution was stirred at room temperature for 1 h under nitrogen atmosphere. $\mathrm{Et}_{3} \mathrm{~N}(0.42 \mathrm{~mL}, 3.01 \mathrm{mmol})$ was then added, followed by an addition of 47% of $\mathrm{BF}_{3} \cdot \mathrm{OEt}(0.83 \mathrm{~mL}, 3.05 \mathrm{mmol})$. After stirring for 3 h , the reaction mixture was quenched with water $(20 \mathrm{~mL})$. The organic layer was washed with brine $(2 \times 20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CHCl}_{3}\right.$-hexane, 1:3) to afford $\mathbf{5 a - e}$.

5a: A purple solid (59\% yield); mp $>300^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}) 747,1068,1098,1196,1268,1338,1364,1402$, $1464,1556,1601 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.87(\mathrm{~s}, 6 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{dd}, J=7.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.49(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=40.0,59.8,111.3,120.0,120.6,121.9,124.08,124.12$, 124.2, 127.9 (two peaks are overlapped), 128.6, 129.9, 132.2, 132.9, 140.8, 141.3, 142.5, 143.5, 148.4, 151.6, 156.3, 160.2. HRMS (FAB): calcd for $\mathrm{C}_{55} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{~F}_{2} \mathrm{~B}\left(\mathrm{M}^{+}\right)$, 787.2980, Found 787.2959.

5b: A dark brown solid (73\% yield); mp >300 ${ }^{\circ} \mathrm{C}$. IR (KBr) 756, 1034, 1065, 1096, 1200, 1263, 1334, $1402,1447,1469,1552,1603 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.69(\mathrm{~s}, 3 \mathrm{H}), 6.22(\mathrm{~s}, 2 \mathrm{H}), 6.63$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=7.6,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.50(\mathrm{dd}, J=7.6,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H})$, $8.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.3,59.7,113.7,120.0,120.6,124.17$, $124.21,124.3,126.5,127.9,128.0,128.7,130.4,131.9,132.6,141.1,141.3,142.1,142.9,148.2$, 156.6, 161.0, 161.3. HRMS (FAB): calcd for $\mathrm{C}_{54} \mathrm{H}_{34} \mathrm{ON}_{2} \mathrm{~F}_{2} \mathrm{~B}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 775.2741, Found 775.2733.

5c: A dark brown solid (61% yield); $\mathrm{mp}>300^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}) 756,1065,1097,1200,1262,1334,1402$, 1447, 1469, 1553, $1602 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.24(\mathrm{~s}, 3 \mathrm{H}), 6.20(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.36(\mathrm{dd}, J=7.3$, $7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.51(\mathrm{dd}, J=7.6,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=21.2,59.7,120.0,120.7,124.17,124.23,124.3,127.9,128.0,128.7$, $128.8,130.3,130.4,131.2,132.5,140.1,141.1,141.3,142.4,143.0,148.2,156.7,161.5$. HRMS (FAB): calcd for $\mathrm{C}_{54} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{~F}_{2} \mathrm{~B}\left(\mathrm{M}^{+}\right)$, 758.2714, Found 758.2708.

5d: A dark brown solid (59\% yield); $\mathrm{mp}>300^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}) 738,761,1065,1096,1196,1262,1333$, $1401,1447,1469,1552,1601 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=6.15(\mathrm{~s}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
$2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.37(\mathrm{dd}, J=7.1,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51(\mathrm{dd}, J=7.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=59.7,120.1,120.2,124.1,124.2,124.3,124.4,127.9,128.1,128.8,130.8,131.4$, $131.8,132.3,132.9,140.3,140.8,141.3,143.5,148.1,156.8,162.0$. HRMS (FAB): calcd for $\mathrm{C}_{53} \mathrm{H}_{31} \mathrm{~N}_{2}{ }^{79} \mathrm{BrF}_{2} \mathrm{~B}\left(\mathrm{M}+\mathrm{H}^{+}\right), 823.1741$, Found 823.1718.

5e: A purple solid (59% yield); $\mathrm{mp}>300^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}) 758,1065,1097,1268,1335,1553,1726 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.82(\mathrm{~s}, 3 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 4 \mathrm{H}), 7.13-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.51(\mathrm{dd}, J=7.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $4 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.2,59.7$, $120.1,120.2,124.1,124.3,124.5,127.9,128.1,128.8,129.3,130.3,130.8,131.1,132.3,138.4,140.3$, $140.8,141.3,143.6,148.1,156.9,162.2,166.1$. HRMS (FAB): calcd for $\mathrm{C}_{55} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~F}_{2} \mathrm{~B}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 803.2691, Found 803.2702.

Synthesis of compound 6.

3-(2-(2-Bromophenyl)propan-2-yl)-N-tosylpyrrole (10)

To the mixture of N-tosylpyrrole ($3.32 \mathrm{~g}, 15.0 \mathrm{mmol}$) and 2-(2-bromophenyl)propan-2-ol ${ }^{2}$ (4.84 g , $22.5 \mathrm{mmol})$ was added $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}(20 \mathrm{~mL})$, and the solution was stirred at room temperature for 4 h .

The reaction mixture was diluted with cold water $(80 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 15 \mathrm{~mL})$. The organic layers were combined, washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under reduced pressure, and the residue was purified with $\mathrm{GPC}\left(\mathrm{CHCl}_{3}\right)$ to afford $10(666 \mathrm{mg}, 11 \%)$ as a pale yellow oil; mp $97.8-98.7{ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}) 589,681,803,1058,1173,1357,1596,2964 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=1.67(\mathrm{~s}, 6 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 5.91(\mathrm{dd}, J=1.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02-7.07 (m, 2H), 7.24-7.29 (m, 3H), $7.44(\mathrm{dd}, J=1.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=1.8,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.6,29.7,40.0,113.6,117.5,120.9,123.7$, 126.7, 127.2, 128.0, 129.7, 135.5, 136.5, 138.3, 144.6, 146.0. HRMS (FAB): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}^{81} \mathrm{BrS}\left(\mathrm{M}+\mathrm{H}^{+}\right), 420.0457$, Found 420.0451.

4,4-Dimethyl-1-tosyl-1,4-dihydroindeno[1,2-b]pyrrole (11)

A flame dried Schlenk flask was charged with $10(604 \mathrm{mg}, 1.44 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(399 \mathrm{mg}, 2.88$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50.2 \mathrm{mg}, 0.0434 \mathrm{mmol})$, and dry DMF $(15 \mathrm{~mL})$ under nitrogen atmosphere. The solution was stirred at $100{ }^{\circ} \mathrm{C}$ for 13 h . The reaction mixture was cooled down to room temperature and filtered through a short silica gel pad. After an addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, the filtrate was washed with 10% aqueous solution of $\mathrm{NaCl}(5 \times 40 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under reduced pressure to give a pale brawn solid. The crude product was purified by GPC $\left(\mathrm{CHCl}_{3}\right)$ to give $11(254 \mathrm{mg}, 52 \%)$ as a colorless oil. IR (neat) $539,768,1051,1363,1597,2359,2964$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.36(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 6.31(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.32$, $(\mathrm{m}, 6 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=21.6$, $25.8,42.0,107.7,119.4,122.2,124.8,125.9,126.7,127.0,130.0,132.2,134.4,136.1,144.8,145.9$, 157.1. HRMS (FAB): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}\left(\mathrm{M}^{+}\right)$, 337.1137, Found 337.1130.

4,4-Dimethyl-1,4-dihydroindeno[1,2-b]pyrrole (12)

To a solution of $\mathbf{1 1}(253 \mathrm{mg}, 0.750 \mathrm{mmol})$ in THF (7 mL) and $\mathrm{MeOH}(3.5 \mathrm{~mL})$ was added 10%
aqueous solution of $\mathrm{NaOH}(3 \mathrm{~mL})$, and the solution was stirred at $65^{\circ} \mathrm{C}$ for 7 h . After cooling to ambient temperature, the reaction mixture was diluted with cold water (10 mL) and MeOH was removed under reduced pressure. The residue was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The organic layers were combined, washed with brine $(2 \times 20 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on SiO_{2} (EtOAc-hexane, 1:3) to afford $\mathbf{1 2}$ ($101 \mathrm{mg}, 73 \%$) as a pale blue solid; $\mathrm{mp} 130.6-131.3^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr})$ $711,754,1063,1454,1610,2959,3370 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=1.45(\mathrm{~s}, 6 \mathrm{H}), 6.21(\mathrm{dd}$, $J=1.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=2.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=26.6,42.4,102.9,115.9,121.2,122.5$, 123.6, 126.4, 133.5, 134.0, 140.4, 157.5. HRMS (FAB): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 184.1126, Found 184.1122.

BODIPY Dye 6

To a solution of $\mathbf{1 2}(94.8 \mathrm{mg}, 0.517 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added two drops of TFA, and the solution was stirred at room temperature for 2 h under nitrogen atmosphere. The reaction mixture was quenched with saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 5 \mathrm{~mL})$. The organic layers were combined, washed with brine $(2 \times 20 \mathrm{~mL})$, and dried over MgSO_{4}. The solvents were removed under reduced pressure, and the residue was partially purified with column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane, $\left.4: 1\right)$ to afford a crude product $(49.7 \mathrm{mg})$ as a blue solid. The crude product was then dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. After an addition of DDQ ($23.8 \mathrm{mg}, 0.105 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, the solution was stirred at room temperature for 1 h under nitrogen atmosphere. $i \operatorname{Pr}_{2} \mathrm{NEt}_{2}(0.105 \mathrm{~mL}, 0.603 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.165 \mathrm{~mL}, 0.606$ mmol) were successively added and after 4 h , the reaction mixture was washed with 10% aqueous solution of $\mathrm{NaCl}(4 \times 20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed under reduced pressure, and the residue was partially purified with column chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane, 1:3) to afford $\mathbf{6}$ ($30.1 \mathrm{mg}, 56 \%$) as a dark brawn solid; $\mathrm{mp}>300^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}) 759,1060,1088,1278$,

1335, 1552, 1603, $2966 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.47(\mathrm{~s}, 12 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=27.1,41.9,55.5,113.8,119.3,122.7,124.2,127.2,127.9,129.7,130.8$, 132.0, 140.6, 141.1, 148.6, 158.8, 160.87, 160.91. HRMS (FAB): calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{ON}_{2} \mathrm{~F}_{2} \mathrm{~B}\left(\mathrm{M}^{+}\right)$, 530.2347, Found 530.2351.

References

1) Arts, H. J.; Kranenburg, M.; Meijers, R. H. A. M.; Ijpeij, E. G.; Gruter, G. J. M.; Beijer, F. H. EP1059300 (A1) 2000.
2) Sigmundová, I.; Uhlár, J.; Toma, Š. Synth. Commun. 2004, 34, 3667-3672.

Data of X-ray crystallographic analysis:

3a

Figure S1. ORTEP drawings of 3a.

Table S1. Crystal data and structure refinement for 3a

Empirical Formula	C30 H21 N O2 S
Formula Weight	459.56
Temperature (${ }^{\circ} \mathrm{C}$)	-120
Crystal Color, Habit	colorless, block
Crystal Dimensions	$0.40 \times 0.40 \times 0.20 \mathrm{~mm}$
Crystal System	triclinic
Lattice Parameters	$\mathrm{a}=10.327(4) \AA \quad \alpha=75.268(15)^{\circ}$
	$b=10.808(5) \AA$ ¢ ${ }^{\text {a }}$
	$\mathrm{c}=11.555(4) \AA$ ¢ ${ }^{\text {a }}$
	$\mathrm{V}=1133.3(8) \AA^{3}$
Space Group	P-1 (\#2)
Z value	2
$\mathrm{D}_{\text {calc }}$	$1.347 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{F}(000)$	480.00
$\mu(\mathrm{MoK} \alpha)$	$1.719 \mathrm{~cm}^{-1}$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71070 \AA)$
	graphite monochromated
2θ max	61.8°
No. of Reflections Measured	Total: 10126
	Unique: $5815\left(\mathrm{R}_{\mathrm{int}}=0.027\right)$
Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F^{2}
No. Observations (All reflections)	5815
No. Variables	391
Reflection/Parameter Ratio	14.87
Residuals: R_{1} ($\mathrm{I}>2.00 \sigma(\mathrm{I})$)	0.0470
Residuals: $w R_{2}$ (All reflections)	0.0762
Goodness-of-fit on F^{2}	1.097
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.38 \mathrm{e}^{-/ / \AA^{3}}$
Minimum peak in Final Diff. Map	$-0.60 \mathrm{e}^{-} / \mathrm{A}^{3}$

3b

Figure S2. ORTEP drawings of $\mathbf{3} \mathbf{b}$.

Table S2. Crystal data and structure refinement for 3b

Empirical Formula	C30 H21 N O2 S
Formula Weight	459.56
Temperature (${ }^{\circ} \mathrm{C}$)	-120
Crystal Color, Habit	colorless, block
Crystal Dimensions	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Parameters	$\mathrm{a}=12.330(4) \AA$
	$\mathrm{b}=8.447(3) \AA \quad \beta=95.906(4)^{\circ}$
	$\mathrm{c}=21.697(7) \AA$
	$\mathrm{V}=2247.6(13) \AA^{3}$
Space Group	$P 2_{1} / a(\# 14)$
Z value	4
$\mathrm{D}_{\text {calc }}$	$1.358 \mathrm{~g} / \mathrm{cm}^{3}$
F(000)	960.00
$\mu(\mathrm{MoK} \alpha)$	$1.733 \mathrm{~cm}^{-1}$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71070$ A $)$
	graphite monochromated
2θ max	$62.1{ }^{\circ}$
No. of Reflections Measured	Total: 19437
	Unique: $6398\left(\mathrm{R}_{\text {int }}=0.040\right)$
Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F^{2}
No. Observations (All reflections)	6398
No. Variables	391
Reflection/Parameter Ratio	16.36
Residuals: R_{1} ($\mathrm{I}>2.00 \sigma(\mathrm{I})$)	0.0475
Residuals: $w R_{2}$ (All reflections)	0.0738
Goodness-of-fit on F^{2}	1.027
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.47 \mathrm{e}^{-} / \mathrm{A}^{3}$
Minimum peak in Final Diff. Map	$-0.45 \mathrm{e}^{-} / \AA^{3}$

a)

b)

Figure S3. ORTEP drawings of 5d. a) Front view; b) Top view. Solvent molecules have been omitted for clarity.

Table S3. Crystal data and structure refinement for 5d

Empirical Formula	C53 H30 B Br F2 N2 - C H Cl3
Formula Weight	942.92
Temperature (${ }^{\circ} \mathrm{C}$)	-120
Crystal Color, Habit	green, block
Crystal Dimensions	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Parameters	$\mathrm{a}=12.794(3) \AA$
	$\mathrm{b}=17.775(5) \AA \quad \beta=90.835(4)^{\circ}$
	$\mathrm{c}=18.865(5) \AA$
	$\mathrm{V}=4289.5(20) \AA^{3}$
Space Group	$P 2{ }_{1} / a(\# 14)$
Z value	4
$\mathrm{D}_{\text {calc }}$	$1.460 \mathrm{~g} / \mathrm{cm}^{3}$
F(000)	1912.00
$\mu(\mathrm{MoK} \alpha)$	$11.982 \mathrm{~cm}^{-1}$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71070 \AA)$
	graphite monochromated
2θ max	$62 .{ }^{\circ}$
No. of Reflections Measured	Total: 37442
	Unique: $11715\left(\mathrm{R}_{\text {int }}=0.041\right)$
Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F^{2}
No. Observations (All reflections)	11715
No. Variables	590
Reflection/Parameter Ratio	19.86
Residuals: R_{1} ($\mathrm{I}>2.00 \sigma(\mathrm{I})$)	0.0801
Residuals: $w R_{2}$ (All reflections)	0.1375
Goodness-of-fit on F^{2}	1.014
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$2.06 \mathrm{e}^{-/} \AA^{3}$
Minimum peak in Final Diff. Map	$-1.65 \mathrm{e}^{-} / \mathrm{A}^{3}$

Table S4. Photophysical properties of 5a in various solvents ${ }^{a}$

so vent	$\lambda_{\text {abs }} \mid n \mathrm{~nm}$.	λ_{em} Inm.	$\varepsilon_{\mathrm{r}}{ }^{k}$	$\Phi_{\mathrm{F}}{ }^{c}$
DMF	628	637	367	C C6
THF	627	636	752	$\mathrm{C} / 6$
CHC $_{3}$	631	63 c	481	C 73
benzene	631	638	228	C 78

${ }^{a} \mathrm{C}=1 \mathrm{CC} \times 1 \mathrm{C}^{-6} \mathrm{M}{ }^{\kappa}$ Re at ve c e ectr c constant ${ }^{c}$ Determ nec by the ca brated ntegrat ng sphere system

Table S5. Cartesian atomic coordinates for the geometry optimized structure of 9 (B3LYP/6-31G(d)).

atom	x	y	z
C	0.2725108739	-1.0514936071	-1.3249863605
N	-0.6401901250	-0.0098596746	-1.0999803045
B	-0.4617015318	1.0957524529	-0.0054301105
N	0.5516944447	0.5029114922	1.0308337835
C	1.4359503516	-0.5509598336	0.7549765440
C	1.2948244978	-1.2966197104	-0.4122395345
C	-0.0884777679	-1.7437147539	-2.5207715937
F	-1.6820452530	1.3581990334	0.6140226282
C	-1.2187435989	-1.1140435675	-3.0019526871
F	0.0600345121	2.2448207299	-0.5737847811
C	0.9005493991	0.9841479904	2.2359155895
C	2.0062974717	0.2734239698	2.7637238432
C	2.3515983516	-0.6939392826	1.8414990518
C	-1.5285536060	-0.0608878059	-2.1068157682
C	-2.2158260134	-1.1555217286	-4.1439447610
C	-3.1300971042	0.0278168165	-3.7514268712
C	0.4788377045	2.0226488862	3.1529558097
C	1.3548238969	1.9572889617	4.2667245876
C	2.4044906427	0.8322111659	4.1162175282
C	-0.5569069025	2.9623618745	3.1056977806
C	-0.6956464155	3.8469990882	4.1748611698
C	0.1747211520	3.7914205371	5.2705753833
C	1.2032047629	2.8428041311	5.3242643462
C	-2.7100922406	0.6507340099	-2.5482332356
C	-4.2494573212	0.4970019009	-4.4240439994
C	-4.9509186515	1.5863185736	-3.8931249091
C	-4.5406730327	2.1928396122	-2.6993707620
C	-3.4189999008	1.7310682435	-2.0112147571
H	1.9856751600	-2.1119840887	-0.6024569736
H	0.4405400052	-2.5963675261	-2.9263556797
H	3.1375899265	-1.4360297228	1.8952952882
C	-1.5914802841	-1.0050799844	-5.5353533280
C	-2.9692324350	-2.4816459752	-4.2913546089
C	3.8498105465	1.3358777009	4.1925611009
C	2.3757596547	-0.1821680247	5.2643316773
H	-1.2352976818	2.9825398538	2.2606128711
	S19		

H	-1.4916353795	4.5863094822	4.1585655001
H	0.0483587787	4.4901407627	6.0932208368
H	1.8706665552	2.8007146389	6.1806085133
H	-4.5772829882	0.0267221622	-5.3470658777
H	-5.8281715717	1.9619999243	-4.4129458430
H	-5.1051850995	3.0317432441	-2.3018652148
H	-3.1019999646	2.1794815584	-1.0767491858
C	-0.7770843236	0.0136002176	-6.0144011169
C	-1.9488093821	-2.0895570784	-6.3584762882
C	-3.7335199614	-3.154624609	-3.3461483236
C	-2.8022082410	-3.0045857985	-5.5876398718
C	1.3211526199	-0.9800773871	5.6904717862
C	3.6271432872	-0.2385850353	5.9066515560
C	4.4833241996	2.2767678574	3.3901752141
C	4.5403413411	0.7022017445	5.2427649095
C	-1.4876859483	-2.1565075546	-7.6748846811
C	-3.4056930698	-4.2127903146	-5.9425518242
H	-0.5011368349	0.8499540184	-5.3775451972
C	-0.3161100251	-0.0558612062	-7.3336839692
H	-3.8612086703	-2.7499401742	-2.3455404261
C	-4.3373411139	-4.3650771121	-3.7041415158
C	-4.1739294787	-4.8882654526	-4.9916539131
H	-3.2816276505	-4.6247395713	-6.9408689568
C	-0.6693743899	-1.1319051459	-8.1556819906
H	-1.7580611424	-2.9906582189	-8.3173494788
H	-4.9381122298	-4.9027273290	-2.9756221545
H	-4.6492157264	-5.8296235259	-5.2543700694
H	0.3218286966	0.7331497888	-7.7225187532
H	-0.3030224235	-1.1709964811	-9.1780936122
C	3.8260794283	-1.1015914422	6.9862620992
C	5.8784366737	1.0125617992	5.4942123600
H	0.3556760909	-0.9358340645	5.1932920158
H	1.5228621530	-1.8439940532	6.7725603680
H	2.7651714917	-1.9030091084	7.4138889050
4.7891441099	-1.1525790511	7.4878976246	
	-2.5792597318	8.2528681621	
	-2.4740371686	7.1172064679	
H	1.9587190159	4.6873546390	

H	6.4196284319	0.5275564457	6.3026382260
H	3.9493056423	2.7646655120	2.5790030676
C	5.8241774144	2.5858677812	3.6439455101
H	6.3332691774	3.3194691132	3.0247917941
H	7.5555269021	2.2099694525	4.8714121012

Table S6. Results of TD-DFT calculation for 9 (TD-B3LYP/6-31G(d)//B3LYP/6-31G(d))

λ / nm	oscillator strength	transition	amplitude
532.00	1.0435	LUMO \leftarrow HOMO-2	-0.14168
		LUMO \leftarrow HOMO	0.58646
455.34	0.0001	LUMO \leftarrow HOMO-1	0.70195
444.47	0.1075	LUMO \leftarrow HOMO-2	0.68752

Figure S4. Molecular orbital plots for model compound 9.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

