Supporting Information

Highly Fluorescent BODIPY Dyes Modulated with Spirofluorene Moieties

Toshiyuki Kowada, Shuhei Yamaguchi, and Kouichi Ohe*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

ohe@scl.kyoto-u.ac.jp

Experimental Section

General. Unless otherwise specified, all reagents were purchased from a chemical supplier and used without further purification. Tetrahydrofuran (THF) was distilled over benzophenone ketyl under nitrogen atmosphere. N,N-Dimethylformamide (DMF) was distilled over MS4A under nitrogen atmosphere. CH₂Cl₂ was dried and collected using a Grubbs-type solvent purification system manufactured by Glass Contour. Melting points are uncorrected. ¹H and ¹³C spectra were recorded on a JEOL AL-300 (300 MHz for ¹H, and 75.5 MHz for ¹³C) instrument or a JEOL EX-400 (400 MHz for ¹H, and 100 MHz for ¹³C) instrument. IR spectra were obtained on a JASCO 460 plus FT/IR spectrometer. Mass spectra were measured with a JEOL JMS-SX102A. Analytical thin-layer chromatography (TLC) was performed on Merck 60F254 silica plates and visualized by UV light. Column chromatography was carried out on Silicycle SilicaFlash F60 60-63 µm (230-400 mesh) silica gel. Preparative HPLC was carried out with a Japan Analytical Industry Co., Ltd, LC-908 chromatograph using a JAIGEL-1H and -2H GPC columns. UV-visible absorption spectra were recorded on a JASCO V-570 UV-vis-NIR spectrometer. Emission spectra were measured with a Jobin Yvon-Horiba FluoroMax-3. Degassed spectral grade solvents were used for the measurements. Absolute fluorescence quantum yields were determined by the calibrated integrating sphere system. Cyclic voltammetry (CV) was performed on a BAS ALS 610C-S electrochemical analyzer. The CV cell consisted of a glassy carbon electrode, a Pt wire counter electrode, and an Ag/AgNO₃ reference electrode. The measurement was carried out under argon atmosphere using solutions of samples (1 mM) and 0.1 M tetrabutylammonium hexafluorophosphate (Bu_4NPF_6) as a supporting electrolyte with a scan rate of 100 mV s⁻¹. The redox potentials were calibrated with ferrocene as an internal standard.

9-(2-Bromophenyl)-9H-fluoren-9-ol (1)¹

The solution of 1-bromo-2-iodobenzene (34.9 g, 124 mmol) in dry THF (120 mL) was cooled to -40 °C. To the solution was added dropwise 1.0 M THF solution of isopropyl magnesium bromide (120 mL), prepared from isopropyl bromide and magnesium turnings. After stirring for 3 h, 9-fluorenone (14.4 g, 80.0 mmol) in dry THF (80 mL) was added over 25 min and stirred at room temperature for 12 h. The reaction mixture was quenched with saturated aqueous solution of NH₄Cl (100 mL) and extracted with EtOAc (3 × 30 mL). The organic layers were combined, washed with brine (2 × 50 mL), and dried over MgSO₄. The solvents were removed under reduced pressure to give a mixture of white solid and yellow oil. The crude product was purified by washing with hexane and the filtrate was purified with column chromatography on SiO₂ (EtOAc–hexane, 1:20) to give 1 (25.6 g, 95%) as a white solid; mp 145.2–146.0 °C. IR (KBr) 767, 920, 1005, 1157, 1333, 1448, 1604, 3063, 3571 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 2.39 (br s, 1H), 7.13–7.25 (m, 5H), 7.36–7.47 (m, 4H), 7.67 (d, *J* = 7.7 Hz, 2H), 8.44 (br s, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 83.0, 120.2, 120.9, 123.9, 127.0, 128.3, 129.0, 129.1, 129.2, 134.3, 140.8, 141.3, 148.6.

9-(2-Bromophenyl)-9-(N-tosylpyrrol-3-yl)-9H-fluorene (2)

To a solution of **1** (9.72 g, 28.8 mmol) and *N*-tosylpyrrole (6.94 g, 31.3 mmol) in CH_2Cl_2 (200 mL) was added AlCl₃ (4.39 g, 32.9 mmol) portionwise, and the solution was stirred at room temperature for 3 h. The reaction mixture was quenched with water (60 mL) and extracted with CH_2Cl_2 (3 × 30 mL). The organic layers were combined, washed with saturated aqueous solution of NaHCO₃ (2 × 40 mL) and brine (40 mL), and dried over MgSO₄. The solvents were removed under

reduced pressure to give white solid. The crude product was purified by washing with CHCl₃-hexane (1:1) and the filtrate was purified with column chromatography on SiO₂ (EtOAc-hexane, 1:20) to give **2** (14.5 g, 93%) as a white solid; mp 210.2–211.0 °C. IR (KBr) 605, 674, 746, 1065, 1101, 1172, 1253, 1371, 1464, 1596 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.36$ (s, 3H), 6.40 (br s, 1H), 6.61 (br s, 1H), 7.01–7.09 (m, 2H), 7.14–7.40 (m, 11H), 7.59 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 7.7 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 21.6$, 60.4, 115.6, 119.3, 120.4, 121.5, 123.0, 124.7, 126.76, 126.81, 127.4, 127.5, 128.6, 129.9, 131.8, 132.1, 135.4, 136.0, 141.1, 142.1, 144.9, 149.8. HRMS (FAB): calcd for C₃₀H₂₃⁸¹BrNO₂S (M+H⁺), 542.0616, Found 542.0609.

1'-Tosylspiro[fluorene-9,4'(1'*H*)-indeno[1,2-*b*]pyrrole (3a) and 2'-Tosylspiro[fluorene-9,4'(2'*H*)indeno[1,2-*c*]pyrrole (3b)

A flame dried flask was charged with **2** (14.5 g, 26.8 mmol), K_2CO_3 (7.57 g, 54.8 mmol), Pd(PPh₃)₄ (930 mg, 0.805 mmol), and dry DMF (200 mL) under nitrogen atmosphere. The solution was stirred at 100 °C for 20 h. The reaction mixture was cooled down to room temperature and filtered through a short silica gel pad. After an addition of water (150 mL), the filtrate was extracted with CH₂Cl₂ (3 × 30 mL). The organic layers were combined, washed with brine (7 × 50 mL), and dried over MgSO₄. The solvents were removed under reduced pressure to give a mixture of white solid and brawn oil. The crude product was purified by washing with CHCl₃–hexane (1:1) to give **3a** (7.77 g, 63%) as a white solid.

3a: A white solid; mp 256.5–257.3 °C. IR (KBr) 670, 699, 749, 1113, 1173, 1192, 1380, 1446, 1462, 1596, 3128 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 2.42 (s, 3H), 5.86 (d, *J* = 3.3 Hz, 1H), 6.52 (d, *J* = 7.3 Hz, 1H), 6.63 (d, *J* = 7.7 Hz, 2H), 6.93 (dd, *J* = 7.5, 7.7 Hz, 1H), 7.07 (dd, *J* = 7.3, 7.5 Hz, 2H), 7.22 (d, *J* = 3.3 Hz, 1H), 7.28–7.36 (m, 5H), 7.78 (d, *J* = 7.7 Hz, 2H), 7.83 (d, *J* = 8.4 Hz, 2H), 8.15 (d, *J* = 7.7 Hz, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ 21.6, 60.2, 108.7, 119.5, 120.0, 123.5, 123.6, 125.7, 126.76, 126.81, 127.6, 127.7, 127.8, 130.0, 134.0, 135.9, 138.2, 139.9, 141.8, 145.1, 146.4, 152.5.

HRMS (FAB): calcd for C₃₀H₂₂NO₂S (M+H⁺), 460.1371, Found 460.1364.

3b: A white solid; mp 212.7–213.6 °C. IR (KBr) 673, 752, 1053, 1089, 1166, 1187, 1362, 1446, 1595, 3063 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.39 (s, 3H), 6.49 (d, *J* = 7.3 Hz, 1H), 6.67 (d, *J* = 1.5 Hz, 1H), 6.79 (d, *J* = 7.3 Hz, 2H), 6.97 (dd, *J* = 7.3, 7.6 Hz, 1H), 7.11 (dd, *J* = 7.3, 7.3 Hz, 2H), 7.21–7.26 (m, 3H), 7.32–7.36 (m, 3H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.78 (d, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 21.6, 60.4, 110.0, 113.5, 119.9, 121.4, 124.1, 124.3, 126.8, 127.4, 127.69, 127.72, 127.8, 129.9, 135.3, 135.4, 136.1, 138.7, 140.8, 144.8, 149.6, 153.2. HRMS (FAB): calcd for C₃₀H₂₂NO₂S (M+H⁺), 460.1371, Found 460.1382.

Spiro[fluorene-9,4'(1'*H*)-indeno[1,2-*b*]pyrrole (sp-FIP)

To a solution of **3a** (7.52 g, 16.4 mmol) in THF (300 mL) and MeOH (100 mL) was added 10% aqueous solution of NaOH (66 mL), and the solution was stirred at 65 °C for 3 h. After cooling to ambient temperature, MeOH was removed under reduced pressure and the residue was extracted with CHCl₃ (3 × 20 mL). The organic layers were combined, washed with water (2 × 50 mL) and brine (50 mL), and dried over MgSO₄. The solvents were removed under reduced pressure to give brawn solid. The crude product was purified by washing with CHCl₃–hexane (1:1) and the filtrate was purified with column chromatography on SiO₂ (EtOAc–hexane, 1:15) to give **sp-FIP** (4.96 g, 99%) as a pale blue solid; mp 183.5–184.5 °C. IR (KBr) 748, 1444, 1606, 3060, 3414 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 5.79 (dd, *J* = 1.7, 2.7 Hz, 1H), 6.54 (d, *J* = 7.7 Hz, 1H), 6.80–6.86 (m, 4H), 7.11 (dd, *J* = 7.3, 7.3 Hz, 2H), 7.19 (dd, *J* = 7.3, 7.5 Hz, 1H), 7.31–7.36 (m, 3H), 7.80 (d, *J* = 7.3 Hz, 2H), 8.41 (br s, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 60.7, 103.9, 115.8, 119.8, 121.9, 123.6, 123.8, 124.3, 127.0, 127.4, 127.5, 133.7, 135.4, 137.8, 141.7, 148.5, 153.0. HRMS (FAB): calcd for C₂₃H₁₆N (M+H⁺), 306.1283, Found 306.1288.

A typical procedure for synthesis of 4a–e.

To a solution of **sp-FIP** (611 mg, 2.00 mmol) and aldehyde (1.00 mmol) in dry CH₂Cl₂ (20 mL)

was added two drops of TFA, and the solution was stirred at room temperature for 2–6 h under nitrogen atmosphere. The reaction mixture was quenched with 5% aqueous solution of NaHCO₃ (25 mL) and extracted with CHCl₃ (3×10 mL). The organic layers were combined, washed with brine (2×15 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on SiO₂ (EtOAc–hexane, 1:15) to afford **4**.

4a: A purple solid (86% yield); mp >300 °C. IR (KBr) 729, 747, 1280, 1338, 1444, 1474, 1520, 1604, 3059, 3436 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.90$ (s, 6H), 5.38 (s, 1H), 5.52 (s, 2H), 6.49 (d, J = 7.7 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 6.75–6.85 (m, 6H), 7.07–7.19 (m, 10H), 7.32 (dd, J = 7.3, 7.3 Hz, 4H), 7.77 (d, J = 7.7 Hz, 4H), 8.15 (br s, 2H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 40.5$, 44.6, 60.9, 103.1, 112.6, 115.6, 119.8, 123.6, 123.8, 123.9, 126.9, 127.3, 127.5, 129.0, 129.2, 133.6, 135.5, 137.2, 137.7, 141.6, 148.5, 149.5, 152.5. HRMS (FAB): calcd for C₅₅H₄₀N₃ (M+H⁺), 742.3222, Found 742.3237.

4b: A bluish purple solid (quantitative yield); mp >300 °C. IR (KBr) 729, 747, 1031, 1175, 1250, 1445, 1474, 1509, 1605, 3060, 3419 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.76$ (s, 3H), 5.44 (s, 1H), 5.51 (s, 2H), 6.48 (d, J = 7.7 Hz, 2H), 6.77–6.86 (m, 8H), 7.08–7.21 (m, 10H), 7.32 (dd, J = 7.3, 7.7 Hz, 4H), 7.78 (d, J = 7.7 Hz, 4H), 8.17 (br s, 2H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 44.8$, 55.2, 60.9, 103.3, 114.1, 115.7, 119.8, 123.67, 123.74, 124.1, 127.0, 127.4, 127.5, 129.5, 133.4, 133.7, 135.4, 137.1, 137.4, 141.7, 148.4, 152.6, 158.6. HRMS (FAB): calcd for C₅₄H₃₇N₂O (M+H⁺), 729.2906, Found 729.2916.

4c: A bluish purple solid (66% yield); mp >300 °C. IR (KBr) 728, 746, 1280, 1444, 1474, 1510, 1605, 3058, 3410 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 2.30 (s, 3H), 5.45 (s, 1H), 5.52 (s, 2H), 6.48 (d, *J* = 7.7 Hz, 2H), 6.77–6.85 (m, 6H), 7.08–7.21 (m, 12H), 7.33 (dd, *J* = 7.3, 7.5 Hz, 4H), 7.78 (d, *J* = 7.3 Hz, 4H), 8.17 (br s, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 21.0, 45.2, 60.9, 103.3, 115.7, 119.8,

123.6, 123.8, 124.1, 127.0, 127.4, 127.5, 128.4, 129.4, 133.6, 135.4, 136.7, 137.0, 137.4, 138.4, 141.7, 148.4, 152.6. HRMS (FAB): calcd for C₅₄H₃₇N₂ (M+H⁺), 713.2957, Found 713.2977.

4d: A bluish purple solid (54% yield); mp >300 °C. IR (KBr) 728, 746, 1280, 1444, 1486, 1606, 3059, 3411 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 5.41$ (s, 1H), 5.48 (s, 2H), 6.49 (d, J = 7.3 Hz, 2H), 6.78–6.84 (m, 6H), 7.05–7.37 (m, 16H), 7.78 (d, J = 7.3 Hz, 4H), 8.18 (br s, 2H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 45.0$, 60.9, 103.6, 115.8, 119.9, 121.0, 123.6, 123.7, 124.3, 127.0, 127.46, 127.55, 130.2, 131.7, 133.8, 135.3, 136.1, 137.7, 140.4, 141.7, 148.2, 152.6. HRMS (FAB): calcd for C₅₃H₃₃⁷⁹BrN₂ (M⁺), 776.1827, Found 776.1838.

4e: A pale purple solid (70% yield); mp >300 °C. IR (KBr) 747, 1104, 1281, 1444, 1608, 1720, 3056, 3415 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ = 3.86 (s, 3H), 5.50 (s, 2H), 5.53 (s, 1H), 6.50 (d, *J* = 7.3 Hz, 2H), 6.65–6.85 (m, 6H), 7.09–7.14 (m, 6H), 7.22–7.36 (m, 8H), 7.78 (d, *J* = 7.3 Hz, 4H), 7.92 (d, *J* = 8.1 Hz, 2H), 8.27 (br s, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 45.6, 52.1, 60.9, 103.7, 115.8, 119.9, 123.6, 123.7, 124.4, 127.1, 127.5, 127.6, 128.5, 129.0, 130.0, 133.8, 135.2, 135.7, 137.8, 141.7, 146.6, 148.2, 152.6, 166.7. HRMS (FAB): calcd for C₅₅H₃₇O₂N₂ (M+H⁺), 757.2855, Found 757.2858.

A typical procedure for synthesis of BODIPY dyes 5a-e.

To a solution of **4a–e** (0.52 mmol) in dry CH_2Cl_2 (10 mL) was added dropwise DDQ (119 mg, 0.52 mmol) in dry CH_2Cl_2 (10 mL) and the solution was stirred at room temperature for 1 h under nitrogen atmosphere. Et₃N (0.42 mL, 3.01 mmol) was then added, followed by an addition of 47% of BF₃·OEt (0.83 mL, 3.05 mmol). After stirring for 3 h, the reaction mixture was quenched with water (20 mL). The organic layer was washed with brine (2 × 20 mL), and dried over Na₂SO₄. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on SiO₂ (CHCl₃–hexane, 1:3) to afford **5a–e**.

5a: A purple solid (59% yield); mp >300 °C. IR (KBr) 747, 1068, 1098, 1196, 1268, 1338, 1364, 1402, 1464, 1556, 1601 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.87$ (s, 6H), 6.31 (s, 2H), 6.52 (d, J = 8.3 Hz, 2H), 6.63 (d, J = 7.3 Hz, 2H), 6.96 (d, J = 7.3 Hz, 4H), 7.14–7.19 (m, 6H), 7.27 (d, J = 8.8 Hz, 2H), 7.36 (dd, J = 7.3, 7.3 Hz, 4H), 7.49 (dd, J = 7.3, 7.7 Hz, 2H), 7.79 (d, J = 7.8 Hz, 4H), 8.49 (d, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 40.0$, 59.8, 111.3, 120.0, 120.6, 121.9, 124.08, 124.12, 124.2, 127.9 (two peaks are overlapped), 128.6, 129.9, 132.2, 132.9, 140.8, 141.3, 142.5, 143.5, 148.4, 151.6, 156.3, 160.2. HRMS (FAB): calcd for C₅₅H₃₆N₃F₂B (M⁺), 787.2980, Found 787.2959.

5b: A dark brown solid (73% yield); mp >300 °C. IR (KBr) 756, 1034, 1065, 1096, 1200, 1263, 1334, 1402, 1447, 1469, 1552, 1603 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.69$ (s, 3H), 6.22 (s, 2H), 6.63 (d, J = 7.8 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 7.8 Hz, 4H), 7.14–7.19 (m, 6H), 7.29 (d, J = 8.8 Hz, 2H), 7.36 (dd, J = 7.6, 7.8 Hz, 4H), 7.50 (dd, J = 7.6, 7.8 Hz, 2H), 7.79 (d, J = 7.3 Hz, 4H), 8.50 (d, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.3$, 59.7, 113.7, 120.0, 120.6, 124.17, 124.21, 124.3, 126.5, 127.9, 128.0, 128.7, 130.4, 131.9, 132.6, 141.1, 141.3, 142.1, 142.9, 148.2, 156.6, 161.0, 161.3. HRMS (FAB): calcd for C₅₄H₃₄ON₂F₂B (M+H⁺), 775.2741, Found 775.2733.

5c: A dark brown solid (61% yield); mp >300 °C. IR (KBr) 756, 1065, 1097, 1200, 1262, 1334, 1402, 1447, 1469, 1553, 1602 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.24$ (s, 3H), 6.20 (s, 2H), 6.64 (d, J = 7.8 Hz, 2H), 6.95 (d, J = 7.8 Hz, 4H), 7.05 (d, J = 7.8 Hz, 2H), 7.15–7.26 (m, 8H), 7.36 (dd, J = 7.3, 7.3 Hz, 4H), 7.51 (dd, J = 7.6, 7.8 Hz, 2H), 7.79 (d, J = 7.8 Hz, 4H), 8.49 (d, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.2$, 59.7, 120.0, 120.7, 124.17, 124.23, 124.3, 127.9, 128.0, 128.7, 128.8, 130.3, 130.4, 131.2, 132.5, 140.1, 141.1, 141.3, 142.4, 143.0, 148.2, 156.7, 161.5. HRMS (FAB): calcd for C₅₄H₃₃N₂F₂B (M⁺), 758.2714, Found 758.2708.

5d: A dark brown solid (59% yield); mp >300 °C. IR (KBr) 738, 761, 1065, 1096, 1196, 1262, 1333, 1401, 1447, 1469, 1552, 1601 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.15$ (s, 2H), 6.65 (d, J = 7.8 Hz,

2H), 6.95 (d, J = 7.3 Hz, 4H), 7.15–7.26 (m, 8H), 7.37 (dd, J = 7.1, 7.8 Hz, 4H), 7.38 (d, J = 7.8 Hz, 2H), 7.51 (dd, J = 7.3, 7.8 Hz, 2H), 7.79 (d, J = 7.3 Hz, 4H), 8.49 (d, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 59.7$, 120.1, 120.2, 124.1, 124.2, 124.3, 124.4, 127.9, 128.1, 128.8, 130.8, 131.4, 131.8, 132.3, 132.9, 140.3, 140.8, 141.3, 143.5, 148.1, 156.8, 162.0. HRMS (FAB): calcd for C₅₃H₃₁N₂⁷⁹BrF₂B (M+H⁺), 823.1741, Found 823.1718.

5e: A purple solid (59% yield); mp >300 °C. IR (KBr) 758, 1065, 1097, 1268, 1335, 1553, 1726 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.82$ (s, 3H), 6.11 (s, 2H), 6.64 (d, J = 7.7 Hz, 2H), 6.94 (d, J = 7.3Hz, 4H), 7.13–7.24 (m, 6H), 7.33–7.43 (m, 6H), 7.51 (dd, J = 7.3, 7.7 Hz, 2H), 7.78 (d, J = 7.7 Hz, 4H), 7.89 (d, J = 8.0 Hz, 2H), 8.51 (d, J = 7.7 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 52.2$, 59.7, 120.1, 120.2, 124.1, 124.3, 124.5, 127.9, 128.1, 128.8, 129.3, 130.3, 130.8, 131.1, 132.3, 138.4, 140.3, 140.8, 141.3, 143.6, 148.1, 156.9, 162.2, 166.1. HRMS (FAB): calcd for C₅₅H₃₄O₂N₂F₂B (M+H⁺), 803.2691, Found 803.2702.

3-(2-(2-Bromophenyl)propan-2-yl)-*N*-tosylpyrrole (10)

To the mixture of *N*-tosylpyrrole (3.32 g, 15.0 mmol) and 2-(2-bromophenyl)propan-2-ol² (4.84 g, 22.5 mmol) was added CH₃SO₃H (20 mL), and the solution was stirred at room temperature for 4 h.

The reaction mixture was diluted with cold water (80 mL) and extracted with CH₂Cl₂ (4 × 15 mL). The organic layers were combined, washed with saturated aqueous solution of NaHCO₃ (2 × 50 mL) and brine (50 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, and the residue was purified with GPC (CHCl₃) to afford **10** (666 mg, 11%) as a pale yellow oil; mp 97.8–98.7 °C. IR (KBr) 589, 681, 803, 1058, 1173, 1357, 1596, 2964 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) $\delta = 1.67$ (s, 6H), 2.40 (s, 3H), 5.91 (dd, J = 1.8, 3.3 Hz, 1H), 6.88 (dd, J = 1.8, 1.8 Hz, 1H), 7.02–7.07 (m, 2H), 7.24–7.29 (m, 3H), 7.44 (dd, J = 1.5, 8.1 Hz, 1H), 7.50 (dd, J = 1.8, 8.1 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃) $\delta = 21.6$, 29.7, 40.0, 113.6, 117.5, 120.9, 123.7, 126.7, 127.2, 128.0, 129.7, 135.5, 136.5, 138.3, 144.6, 146.0. HRMS (FAB): calcd for C₂₀H₂₁O₂N⁸¹BrS (M+H⁺), 420.0457, Found 420.0451.

4,4-Dimethyl-1-tosyl-1,4-dihydroindeno[1,2-*b*]pyrrole (11)

A flame dried Schlenk flask was charged with **10** (604 mg, 1.44 mmol), K₂CO₃ (399 mg, 2.88 mmol), Pd(PPh₃)₄ (50.2 mg, 0.0434 mmol), and dry DMF (15 mL) under nitrogen atmosphere. The solution was stirred at 100 °C for 13 h. The reaction mixture was cooled down to room temperature and filtered through a short silica gel pad. After an addition of CH₂Cl₂ (20 mL), the filtrate was washed with 10% aqueous solution of NaCl (5 × 40 mL), and dried over MgSO₄. The solvents were removed under reduced pressure to give a pale brawn solid. The crude product was purified by GPC (CHCl₃) to give **11** (254 mg, 52%) as a colorless oil. IR (neat) 539, 768, 1051, 1363, 1597, 2359, 2964 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ = 1.36 (s, 6H), 2.34 (s, 3H), 6.31 (d, *J* = 3.3 Hz, 1H), 7.14–7.32, (m, 6H), 7.75 (d, *J* = 8.4 Hz, 2H), 8.03 (d, *J* = 7.3 Hz, 1H). ¹³C NMR (75.5 MHz, CDCl₃) δ = 21.6, 25.8, 42.0, 107.7, 119.4, 122.2, 124.8, 125.9, 126.7, 127.0, 130.0, 132.2, 134.4, 136.1, 144.8, 145.9, 157.1. HRMS (FAB): calcd for C₂₀H₁₉NO₂S (M⁺), 337.1137, Found 337.1130.

4,4-Dimethyl-1,4-dihydroindeno[1,2-*b*]pyrrole (12)

To a solution of 11 (253 mg, 0.750 mmol) in THF (7 mL) and MeOH (3.5 mL) was added 10%

aqueous solution of NaOH (3 mL), and the solution was stirred at 65 °C for 7 h. After cooling to ambient temperature, the reaction mixture was diluted with cold water (10 mL) and MeOH was removed under reduced pressure. The residue was extracted with EtOAc (3 × 5 mL). The organic layers were combined, washed with brine (2 × 20 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, and the residue was purified with column chromatography on SiO₂ (EtOAc–hexane, 1:3) to afford **12** (101 mg, 73%) as a pale blue solid; mp 130.6–131.3 °C. IR (KBr) 711, 754, 1063, 1454, 1610, 2959, 3370 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ = 1.45 (s, 6H), 6.21 (dd, *J* = 1.8, 2.8 Hz, 1H), 6.82 (dd, *J* = 2.4, 2.4 Hz, 1H), 7.06–7.11 (m, 1H), 7.17–7.25 (m, 2H), 7.33 (d, *J* = 7.3 Hz, 1H), 8.22 (br s, 1H). ¹³C NMR (75.5 MHz, CDCl₃) δ = 26.6, 42.4, 102.9, 115.9, 121.2, 122.5, 123.6, 126.4, 133.5, 134.0, 140.4, 157.5. HRMS (FAB): calcd for C₁₃H₁₄N (M+H⁺), 184.1126, Found 184.1122.

BODIPY Dye 6

To a solution of **12** (94.8 mg, 0.517 mmol) in dry CH₂Cl₂ (6 mL) was added two drops of TFA, and the solution was stirred at room temperature for 2 h under nitrogen atmosphere. The reaction mixture was quenched with saturated aqueous solution of NaHCO₃ (10 mL) and extracted with CH₂Cl₂ (3 × 5 mL). The organic layers were combined, washed with brine (2 × 20 mL), and dried over MgSO₄. The solvents were removed under reduced pressure, and the residue was partially purified with column chromatography on SiO₂ (CH₂Cl₂–hexane, 4:1) to afford a crude product (49.7 mg) as a blue solid. The crude product was then dissolved in dry CH₂Cl₂ (8 mL). After an addition of DDQ (23.8 mg, 0.105 mmol) in dry CH₂Cl₂ (6 mL), the solution was stirred at room temperature for 1 h under nitrogen atmosphere. *i*Pr₂NEt₂ (0.105 mL, 0.603 mmol) and BF₃•OEt₂ (0.165 mL, 0.606 mmol) were successively added and after 4 h, the reaction mixture was washed with 10% aqueous solution of NaCl (4 × 20 mL), and dried over Na₂SO₄. The solvents were removed under reduced pressure, and the residue was partially purified with column chromatography on SiO₂ (CH₂Cl₂–hexane, 1:3) to afford **6** (30.1 mg, 56%) as a dark brawn solid; mp >300 °C. IR (KBr) 759, 1060, 1088, 1278, 1335, 1552, 1603, 2966 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ = 1.47 (s, 12H), 3.92 (s, 3H), 6.55 (s, 2H), 7.07 (d, *J* = 8.8 Hz, 2H), 7.38–7.45 (m, 6H), 7.56 (d, *J* = 8.4 Hz, 2H), 8.30 (d, *J* = 7.0 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃) δ = 27.1, 41.9, 55.5, 113.8, 119.3, 122.7, 124.2, 127.2, 127.9, 129.7, 130.8, 132.0, 140.6, 141.1, 148.6, 158.8, 160.87, 160.91. HRMS (FAB): calcd for C₃₄H₂₉ON₂F₂B (M⁺), 530.2347, Found 530.2351.

References

1) Arts, H. J.; Kranenburg, M.; Meijers, R. H. A. M.; Ijpeij, E. G.; Gruter, G. J. M.; Beijer, F. H. EP1059300 (A1) **2000**.

2) Sigmundová, I.; Uhlár, J.; Toma, Š. Synth. Commun. 2004, 34, 3667–3672.

Data of X-ray crystallographic analysis:

Figure S1. ORTEP drawings of 3a.

Table S1.	Crystal	data and	structure	refinement	for 3a

Empirical Formula	C30 H21 N O2 S		
Formula Weight	459.56		
Temperature (°C)	-120		
Crystal Color, Habit	colorless, block		
Crystal Dimensions	$0.40 \times 0.40 \times 0.20$ mm		
Crystal System	triclinic		
Lattice Parameters	a = 10.327(4) Å	$\alpha=75.268(15)^\circ$	
	b = 10.808(5) Å	$\beta=65.992(11)^\circ$	
	c = 11.555(4) Å	$\gamma=89.308(19)^\circ$	
	$V = 1133.3(8) Å^3$		
Space Group	<i>P</i> -1 (#2)		
Z value	2		
D _{calc}	1.347 g/cm^3		
F(000)	F(000) 480.00		
μ(ΜοΚα)	1.719 cm^{-1}		
Radiation	MoK α ($\lambda = 0.71070$ Å)		
	graphite monochromated		
2θ max	61.8°		
No. of Reflections Measured	Total: 10126		
	Unique: 5815 ($R_{int} = 0.0$)27)	
Structure Solution	Direct Methods (SIR92))	
Refinement	Full-matrix least-squares on F ²		
No. Observations (All reflections)	rvations (All reflections) 5815		
No. Variables	391		
Reflection/Parameter Ratio 14.87			
Residuals: R_1 (I>2.00 σ (I))	0.0470		
Residuals: wR_2 (All reflections)	0.0762		
Goodness-of-fit on F ²	1.097		
Max Shift/Error in Final Cycle	0.000		
Maximum peak in Final Diff. Map	$0.38 \text{ e}^{-}/\text{Å}^{3}$		
Minimum peak in Final Diff. Map	$-0.60 \text{ e}^{-1}/\text{\AA}^{3}$		

Figure S2. ORTEP drawings of 3b.

Table S2. Crystal data and	structure refinement for 3b
----------------------------	------------------------------------

Empirical Formula	C30 H21 N O2 S		
Formula Weight	459.56		
Temperature (°C)	-120		
Crystal Color, Habit	colorless, block		
Crystal Dimensions	$0.20 \times 0.20 \times 0.20$ mm		
Crystal System	monoclinic		
Lattice Parameters	a = 12.330(4) Å		
	b = 8.447(3) Å β = 95.906(4)°		
	c = 21.697(7) Å		
	$V = 2247.6(13) Å^3$		
Space Group	<i>P</i> 2 ₁ / <i>a</i> (#14)		
Z value	4		
D _{calc}	1.358 g/cm^3		
F(000)	960.00		
μ(ΜοΚα)	1.733 cm^{-1}		
Radiation	MoK α ($\lambda = 0.71070$ Å)		
	graphite monochromated		
2θ max	62.1°		
No. of Reflections Measured	Total: 19437		
	Unique: 6398 ($R_{int} = 0.040$)		
Structure Solution	Direct Methods (SIR92)		
Refinement	Full-matrix least-squares on F ²		
No. Observations (All reflections)	6398		
No. Variables	391		
Reflection/Parameter Ratio	16.36		
Residuals: R_1 (I>2.00 σ (I))	0.0475		
Residuals: wR_2 (All reflections)	0.0738		
Goodness-of-fit on F ²	1.027		
Max Shift/Error in Final Cycle	0.000		
Maximum peak in Final Diff. Map	$0.47 \text{ e}^{-1}/\text{\AA}^{3}$		
Minimum peak in Final Diff. Map	$-0.45 \text{ e}^{-1}/\text{Å}^{-3}$		

Figure S3. ORTEP drawings of **5d**. a) Front view; b) Top view. Solvent molecules have been omitted for clarity.

Empirical Formula C53 H30 B Br F2 N2 · C H Cl3			
Formula Weight	942.92		
Temperature (°C)	-120		
Crystal Color, Habit	green, block		
Crystal Dimensions	$0.20 \times 0.20 \times 0.20$ mm		
Crystal System	monoclinic		
Lattice Parameters	a = 12.794(3) Å		
	$b = 17.775(5) \text{ Å}$ $\beta = 90.835(4)^{\circ}$		
	c = 18.865(5) Å		
	$V = 4289.5(20) \text{ Å}^3$		
Space Group	P2 ₁ /a (#14)		
Z value	4		
D _{calc}	1.460 g/cm^3		
F(000)	1912.00		
μ(ΜοΚα)	11.982 cm^{-1}		
Radiation	MoK α ($\lambda = 0.71070$ Å)		
	graphite monochromated		
2θ max	62.1°		
No. of Reflections Measured	Total: 37442		
	Unique: 11715 ($R_{int} = 0.041$)		
Structure Solution Direct Methods (SIR92)			
Refinement	Full-matrix least-squares on F ²		
No. Observations (All reflections)	11715		
No. Variables	590		
Reflection/Parameter Ratio	19.86		
Residuals: R_1 (I>2.00 σ (I))	0.0801		
Residuals: wR_2 (All reflections)	0.1375		
Goodness-of-fit on F ²	1.014		
Max Shift/Error in Final Cycle	0.000		
Maximum peak in Final Diff. Map	$2.06 \text{ e}^{-1}/\text{Å}^{-3}$		
Minimum peak in Final Diff. Map	$-1.65 \text{ e}^{-1}/\text{Å}^{3}$		

Table S3. Crystal data and structure refinement for 5d

so vent	λ _{abs} [nm]	λ _{em} [nm]	εr ^t	Φ_{F}^{c}
DMF	628	637	36 7	C C6
THF	627	636	7 52	C 16
CHC 3	631	639	4 81	C 73
benzene	631	638	2 28	C 78

Table S4. Photophysical properties of 5a in various solvents^{*a*}

 $c = 1 \text{ CC} \times 10^{-6} \text{ M}^{-k} \text{ Re at ve d e ectr c constant}^{-c} \text{ Determ ned by}$ the call brated integrating sphere system

tom	Х	У	Z
2	0.2725108739	-1.0514936071	-1.3249863605
N	-0.6401901250	-0.0098596746	-1.0999803045
3	-0.4617015318	1.0957524529	-0.0054301105
N	0.5516944447	0.5029114922	1.0308337835
С	1.4359503516	-0.5509598336	0.7549765440
С	1.2948244978	-1.2966197104	-0.4122395345
С	-0.0884777679	-1.7437147539	-2.5207715937
F	-1.6820452530	1.3581990334	0.6140226282
С	-1.2187435989	-1.1140435675	-3.0019526871
F	0.0600345121	2.2448207299	-0.5737847811
С	0.9005493991	0.9841479904	2.2359155895
С	2.0062974717	0.2734239698	2.7637238432
С	2.3515983516	-0.6939392826	1.8414990518
С	-1.5285536060	-0.0608878059	-2.1068157682
С	-2.2158260134	-1.1555217286	-4.1439447610
С	-3.1300971042	0.0278168165	-3.7514268712
С	0.4788377045	2.0226488862	3.1529558097
С	1.3548238969	1.9572889617	4.2667245876
С	2.4044906427	0.8322111659	4.1162175282
С	-0.5569069025	2.9623618745	3.1056977806
С	-0.6956464155	3.8469990882	4.1748611698
С	0.1747211520	3.7914205371	5.2705753833
С	1.2032047629	2.8428041311	5.3242643462
С	-2.7100922406	0.6507340099	-2.5482332356
С	-4.2494573212	0.4970019009	-4.4240439994
С	-4.9509186515	1.5863185736	-3.8931249091
С	-4.5406730327	2.1928396122	-2.6993707620
С	-3.4189999008	1.7310682435	-2.0112147571
Н	1.9856751600	-2.1119840887	-0.6024569736
Н	0.4405400052	-2.5963675261	-2.9263556797
Н	3.1375899265	-1.4360297228	1.8952952882
С	-1.5914802841	-1.0050799844	-5.5353533280
С	-2.9692324350	-2.4816459752	-4.2913546089
С	3.8498105465	1.3358777009	4.1925611009
С	2.3757596547	-0.1821680247	5.2643316773
Н	-1.2352976818	2.9825398538	2.2606128711
		010	

Table S5. Cartesian atomic coordinates for the geometry optimized structure of 9 (B3LYP/6-31G(d)).

Н	-1.4916353795	4.5863094822	4.1585655001
Н	0.0483587787	4.4901407627	6.0932208368
Н	1.8706665552	2.8007146389	6.1806085133
Н	-4.5772829882	0.0267221622	-5.3470658777
Н	-5.8281715717	1.9619999243	-4.4129458430
Н	-5.1051850995	3.0317432441	-2.3018652148
Н	-3.1019999646	2.1794815584	-1.0767491858
С	-0.7770843236	0.0136002176	-6.0144011169
С	-1.9488093821	-2.0895570784	-6.3584762882
С	-3.7335199614	-3.154624609	-3.3461483236
С	-2.8022082410	-3.0045857985	-5.5876398718
С	1.3211526199	-0.9800773871	5.6904717862
С	3.6271432872	-0.2385850353	5.9066515560
С	4.4833241996	2.2767678574	3.3901752141
С	4.5403413411	0.7022017445	5.2427649095
С	-1.4876859483	-2.1565075546	-7.6748846811
С	-3.4056930698	-4.2127903146	-5.9425518242
Н	-0.5011368349	0.8499540184	-5.3775451972
С	-0.3161100251	-0.0558612062	-7.3336839692
Н	-3.8612086703	-2.7499401742	-2.3455404261
С	-4.3373411139	-4.3650771121	-3.7041415158
С	-4.1739294787	-4.8882654526	-4.9916539131
Н	-3.2816276505	-4.6247395713	-6.9408689568
С	-0.6693743899	-1.1319051459	-8.1556819906
Н	-1.7580611424	-2.9906582189	-8.3173494788
Н	-4.9381122298	-4.9027273290	-2.9756221545
Н	-4.6492157264	-5.8296235259	-5.2543700694
Н	0.3218286966	0.7331497888	-7.7225187532
Н	-0.3030224235	-1.1709964811	-9.1780936122
С	3.8260794283	-1.1015914422	6.9862620992
С	5.8784366737	1.0125617992	5.4942123600
Н	0.3556760909	-0.9358340645	5.1932920158
С	1.5228621530	-1.8439940532	6.7725603680
С	2.7651714917	-1.9030091084	7.4138889050
Н	4.7891441099	-1.1525790511	7.4878976246
Н	2.9061349861	-2.5792597318	8.2528681621
Н	0.7073875169	-2.4740371686	7.1172064679
С	6.5143432057	1.9587190159	4.6873546390

Н	6.4196284319	0.5275564457	6.3026382260
Н	3.9493056423	2.7646655120	2.5790030676
С	5.8241774144	2.5858677812	3.6439455101
Н	6.3332691774	3.3194691132	3.0247917941
Н	7.5555269021	2.2099694525	4.8714121012

Table S6. Results of TD-DFT calculation for 9 (TD-B3LYP/6-31G(d)//B3LYP/6-31G(d))

λ/nm	oscillator strength	transition	amplitude
532.00	1.0435	LUMO ← HOMO-2	-0.14168
		LUMO ← HOMO	0.58646
455.34	0.0001	LUMO ← HOMO-1	0.70195
444.47	0.1075	LUMO \leftarrow HOMO-2	0.68752

Figure S4. Molecular orbital plots for model compound 9.

¹H and ¹³C NMR Spectra

S54

