SUPPORTING INFORMATION

Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: Protein carbonylation is diminished by ascorbic acid

Juan Chavez[†], Woon-Gye Chung[†], Cristobal L. Miranda^{†,‡,§}, Mudita Singhal[¥], Jan F. Stevens^{‡,§},

and Claudia S. Maier †,*

[†]Department of Chemistry, [‡]Linus Pauling Institute, and [§]Department of Pharmaceutical

Sciences, Oregon State University, Corvallis, Oregon 97331; [¥]Applied Computer Science Group,

Pacific Northwest National Laboratory, Richland, WA 99352, USA

Table S1:	Mass spectrometry data of proteins identified in the gel regions (Figure 1A) that matched the immunoreactive bands in Figure 1B.
Table S2:	Mass spectrometry data of proteins identified in the gel regions (Figure 2A) that matched the immunoreactive bands in Figure 2B.
Figures S1-S25:	Tandem mass spectra of ARP-labeled HNE-peptide adducts.

Figure S26: Proposed CID fragmentation mechanisms of ARP-labeled HNE-peptide adducts.

Region	Protein	Mass	pI	Sequence	Peptide	Mascot
No.				Coverage	No.	Score
3	Heat shock protein HSP 90β (HS90B_HUMAN)	83,212	4.97	18%	12	537
	Matching peptides			Start-End	Mass	Score
	IDIIPNPQER			73 - 82	1194.69	38
	ADHGEPIGR			169 - 177	951.47	29
	EDQTEYLEER			187 - 196	1311.58	60
	YIDQEELNK			276 - 284	1151.57	43
	TKPIWTR			285 - 291	901.55	42
	NPDDITQEEYGEFYK			292 - 306	1847.86	61
	ALLFIPR			331 - 337	829.56	38
	GVVDSEDLPLNISR			379 - 392	1513.85	55
	FYEAFSK			429 - 435	891.44	41
	LGIHEDSTNR			439 - 448	1141.58	38
	SIYYITGESK			482 - 491	1160.60	38
	EQVANSAFVER			492 - 502	1249.65	54
4	Heat shock cognate 71kDa (HSP7C_HUMAN)	70,854	5.37	40%	19	1307
	VEIIANDQGNR			26 - 36	1228.60	33
	TTPSYVAFTDTER			37 - 49	1487.77	54
	NQVAMNPTNTVFDAK Oxidation (M)			57 - 71	1665.78	77
	RFDDAVVQSDMK Oxidation (M)			77 - 88	1426.62	25
	SFYPEEVSSMVLTK Oxidation (M)			113 - 126	1632.82	87
	EIAEAYLGK			129 - 137	993.53	41
	TVTNAVVTVPAYFNDSQR			138 - 155	1982.03	112
	DAGTIAGLNVLR			160 - 171	1199.68	57
	IINEPTAAAIAYGLDK			172 - 187	1659.89	120

Table S1. Mass spectrometry data of proteins identified in the gel regions (Figure 1A) that matched the immunoreactive bands in Figure 1B.

STAGDTHLGGEDFDNR	221 - 236	1691.70	108
MVNHFIAEFK Oxidation (M)	237 - 246	1251.66	56
FEELNADLFR	302 - 311	1253.62	82
SQIHDIVLVGGSTR	329 - 342	1481.87	90
LLQDFFNGK	349 - 357	1081.55	64
LLQDFFNGK Deamidation (N)	349 - 357	1082.54	49
SINPDEAVAYGAAVQAAILSGDK	362 - 384	2260.20	81
QTQTFTTYSDNQPGVLIQVYEGER	424 - 447	2774.38	33
NSLESYAFNMK Oxidation (M)	540 - 550	1319.64	51
NQTAEKEEFEHQQK	584 - 597	1745.78	87

6-1	Protein disulfide isomerase A3 (PDIA3_HUMAN)	56,747	5.98	34%	14	691
	LAPEYEAAATR			63 - 73	1191.62	73
	YGVSGYPTLK			95 - 104	1084.61	36
	QAGPASVPLR			131 - 140	995.57	27
	DASIVGFFDDSFSEAHSEFLK			153 - 173	2348.37	66
	LNFAVASR			297 - 304	877.53	34
	TFSHELSDFGLESTAGEIPVVAIR			306 - 329	2575.80	44
	FVMQEEFSR			336 - 344	1172.62	47
	FLQDYFDGNLK			352 - 362	1359.85	73
	VVVAENFDEIVNNENK			380 - 395	1833.08	37
	MDATANDVPSPYEVR			434 - 448	1664.86	63
	MDATANDVPSPYEVR.G Oxidation (M)			434 - 448	1680.81	32
	GFPTIYFSPANK			449 - 460	1341.86	60
	ELSDFISYLQR			472 - 482	1370.93	73
	EATNPPVIQEEKPK			483 - 496	1579.91	26
6-2	Adenylyl cyclase-associated protein 1	51,823	8.27	30%	18	1276
	(CAP1_HUMAN)					
	LEAVSHTSDMHR			18 - 29	1382.65	77
	LEAVSHTSDMHR Oxidation (M)			18 - 29	1398.61	29

HAEMVHTGLK	72 - 81	1122.61	92
HAEMVHTGLK Oxidation (M)	72 - 81	1138.52	76
ALLVTASQCQQPAENK	85 - 100	1700.92	26
ALLVTASQCQQPAENK Propionamide (C)	85 - 100	1771.97	76
LSDLLAPISEQIK	101 - 113	1426.97	119
EMNDAAMFYTNR	156 - 167	1462.72	94
EMNDAAMFYTNR Oxidation (M)	156 - 167	1478.68	36
EFHTTGLAWSK	199 - 209	1276.71	92
EFHTTGLAWSK Oxidation (W)	199 - 209	1292.69	46
KEPAVLELEGK	317 - 327	1212.73	91
EPAVLELEGK	318 - 327	1084.63	78
VENQENVSNLVIEDTELK	331 - 348	2073.26	107
QVAYIYK	349 - 355	884.49	34
VPTISINK	405 - 412	871.52	29
SSEMNVLIPTEGGDFNEFPVPEQFK	434 - 458	2811.90	87
SSEMNVLIPTEGGDFNEFPVPEQFK Oxidation (M)	434 - 458	2827.87	87

6-3	Vimentin (VIME_HUMAN)	53,619	5.06	44%	17	1136
	MFGGPGTASR			14 - 23	980.47	35
	SLYASSPGGVYATR			37 - 50	1495.87	95
	VELQELNDR			105 - 113	1115.59	63
	ILLAELEQLK			130 - 139	1169.90	90
	LGDLYEEEMR			146 - 155	1254.64	84
	LQEEMLQR			189 - 196	1046.53	51
	EEAENTLQSFR			197 - 207	1323.70	78
	KVESLQEEIAFLK			223 - 235	1534.02	44
	VESLQEEIAFLK			224 - 235	1405.95	48
	NLQEAEEWYK			283 - 292	1309.73	72
	FADLSEAANR			295 - 304	1093.55	41
	EMEENFAVEAANYQDTIGR			346 - 364	2187.24	129
	EMEENFAVEAANYQDTIGR Oxidation (M)			346 - 364	2203.19	29

LQDEIQNMKEEMAR	365 - 378	1734.96	39
ISLPLPNFSSLNLR	411 - 424	1571.17	84
ETNLDSLPLVDTHSK	425 - 439	1669.06	42
DGQVINETSQHHDDLE	451 - 466	1836.85	112

7	Tubulin alpha-1B chain (TBA1B_HUMAN)	50,120	4.93	23%	7	439
	TIGGGDDSFNTFFSETGAGK			41 - 60	2007.93	90
	AVFVDLEPTVIDEVR			65 - 79	1701.98	68
	QLFHPEQLITGK			85 - 96	1410.79	73
	EIIDLVLDR			113 - 121	1085.64	47
	NLDIERPTYTNLNR			216 - 229	1718.89	30
	IHFPLATYAPVISAEK			265 - 280	1757.02	69
	VGINYQPPTVVPGGDLAK			353 - 370	1825.04	62

8	α-Enolase (ENOA_HUMAN)	47,139	7.01	24%	5	341
	GNPTVEVDLFTSK			16 - 28	1406.75	74
	AAVPSGASTGIYEALELR			33 - 50	1805.02	46
	IGAEVYHNLK			184 - 193	1143.63	91
	VVIGMDVAASEFFR Oxidation (M)			240 - 253	1556.82	31
	YISPDQLADLYK			270 - 281	1425.74	99

9 41,710 Actin, cytoplasmic 1 (ACTB_HUMAN) 5.29 53% 19 1607 AGFAGDDAPR 19 - 28 976.38 51 AVFPSIVGR 29 - 37 945.58 57 AVFPSIVGRPR 29 - 39 944.57 52 HQGVMVGMGQK 40 - 50 1171.53 67 IWHHTFYNELR 85 - 95 1515.81 81 VAPEEHPVLLTEAPLNPK 96 - 113 1954.15 123 TTGIVMDSGDGVTHTVPIYEGYALPHAILR 148 - 177 3183.91 141 TTGIVMDSGDGVTHTVPIYEGYALPHAILR 148 - 177 3199.92 64

Oxidation (M)

13	Peroxiredoxin-6 (PRDX6_HUMAN)	25,019	6.00	21%	4	163
	DSTLIMQLLR Oxidation (M)			215 - 224	1205.66	26
	TAFDEAIAELDTLNEESYK			196 - 214	2159.16	84
	EMQPTHPIR Oxidation (M)			161 - 169	1124.56	26
	AVTEQGHELSNEER			30 - 43	1598.78	73
12-2	14-3-3 protein β/α (1433B_HUMAN)	28,065	4./0	21%	4	209
12.2	14.2.2 protein R/α /1422D IIIIRAAN	28 045	A 76	71 0/	Λ	200
	LNFNGEGEPEELMVDNWR Oxidation (M)			228 - 245	2165.09	30
	SADFTNFDPR			172 - 181	1169.56	62
	VVDVLDSIK			159 - 167	987.61	58
	AVQQPDGLAVLGIFLK			133 - 148	1669.05	107
	YAAELHLVHWNTK			114 - 126	1581.86	111
	GGPLDGTYR			81 - 89	935.51	51
	ILNNGHAFNVEFDDSQDK Deamidation (NQ)			59 - 76	2063.97	104
	YDPSLKPLSVSYDQATSLR			40 - 58	2140.16	121
	QSPVDIDTHTAK			28 - 39	1311.71	74
	HNGPEHWHK			10 - 18	1141.56	52
12-1	Carbonic anhydrase 2 (CAH2_HUMAN)	29,228	6.87	51%	10	770
	QEYDESGPSIVHR			360 - 372	1516.68	112
	EITALAPSTMK			316 - 326	1161.62	50
	DLYANTVLSGGTTMYPGIADR Oxidation (M)			292 - 312	2231.21	27
	DLYANTVLSGGTTMYPGIADR			292 - 312	2215.27	180
	KDLYANTVLSGGTTMYPGIADR			291 - 312	2343.21	123
	SYELPDGQVITIGNER			239 - 254	1790.97	108
	LCYVALDFEQEMATAASSSSLEK Oxidation (M)			216 - 238	2509.39	76
	LCYVALDFEQEMATAASSSSLEK			216 - 238	2493.49	144
	GYSFTTTAER			197 – 206	1132.52	75
	DLTDYLMK Oxidation (M)			184 - 191	1014.45	40
	DLTDYLMK			184 – 191	998.53	36

PGGLLLGDVAPNFEANTTVGR	2 - 22	2098.18	27
LPFPIIDDR	98 - 106	1085.62	73
LSILYPATTGR	145 - 155	1191.71	34
NFDEILR	156 - 162	906.50	29

17	Histone H2B type 1-M (H2B1M_HUMAN)	13,981	10.31	46%	6	336
	ESYSVYVYK			36 - 44	1137.49	72
	QVHPDTGISSK			48 - 58	1168.52	82
	AMGIMNSFVNDIFER 2 Oxidation (M)			59 - 73	1775.77	32
	LAHYNKR			81 - 87	901.43	25
	EIQTAVR			94 - 100	816.40	40
	LLLPGELAK			101 - 109	953.57	85

Region	Protein	Mass	pI	Sequence	Peptide	Mascot
No.				Coverage	No.	Score
1	Ribonuclease inhibitor (RINI_HUMAN)	49,941	4.71	42 %	15	1090
	Matching peptides			Start-End	Mass	Score
	WAELLPLLQQCQVVR Carbamidomethyl (C)			20 - 34	1853.14	33
	LDDCGLTEAR Carbamidomethyl (C)			35 - 44	1149.54	61
	VNPALAELNLR			54 - 64	1209.73	63
	SNELGDVGVHCVLQGLQTPSCK 2 Carbamidomethyl			65 - 86	2398.23	104
	(C)					
	LSLQNCCLTGAGCGVLSSTLR Phospho (ST)			90 - 110	2176.19	25
	LSLQNCCLTGAGCGVLSSTLR 3 Carbamidomethyl (C)			90 - 110	2267.21	123
	ELTVSNNDINEAGVR			174 - 188	1630.81	106
	DSPCQLEALK Carbamidomethyl (C)			196 - 205	1160.57	64
	LESCGVTSDNCR 2 Carbamidomethyl (C)			206 - 217	1397.54	61
	LGDVGMAELCPGLLHPSSR Carbamidomethyl (C),			239 - 257	2025.01	89
	Oxidation (M)					
	TLWIWECGITAK Carbamidomethyl (C)			260 - 271	1477.88	71
	ELSLAGNELGDEGAR			288 - 302	1530.77	127
	SCSFTAACCSHFSSVLAQNR 3 Carbamidomethyl (C)			322 - 341	2290.04	35
	ELCQGLGQPGSVLR Carbamidomethyl (C)			360 - 373	1513.84	74
	ELCQGLGQPGSVLR Carbamidomethyl (C), Deamidation			360 - 373	1514.82	54
	(NQ)					
2	Protein disulfide-isomerase (PDIA1_HUMAN)	57,081	4.76	57 %	30	2141
	KSNFAEALAAHK			31 - 42	1158.56	86
	SNFAEALAAHK			32 - 42	1286.63	97
	ALAPEYAK			58 - 65	862.45	53
	VDATEESDLAQQYGVR			82 - 97	1780.86	125
	EADDIVNWLK			121 - 130	862.46	102

Table S2. Mass spectrometry data of proteins identified in the gel regions (Figure 2A) that

 matched the immunoreactive bands in Figure 2B.

QFLQAAEAIDDIPFGITSNSDVFSK	171 - 195	2713.54	110
YQLDKDGVVLFK	196 - 207	1424.79	80
DGVVLFK	201 - 207	777.44	31
NNFEGEVTK	214 - 222	1037.48	32
ENLLDFIK	223 - 230	991.58	76
HNQLPLVIEFTEQTAPK	231 - 247	1965.13	164
HNQLPLVIEFTEQTAPK Deamidation (NQ)	231 - 247	1966.13	41
IFGGEIK	248 - 254	763.40	55
THILLFLPK	255 - 263	1081.70	80
ILFIFIDSDHTDNQR	286 - 300	1834.00	73
ILEFFGLK	301 - 308	966.60	67
LITLEEEMTK Oxidation (M)	317 - 326	1222.60	48
YKPESEELTAER	327 - 338	1451.69	90
ITEFCHR Carbamidomethyl (C)	339 - 345	962.44	49
NFEDVAFDEK	376 - 385	1213.55	87
NFEDVAFDEKK	376 - 386	1341.61	67
QLAPIWDK	402 - 409	970.53	59
QLAPIWDK Pyro-glu (N-term Q)	402 - 409	953.53	43
LGETYKDHENIVIAK	410 - 424	1729.89	107
DHENIVIAK	416 - 424	1038.52	72
MDSTANEVEAVK Oxidation (M)	425 - 436	1309.58	39
VHSFPTLK	437 - 444	928.48	45
FFPASADR	445 - 452	910.41	44
TVIDYNGER	453 - 461	1066.50	53
FLESGGQDGAGDDDLEDLEEAEEPDMEEDDDQK	469 - 502	3773.62	66
Oxidation (M)			
Tubulin beta-2C (TBB2C_HUMAN) 49,799 4.79	21 %	8	453
INVYYNEATGGK	47 - 58	1328.58	105
AVLVDLEPGTMDSVR Oxidation (M)	63 - 77	1617.84	36
AVLVDLEPGTMDSVR Me-ester (DE); Oxidation (M)	63 - 77	1631.85	33
IMNTFSVVPSPK Oxidation (M)	163 - 174	1335.69	78

6	Keratin, type II cytoskeletal 1 (K2C1_HUMAN)	65,978	8.16	41 %	23	1714
	DSTLIMQLLR Oxidation (M)			215 - 224	1205.69	36
	TAFDEAIAELDTLNEESYK			196 - 214	2159.15	109
	QTTVSNSQQAYQEAFEISK			141 - 159	2159.15	144
	QTTVSNSQQAYQEAFEISK Pyro-glu (N-term Q)			141 - 159	2142.10	93
	YLSEVASGDNK			130 - 140	1182.57	92
	YLIPNATQPESK			106 - 117	1360.78	67
	VISSIEQK			63 - 70	903.51	52
	NLLSVAYK			44 - 51	907.56	55
	AVTEQGHELSNEER			30 - 43	1598.73	106
5	14-3-3 protein β/α (1433B_HUMAN)	28,065	4.76	43%	9	754
	QEYDESGPSIVHR			360 - 372	1516.74	106
	QEYDESGPSIVHR Pyro-glu (N-term Q)			360 - 372	1499.75	99
	EITALAPSTMK Oxidation (M)			316 - 326	1177.64	52
	SYELPDGQVITIGNER			239 - 254	1790.97	91
	(C), Oxidation (M)					
	LCYVALDFEQEMATAASSSSLEK Carbamidomethyl			216 - 238	2566.29	54
	GYSFTTTAER			197 - 206	1132.57	53
	DLTDYLMK Oxidation (M)			184 - 191	1014.51	64
	VAPEEHPVLLTEAPLNPK			96 - 113	1954.16	135
	YPIEHGIVTNWDDMEK Me-ester (DE), Oxidation (M)			69 - 84	1977.00	81
	DSYVGDEAQSKR			51 - 62	1354.64	55
	AVFPSIVGR			29 - 37	945.61	63
	AGFAGDDAPR			19 - 28	976.47	80
	ester (DE), Oxidation (M)					
	DDDIAALVVDNGSGMCK Carbamidomethyl (C), 3 Me-			2 - 18	1837.85	93
4	β-Actin (ACTB_HUMAN)	41,710	5.29	45 %	13	1026
	EVDEQMLNVQNK Deamidation (NQ), 2 Me-ester (DE)			325 - 336	1475.74	29
	YLTVAAVFR			310 - 318	1039.67	34
	ALTVPELTQQMFDAK Oxidation (M)			283 - 297	1707.88	72
	FPGQLNADLR			242 - 251	1130.63	66

SLNNQFASFIDK			186 - 197	1383.74	96
SLNNQFASFIDKVR			186 - 199	1638.93	81
FLEQQNQVLQTK			200 - 211	1475.82	89
WELLQQVDTSTR			212 - 223	1475.81	71
THNLEPYFESFINNLR			224 - 239	1994.10	71
NMQDMVEDYR			258 - 267	1300.57	51
NMQDMVEDYR 2 Deamidation (NQ); Me-ester (DE)			258 - 267	1316.57	37
NMQDMVEDYR Oxidation (M)			258 - 267	1316.56	37
NKYEDEINKR			268 - 277	1308.68	41
YEDEINKR			270 - 277	1066.54	60
TNAENEFVTIK			278 - 288	1265.68	95
TNAENEFVTIKK			278 - 289	1393.76	88
SLDLDSIIAEVK			344 - 355	1302.77	111
SKAEAESLYQSKYEELQITAGR			365 - 386	2501.33	29
YEELQITAGR			377 - 386	1179.64	75
IEISELNR			396 - 403	973.56	39
QISNLQQSISDAEQR Pyro-glu (N-term Q)			418 - 432	1699.90	47
QISNLQQSISDAEQR			418 - 432	1716.90	96
LNDLEDALQQAK			444 - 455	1357.73	103
LALDLEIATYR			473 - 483	1277.77	51
TLLEGEESR			484 - 492	1033.54	38
GGGGGGYGSGGSSYGSGGGSYGSGGGGGGGG			519 - 549	2383.98	189
GSYGSGGSSYGSGGGSYGSGGGGGGGGGSYGSGSSSG			550 - 588	3312.35	119
GYR					
Coronin-1A (COR1A_HUMAN)	50,994	6.25	255	12	848
HVFGQPAK			13 - 20	883.43	62
ADQCYEDVR Carbamidomethyl (C)			21 - 29	1155.41	49
VSQTTWDSGFCAVNPK Carbamidomethyl (C)			30 - 45	1796.88	135
EPVVTLEGHTK			122 - 132	1209.63	88
DGGLICTSCR 2 Carbamidomethyl (C)			187 - 196	1138.48	35
ILTTGFSR			234 - 241	894.52	45

		QVALWDTK			246 - 253	960.49	68
		RCEPIAMTVPR Carbamidomethyl (C); Oxidation (M)			344 - 354	1345.63	27
		DAGPLLISLK			384 - 393	1026.61	89
		AAPEASGTPSSDAVSR			417 - 432	1502.67	83
		KLQATVQELQK			439 - 449	1285.74	99
		LQATVQELQK			440 - 449	1157.64	68
	8	Stress-induced-phosphoprotein 1 (STIP1_HUMAN)	62,599	6.40	25 %	10	622
		LDPHNHVLYSNR					
		KAAALEFLNR			33 - 44	1464.64	79
		AAALEFLNR			78 - 87	1132.63	47
		ELIEQLR			79 - 87	1004.58	38
		ELDPTNMTYITNQAAVYFEK Oxidation (M)			154 - 160	900.51	26
		DAIHFYNK			253 - 272	2364.19	108
		LAYINPDLALEEK			318 - 325	1007.45	45
		DCEECIQLEPTFIK 2 Carbamidomethyl (C)			352 - 364	1488.82	91
		LILEQMQK Oxidation (M)			416 - 429	1781.85	67
		DPQALSEHLK			506 - 513	1018.50	39
					514 - 523	1137.52	82
	9	α-Enolase (ENOA_HUMAN)	47,139	7.01	33%	9	617
		EIFDSR			10 - 15	766.35	28
		GNPTVEVDLFTSK			16 - 28	1406.72	87
		AAVPSGASTGIYEALELR			33 - 50	1805.00	81
		IGAEVYHNLK			184 - 193	1143.58	91
		VVIGMDVAASEFFR Oxidation (M)			240 - 253	1556.80	57
		YDLDFK			257 - 262	800.38	28
		YISPDQLADLYK			270 - 281	1425.76	79
		VNQIGSVTESLQACK Carbamidomethyl (C)			344 - 358	1633.80	135
		YNQLLR			407 - 412	806.43	31
-	10	Purine nucleoside phosphorylase (PNPH_HUMAN)	32,097	6.45	40 %	9	493
		NTAEWLLSHTK			12 - 22	1299.71	57
		LTQAQIFDYGEIPNFPR			42 - 58	2009.05	39

	LVFGFLNGR			68 - 76	1022.64	35
	LVFGFLNGR Deamidation (NQ)			68 - 76	1023.62	35
	DHINLPGFSGQNPLR			134 - 148	1664.87	47
	FPAMSDAYDR Oxidation (M)			159 - 168	1188.52	36
	LGADAVGMSTVPEVIVAR Oxidation (M)			212 - 229	1801.02	67
	VFGFSLITNK			235 - 244	1125.69	69
	ANHEEVLAAGK			255 - 265	1138.61	108
11	Carbonic anhydrase 2 (CAH2_HUMAN)	29,228	6.87	55 %	12	1153
	HNGPEHWHK			10 - 18	1141.54	60
	QSPVDIDTHTAK Pyro-glu (N-term Q)			28 - 39	1294.62	91
	QSPVDIDTHTAK			28 - 39	1311.65	81
	YDPSLKPLSVSYDQATSLR			40 - 58	2140.18	149
	ILNNGHAFNVEFDDSQDK			59 - 76	2062.94	149
	GGPLDGTYR			81 - 89	935.45	62
	YAAELHLVHWNTK			114 - 126	1581.82	115
	AVQQPDGLAVLGIFLK			133 - 148	1669.02	120
	VVDVLDSIK			159 - 167	987.57	86
	SADFTNFDPR			172 - 181	1169.56	72
	EPISVSSEQVLK			213 - 224	1315.75	98
	LNFNGEGEPEELMVDNWR Oxidation (M)			228 - 245	2165.00	70

Figure S1. (A) MS/MS spectrum and (B) Full scan mass spectrum of the $[M+2H]^{2+}$ ion of the ARP-HNE modified peptide SIQFVDWC*PTGFK; monoisotopic m/z_{calc} 998.9866; accuracy $\Delta(m/z) = -0.4$ ppm.

Figure S2. (A) MS/MS and (B) MS spectrum of the MH⁺ ion of the ARP-HNE modified peptide SIQFVDWC*PTGFK obtained on the MALDI-TOF/TOF instrument; expected monoisotopic MH⁺ 1996.97 Da; mass accuracy $\Delta m = 0.10$ Da (47 ppm). P; precursor ion; F1 and F2, non-peptide fragment ions related to the ARP tag (see Figure S26).

Figure S3. (A) MS/MS spectrum and (B) Full scan mass spectrum of the $[M+3H]^{3+}$ ion of the ARP-HNE modified peptide AYHEQLSVAEITNAC*FEPANQMVK; monoisotopic m/z_{calc} 1054.8401; accuracy $\Delta(m/z) = 6.3$ ppm.

#	b	b++	b*	b* ⁺⁺	հ ⁰	հ 0++	Seq.	у	y++	y*	y*++	y ⁰	y ⁰⁺⁺	#
1	114.09	57.55					Ι							15
2	686.34	343.67					С	2057.95	1029.48	2040.93	1020.97	2039.94	1020.47	14
3	801.36	401.19			783.35	392.18	D	1485.71	743.36	1468.68	734.84	1467.70	734.35	13
4	929.42	465.21	912.40	456.70	911.41	456.21	Q	1370.68	685.84	1353.65	677.33	1352.67	676.84	12
5	1115.50	558.25	1098.47	549.74	1097.49	549.25	W	1242.62	621.81	1225.60	613.30	1224.61	612.81	11
6	1230.53	615.77	1213.50	607.25	1212.52	606.76	D	1056.54	528.78	1039.52	520.26	1038.53	519.77	10
7	1301.57	651.29	1284.54	642.77	1283.55	642.28	Α	941.52	471.26	924.49	462.75	923.51	462.26	9
8	1414.65	707.83	1397.62	699.32	1396.64	698.82	L	870.48	435.74	853.45	427.23	852.47	426.74	8
9	1471.67	736.34	1454.64	727.83	1453.66	727.33	G	757.40	379.20	740.37	370.69	739.38	370.20	7
10	1558.70	779.86	1541.68	771.34	1540.69	770.85	S	700.37	350.69	683.35	342.18	682.36	341.69	6
11	1671.79	836.40	1654.76	827.88	1653.78	827.39	L	613.34	307.17	596.32	298.66	595.33	298.17	5
12	1772.83	886.92	1755.81	878.41	1754.82	877.92	Τ	500.26	250.63	483.23	242.12	482.25	241.63	4
13	1909.89	955.45	1892.87	946.94	1891.88	946.45	н	399.21	200.11	382.18	191.60	381.20	191.10	3
14	1996.93	998.97	1979.90	990.45	1978.91	989.96	S	262.15	131.58	245.12	123.07	244.14	122.57	2
15							R	175.12	88.06	158.09	79.55			1

Figure S4. (A) MS/MS spectrum and (B) Full scan mass spectrum of the [M+3H]³⁺ ion of the ARP-HNE modified peptide IC*DQWDALGSLTHSR; monoisotopic m/z_{calc} 724.3506, accuracy Δ (m/z) = 1.3 ppm.

Figure S5. (A) MS/MS and (B) MS spectrum of the MH⁺ ion of the ARP-HNE modified peptide IC*DQWDALGSLTHSR obtained on the MALDI-TOF/TOF instrument; expected monoisotopic MH⁺ 2171.04 Da; mass accuracy $\Delta m = 0.04$ Da (20 ppm). P, precursor ion; F1 and F2, non-peptide fragment ions related to the ARP tag (see Figure S26).

Mascot search result for the fragment ion spectrum depicted above:

=52.18-52.31 min, Isolation=674.34 Da / 2.00 Da	#	b	b ⁺⁺	b*	b* ⁺⁺	հ 0	հ 0++	Seq.	у	y ⁺⁺	у*	y***	y ⁰	y 0 ++	#
	1	573.25	287.13					С							13
	2	701.31	351.16	684.28	342.65			Q	1448.77	724.89	1431.75	716.38	1430.76	715.89	12
674.3451 z=3674.6800	3	814.39	407.70	797.37	399.19			L	1320.72	660.86	1303.69	652.35	1302.71	651.86	11
z=3	4	943.44	472.22	926.41	463.71	925.43	463.22	E	1207.63	604.32	1190.61	595.81	1189.62	595.31	10
	5	1056.52	528.76	1039.50	520.25	1038.51	519.76	Ι	1078.59	539.80	1061.56	531.28	1060.58	530.79	9
675.0137 z=3	6	1170.56	585.79	1153.54	577.27	1152.55	576.78	Ν	965.51	483.26	948.48	474.74	947.49	474.25	8
675_3453	7	1317.63	659.32	1300.61	650.81	1299.62	650.31	F	851.46	426.23	834.44	417.72	833.45	417.23	7
Z=3	8	1431.68	716.34	1414.65	707.83	1413.67	707.34	N	704.39	352.70	687.37	344.19	686.38	343.70	6
	9	1532.72	766.87	1515.70	758.35	1514.71	757.86	Т	590.35	295.68	573.32	287.17	572.34	286.67	5
675.6798	10	1645.81	823.41	1628.78	814.89	1627.80	814.40	L	489.30	245.16	472.28	236.64	471.29	236.15	4
	11	1773.87	887.44	1756.84	878.92	1755.86	878.43	Q	376.22	188.61	359.19	180.10	358.21	179.61	3
<mark>- ↓ </mark>	12	1874.91	937.96	1857.89	929.45	1856.90	928.96	Τ	248.16	124.58	231.13	116.07	230.15	115.58	2
m/z	13							К	147.11	74.06	130.09	65.55			1

Figure S6. (A) MS/MS spectrum and (B) Full scan mass spectrum of the [M+3H]³⁺ ion of the ARP-HNE modified peptide C*QLEINFNTLQTK; monoisotopic m/z_{calc} 674.3447; accuracy $\Delta(m/z) = 0.6$ ppm.

#	b	b++	b*	b* ⁺⁺	հ 0	հ 0++	Seq.	у	y++	y*	y*++	y ⁰	y 0 ++	#
1	114.09	57.55					Ι							14
2	686.34	343.67					C	1960.93	980.97	1943.90	972.45	1942.91	971.96	13
3	801.36	401.19			783.35	392.18	D	1388.68	694.84	1371.65	686.33	1370.67	685.84	12
4	929.42	465.21	912.40	456.70	911.41	456.21	Q	1273.65	637.33	1256.63	628.82	1255.64	628.33	11
5	1115.50	558.25	1098.47	549.74	1097.49	549.25	W	1145.59	573.30	1128.57	564.79	1127.58	564.30	10
6	1230.53	615.77	1213.50	607.25	1212.52	606.76	D	959.52	480.26	942.49	471.75	941.51	471.26	9
7	1344.57	672.79	1327.54	664.28	1326.56	663.78	N	844.49	422.75	827.46	414.23	826.48	413.74	8
8	1457.66	729.33	1440.63	720.82	1439.64	720.33	L	730.45	365.73	713.42	357.21	712.44	356.72	7
9	1514.68	757.84	1497.65	749.33	1496.67	748.84	G	617.36	309.18	600.34	300.67	599.35	300.18	6
10	1585.71	793.36	1568.69	784.85	1567.70	784.36	Α	560.34	280.67	543.31	272.16	542.33	271.67	5
11	1698.80	849.90	1681.77	841.39	1680.79	840.90	L	489.30	245.16	472.28	236.64	471.29	236.15	4
12	1799.85	900.43	1782.82	891.91	1781.83	891.42	T	376.22	188.61	359.19	180.10	358.21	179.61	3
13	1927.90	964.46	1910.88	955.94	1909.89	955.45	Q	275.17	138.09	258.14	129.58			2
14							K	147.11	74.06	130.09	65.55			1

Figure S7. (A) MS/MS spectrum and (B) Full scan mass spectrum of the [M+3H]³⁺ ion of the ARP-HNE modified peptide IC*DQWDNLGALTQK; monoisotopic m/ z_{calc} 692.0080; $\Delta m = 1.2$ ppm.

Figure S8. (A) MS/MS spectrum and (B) Full scan mass spectrum of the $[M+2H]^{2+}$ ion of the ARP-HNE modified peptide NAGNC*LSPAVIVGLLK; monoisotopic m/z_{calc} 1019.5630; accuracy $\Delta(m/z) = 0.7$ ppm.

Figure S9. (A) MS/MS spectrum and (B) Full scan mass spectrum of the $[M+2H]^{2+}$ ion of the ARP-HNE modified peptide QVQSLTC*EVDALK; monoisotopic m/z_{calc} 951.9868; accuracy $\Delta(m/z) = 2.0$ ppm.

Figure S10. (A) MS/MS spectrum and (B) Full Scan mass spectrum of the $[M+2H]^{2+}$ ion of the ARP-HNE modified peptide ALLVTASQC*QQPAENK; monoisotopic m/z_{calc} 1085.5534, accuracy $\Delta(m/z) = 0.2$ ppm.

#	ь	b++	b*	b *++	b ⁰	b ⁰⁺⁺	Seq.	у	y++	y*	y*++	y ⁰	y ⁰⁺⁺	#
1	88.04	44.52			70.03	35.52	S							19
2	660.28	330.65			642.27	321.64	C	2232.97	1116.99	2215.95	1108.48	2214.96	1107.99	18
3	747.32	374.16			729.31	365.16	S	1660.73	830.87	1643.70	822.36	1642.72	821.86	17
4	804.34	402.67			786.33	393.67	G	1573.70	787.35	1556.67	778.84	1555.69	778.35	16
5	903.41	452.21			885.40	443.20	V	1516.68	758.84	1499.65	750.33	1498.67	749.84	15
6	1032.45	516.73			1014.44	507.72	E	1417.61	709.31	1400.58	700.79	1399.60	700.30	14
7	1179.52	590.26			1161.51	581.26	F	1288.57	644.79	1271.54	636.27	1270.55	635.78	13
8	1266.55	633.78			1248.54	624.77	S	1141.50	571.25	1124.47	562.74	1123.49	562.25	12
9	1367.60	684.30			1349.59	675.30	T	1054.46	527.74	1037.44	519.22	1036.45	518.73	11
10	1454.63	727.82			1436.62	718.81	S	953.42	477.21	936.39	468.70	935.41	468.21	10
11	1511.65	756.33			1493.64	747.32	G	866.39	433.70	849.36	425.18	848.37	424.69	9
12	1598.68	799.84			1580.67	790.84	S	809.36	405.19	792.34	396.67	791.35	396.18	8
13	1685.71	843.36			1667.70	834.36	S	722.33	361.67	705.30	353.16	704.32	352.66	7
14	1799.76	900.38	1782.73	891.87	1781.75	891.38	N	635.30	318.15	618.27	309.64	617.29	309.15	6
15	1900.81	950.91	1883.78	942.39	1882.79	941.90	T	521.26	261.13	504.23	252.62	503.25	252.13	5
16	2015.83	1008.42	1998.81	999.91	1997.82	999.41	D	420.21	210.61	403.18	202.09	402.20	201.60	4
17	2116.88	1058.94	2099.85	1050.43	2098.87	1049.94	T	305.18	153.09	288.16	144.58	287.17	144.09	3
18	2173.90	1087.45	2156.87	1078.94	2155.89	1078.45	G	204.13	102.57	187.11	94.06			2
19							K	147.11	74.06	130.09	65.55			1

Figure S11. (A) MS/MS spectrum and (B) Full scan mass spectrum of the $[M+3H]^{3+}$ ion of the ARP-HNE modified peptide SC*SGVEFSTSGSSNTDTGK; monoisotopic m/z_{calc} 774.0071; accuracy $\Delta(m/z) = 1.7$ ppm.

y_{15} y_{14} y_{13} y_{12} y_{11} y_{10} y_{9} y_{8} y_{7} y_{6} S-C*-S-G-V-E-F-S-T-S-G-S-S-N-T-D-T-G-K

Figure S12. (A) MS/MS and (B) MS spectrum of the MH⁺ ion of the ARP-HNE modified peptide SC*SGVEFSTSGSSNTDTGK obtained on the MALDI-TOF/TOF instrument; expected monoisotopic MH⁺ 2320.01 Da; mass accuracy $\Delta m = -0.02$ Da (-7 ppm). P, precursor ion; F1 and F2, non-peptide fragment ions related to the ARP tag (see Figure S26).

#	Ь	b++	b*	b*++	ԵՍ	ь ⁰⁺⁺	Seq.	у	y ⁺⁺	y*	y***	yU	y 0 ++	#
1	607.30	304.15					Η							17
2	710.31	355.66					С	1774.81	887.91	1757.78	879.39	1756.80	878.90	16
3	825 34	413 17			807 33	404 17	D	1671 80	836.40	1654 77	827 89	1653 79	827 40	15
4	954.38	477.69			936.37	468.69	E	1556.77	778.89	1539.74	770.38	1538.76	769.88	14
5	1053.45	527.23			1035.44	518.22	V	1427.73	714.37	1410.70	705.85	1409.72	705.36	13
6	1110.47	555.74			1092.46	546.73	G	1328.66	664.83	1311.63	656.32	1310.65	655.83	12
7	1257.54	629.27			1239.53	620.27	F	1271.64	636.32	1254.61	627.81	1253.63	627.32	11
8	1371.58	686.29	1354.56	677.78	1353.57	677.29	Ν	1124.57	562.79	1107.54	554.28	1106.56	553.78	10
9	1442.62	721.81	1425.59	713.30	1424.61	712.81	Α	1010.53	50 5.77	993.50	497.25	992.52	496.76	9
10	1571.66	786.33	1554.64	777.82	1553.65	777.33	E	939.49	470.25	922.46	461.74	921.48	461.24	8
11	1700.70	850.86	1683.68	842.34	1682.69	841.85	E	810.45	405.73	793.42	397.21	792.44	396.72	7
12	1771.74	886.37	1754.71	877.86	1753.73	877.37	Α	681.40	341.21	664.38	332.69			6
13	1908.80	954.90	1891.77	946.39	1890.79	945.90	н	610.37	305.69	593.34	297.17			5
14	2022.84	1011.93	2005.82	1003.41	2004.83	1002.92	Ν	473.31	237.16	456.28	228.64			4
15	2135.93	1068.47	2118.90	1059.95	2117.92	1059.46	Ι	359.27	180.14	342.24	171.62			3
16	2235.00	1118.00	2217.97	1109.49	2216.99	1109.00	V	246.18	123.59	229.15	115.08			2
17							к	147.11	74.06	130.09	65.55			1

Figure S13. (A) MS/MS and (B) Full scan mass spectrum of the $[M+3H]^{3+}$ ion of the ARP-HNE modified peptide (HC)*DEVGFNAEEAHNIVK; monoisotopic m/z_{calc} 794.3719; accuracy $\Delta(m/z) = 3.4$ ppm. Note, the low abundant y₁₆ (2+) fragment ion at m/z 877.5 may indicate adduction of the N-terminal His residue.

Figure S14. (A) MS/MS spectrum and (B) Full scan mass spectrum of the $[M+3H]^{3+}$ ion of the ARP-HNE modified peptide RH*EILQWVLQTDSQQ; monoisotopic m/z_{calc} 784.0706; accuracy $\Delta(m/z) = 2.6$ ppm.

Figure S15. (A) MS/MS and (B) Full scan mass spectrum of the $[M+3H]^{3+}$ ion of the ARP-HNE modified peptide FSH*EEIAMATVTALR; monoisotopic m/z_{calc} 715.6992; accuracy $\Delta(m/z) = 1.2$ ppm.

#	b	b++	b*	b* ⁺⁺	Seq.	у	y ⁺⁺	у*	y* ⁺⁺	#
1	607.30	304.15			H					11
2	735.36	368.18	718.33	359.67	Q	1066.50	533.75	1049.48	525.24	10
3	792.38	396.69	775.36	388.18	G	938.44	469.73	921.42	461.21	9
4	891.45	446.23	874.42	437.72	V	881.42	441.21	864.40	432.70	8
5	1038.49	519.75	1021.46	511.23	м	782.35	391.68	765.33	383.17	7
6	1137.55	569.28	1120.53	560.77	V	635.32	318.16	618.29	309.65	6
7	1194.58	597.79	1177.55	589.28	G	536.25	268.63	519.22	260.12	5
8	1341.61	671.31	1324.58	662.80	м	479.23	240.12	462.20	231.60	4
9	1398.63	699.82	1381.61	691.31	G	332.19	166.60	315.17	158.09	3
0	1526.69	763.85	1509.66	755.34	Q	275.17	138.09	258.14	129.58	2
1					K	147.11	74.06	130.09	65.55	1

Figure S16. (A) MS/MS spectrum and (B) Full scan mass spectrum of the $[M+3H]^{3+}$ ion of the ARP-HNE modified peptide H*QGVMVGMGQK; monoisotopic m/z_{calc} 558.2704; accuracy $\Delta(m/z) = 1.5$ ppm.

#	Immon.	a	a*	a ⁰	Ь	b*	ь ⁰	Seq.	у	y*	y ⁰	#
1	87.06	87.06	70.03		115.05	98.02		N				11
2	70.07	184.11	167.08		212.10	195.08		Р	1677.81	1660.79	1659.80	10
3	86.10	297.19	280.17		325.19	308.16		I	1580.76	1563.73	1562.75	5
4	88.04	412.22	395.19	394.21	440.21	423.19	422.20	D	1467.68	1450.65	1449.67	8
5	110.07	549.28	532.25	531.27	577.27	560.25	559.26	H	1352.65	1335.62	1334.64	1
6	72.08	648.35	631.32	630.34	676.34	659.31	658.33	V	1215.59	1198.56	1197.58	(
7	60.04	735.38	718.35	717.37	763.37	746.35	745.36	S	1116.52	1099.50	1098.51	1
8	120.08	882.45	865.42	864.44	910.44	893.42	892.43	F	1029.49	1012.46		4
9	136.08	1045.51	1028.48	1027.50	1073.51	1056.48	1055.49	Y	882.42	865.39		3
10	76.02	1148.52	1131.49	1130.51	1176.51	1159.49	1158.50	С	719.36	702.33		1
11	570.34							K	616.35	599.32]

Figure S17. (A) MS/MS and (B) mass spectrum of the MH⁺ ion of the ARP-HNE modified peptide NPIDHVSFYC*K obtained on the MALDI-TOF/TOF instrument; expected monoisotopic MH⁺ 1791.86 Da; $\Delta m = 0.03$ Da (19 ppm). P, precursor ion; F1 and F2, non-peptide fragment ions related to the ARP tag (see Figure S26).

Figure S18. (A) MS/MS and (B) MS spectrum of the MH⁺ ion of the ARP-HNE modified peptide VTDDLVC*LVYK obtained on the MALDI-TOF/TOF instrument; expected monoisotopic MH⁺ 1736.90 Da; mass accuracy $\Delta m = 0.17$ Da (94 ppm). F1 and F2, non-peptide fragment ions related to the ARP tag (see Figure S26).

SRP09_HUMAN

Mascot search result for the MS/MS spectrum depicted above:

#	b	b++	հ ⁰	հ 0++	Seq.	у	y++	y*	y*++	y ⁰	y 0 ++	#
1	100.08	50.54			V							11
2	201.12	101.07	183.11	92.06	T	1637.83	819.42	1620.80	810.90	1619.82	810.41	10
3	316.15	158.58	298.14	149.57	D	1536.78	768.89	1519.75	760.38	1518.77	759.89	9
4	431.18	216.09	413.17	207.09	D	1421.75	711.38	1404.73	702.87	1403.74	702.37	8
5	544.26	272.63	526.25	263.63	L	1306.73	653.87	1289.70	645.35			7
6	643.33	322.17	625.32	313.16	V	1193.64	597.32	1176.62	588.81			6
7	1215.57	608.29	1197.56	599.29	C	1094.57	547.79	1077.55	539.28			5
8	1328.66	664.83	1310.65	655.83	L	522.33	261.67	505.30	253.15			4
9	1427.73	714.37	1409.72	705.36	V	409.24	205.13	392.22	196.61			3
10	1590.79	795.90	1572.78	786.89	Y	310.18	155.59	293.15	147.08			2
11					K	147.11	74.06	130.09	65.55			1

Figure S19. (A) MS/MS and (B) Full scan mass spectrum of the $[M+2H]^{2+}$ ion of the ARP-HNE modified peptide VTDDLVC*LVYK; monoisotopic m/z_{calc} 868.9517, accuracy $\Delta(m/z) = 1.8$ ppm.

1	vi	asu	1 200		esui				0.3	peci	runn (rehi	cieu	abuv	с.	
-	#	Immon.	a	a*	a ⁰	ь	b*	հ 0	Seq.	v	w	w'	у	y*	y ⁰	7
Γ	1	70.07	70.07			98.06			P							1
	2	30.03	127.09			155.08			G				1985.97	1968.94	1967.96	1
	3	110.07	264.15			292.14			H	1846.89			1928.95	1911.92	1910.94	1
	4	86.10	377.23			405.22			L	1733.81	1732.81		1791.89	1774.86	1773.88	1
	5	101.07	505.29	488.26		533.28	516.26		Q	1605.75	1604.76		1678.80	1661.78	1660.79	1
	6	102.05	634.33	617.30	616.32	662.33	645.30	644.32	E	1476.71	1475.71		1550.75	1533.72	1532.73	1
	7	30.03	691.35	674.33	673.34	719.35	702.32	701.34	G				1421.70	1404.68	1403.69	
	8	120.08	838.42	821.39	820.41	866.42	849.39	848.40	F	1272.62			1364.68	1347.65	1346.67	
	9	30.03	895.44	878.42	877.43	923.44	906.41	905.43	G				1217.61	1200.59	1199.60	
1	L O	545.26	1467.69	1450.66	1449.68	1495.68	1478.66	1477.67	C	643.35	642.36		1160.59	1143.56	1142.58	
1	1	72.08	1566.76	1549.73	1548.74	1594.75	1577.72	1576.74	V	544.28	557.30		588.35	571.32	570.34	
1	2	72.08	1665.82	1648.80	1647.81	1693.82	1676.79	1675.81	V	445.22	458.24		489.28	472.25	471.27	
1	.3	74.06	1766.87	1749.85	1748.86	1794.87	1777.84	1776.86	Т	344.17	357.19	359.17	390.21	373.18	372.20	
1	4	87.06	1880.91	1863.89	1862.90	1908.91	1891.88	1890.90	N	230.12	229.13		289.16	272.14		
ſ	15	129.11							R	74.02	73.03		175.12	158.09		

Figure S20. (A) MS/MS and (B) MS spectrum of the MH⁺ of the ARP-HNE modified peptide PGHLQEGFGC*VVTNR obtained on the MALDI-TOF/TOF instrument; expected monoisotopic MH⁺ 2083.02 Da; mass accuracy $\Delta m = 0.07$ Da (33 ppm). P, precursor ion; F1 and F2, non-peptide fragment ions related to the ARP tag (see Figure S26).

PAIRB_HUMAN

A.

Mascot search result for the MS/MS spectrum depicted above:

#	b	b++	b*	b* ⁺⁺	հ 0	հ 0++	Seq.	У	y++	y*	y***	y ⁰	y0++	#
1	98.06	49.53					P							15
2	155.08	78.04					G	1985.97	993.49	1968.94	984.97	1967.96	984.48	14
3	292.14	146.57					H	1928.95	964.98	1911.92	956.46	1910.94	955.97	13
4	405.22	203.12					L	1791.89	896.45	1774.86	887.93	1773.88	887.44	12
5	533.28	267.15	516.26	258.63			Q	1678.80	839.91	1661.78	831.39	1660.79	830.90	11
6	662.33	331.67	645.30	323.15	644.32	322.66	E	1550.75	775.88	1533.72	767.36	1532.73	766.87	10
7	719.35	360.18	702.32	351.66	701.34	351.17	G	1421.70	711.36	1404.68	702.84	1403.69	702.35	9
8	866.42	433.71	849.39	425.20	848.40	424.71	F	1364.68	682.84	1347.65	674.33	1346.67	673.84	8
9	923.44	462.22	906.41	453.71	905.43	453.22	G	1217.61	609.31	1200.59	600.80	1199.60	600.30	7
10	1495.68	748.34	1478.66	739.83	1477.67	739.34	С	1160.59	580.80	1143.56	572.29	1142.58	571.79	6
11	1594.75	797.88	1577.72	789.37	1576.74	788.87	V	588.35	294.68	571.32	286.16	570.34	285.67	5
12	1693.82	847.41	1676.79	838.90	1675.81	838.41	V	489.28	245.14	472.25	236.63	471.27	236.14	4
13	1794.87	897.94	1777.84	889.42	1776.86	888.93	T	390.21	195.61	373.18	187.10	372.20	186.60	3
14	1908.91	954.96	1891.88	946.45	1890.90	945.95	N	289.16	145.08	272.14	136.57			2
15							R	175.12	88.06	158.09	79.55			1

Figure S21. (A) MS/MS and (B) Full scan mass spectrum of the $[M+3H]^{3+}$ ion of the ARP-HNE modified peptide PGHLQEGFGC*VVTNR; monoisotopic m/z_{calc} 695.0119; accuracy $\Delta(m/z) = 1.7$ ppm.

Figure S22. (A) MS/MS and (B) MS spectrum of the MH⁺ ion of the ARP-HNE modified peptide HELQANC*YEEVKDR obtained on the MALDI-TOF/TOF instrument; expected monoisotopic MH⁺ 2203.03 Da; mass accuracy $\Delta m = 0.08$ Da (-35 ppm). P, precursor ion; F1 and F2, non-peptide fragment ions related to the ARP tag (see Figure S26).

#	b	b++	b*	b* ⁺⁺	հ 0	հ ⁰⁺⁺	Seq.	у	y++	y*	y***	y ⁰	y ⁰⁺⁺	#
1	138.07	69.54					H							14
2	267.11	134.06			249.10	125.05	E	2065.97	1033.49	2048.94	1024.97	2047.96	1024.48	13
3	380.19	190.60			362.18	181.59	L	1936.93	968.97	1919.90	960.45	1918.91	959.96	12
4	508.25	254.63	491.22	246.12	490.24	245.62	Q	1823.84	912.42	1806.81	903.91	1805.83	903.42	11
5	579.29	290.15	562.26	281.63	561.28	281.14	Α	1695.78	848.40	1678.76	839.88	1677.77	839.39	10
6	693.33	347.17	676.30	338.66	675.32	338.16	N	1624.75	812.88	1607.72	804.36	1606.74	803.87	9
7	1265.58	633.29	1248.55	624.78	1247.57	624.29	С	1510.70	755.86	1493.68	747.34	1492.69	746.85	8
8	1428.64	714.82	1411.61	706.31	1410.63	705.82	Y	938.46	469.73	921.43	461.22	920.45	460.73	7
9	1557.68	779.34	1540.66	770.83	1539.67	770.34	E	775.39	388.20	758.37	379.69	757.38	379.20	6
10	1686.73	843.87	1669.70	835.35	1668.71	834.86	E	646.35	323.68	629.33	315.17	628.34	314.67	5
11	1785.79	893.40	1768.77	884.89	1767.78	884.40	V	517.31	259.16	500.28	250.64	499.30	250.15	4
12	1913.89	957.45	1896.86	948.93	1895.88	948.44	к	418.24	209.62	401.21	201.11	400.23	200.62	3
13	2028.92	1014.96	2011.89	1006.45	2010.90	1005.96	D	290.15	145.58	273.12	137.06	272.14	136.57	2
14							R	175.12	88.06	158.09	79.55			1

Figure S23. (A) MS/MS spectrum and (B) Full scan mass spectrum of the [M+3H]3+ ion of the ARP-HNE modified peptide HELQANC*YEEVKDR; monoisotopic m/z_{calc} 735.0139; accuracy Δ (m/z) = 1.3 ppm.

Figure S24. (A) MS/MS and (B) MS spectrum of the MH⁺ ion of the ARP-HNE modified peptide GC*WDSIHVVEVQEK obtained on the MALDI-TOF/TOF instrument; expected monoisotopic MH⁺ 2098.01 Da; mass accuracy $\Delta m = -0.09$ Da (-43 ppm). P, precursor ion; F1 and F2, non-peptide fragment ions related to the ARP tag (see Figure S26).

10 102.05

11

12

13

14 101.11

2102.92

2102.85

2104.29

2097.11

2098.54

2099.98

2101.41 Mass (m/z) 1567.74

101.07 1794.87 1777.84

72.08 1666.81

1549.73

1648.80

1776.86

102.05 1923.91 1906.88 1905.90 1951.90 1934.88 1933.89

1595.73

1694.80

1822.86 1805.83

1577.72

1676.79

1804.85

Е

v

Q

E

к

632.32

503.28

404.21

276.16

147.11

615.30

486.26

387.19

259.13

130.09

614.31 5

485.27 4

386.20 3

258.14 2

1

$\textbf{G-C*} \overbrace{+\textbf{W}-\textbf{D}-\textbf{S}-\textbf{I}-\textbf{H}+\textbf{V}-\textbf{V}-\textbf{E}-\textbf{V}-\textbf{Q}-\textbf{E}-\textbf{K}}^{y_{12}}$

CAPZB_HUMAN

Α

Mascot search result for the MS/MS spectrum depicted above:

#	ь	b++	b*	b* ⁺⁺	b ⁰	b ⁰⁺⁺	Seq.	у	y++	y*	y***	y ⁰	y ⁰⁺⁺	#
1	58.03	29.52					G							14
2	630.27	315.64					С	2040.99	1021.00	2023.96	1012.48	2022.98	1011.99	13
3	816.35	408.68					W	1468.74	734.88	1451.72	726.36	1450.73	725.87	12
4	931.38	466.19			913.37	457.19	D	1282.66	641.84	1265.64	633.32	1264.65	632.83	11
5	1018.41	509.71			1000.40	500.70	S	1167.64	584.32	1150.61	575.81	1149.63	575.32	10
6	1131.50	566.25			1113.49	557.25	Ι	1080.60	540.81	1063.58	532.29	1062.59	531.80	9
7	1268.56	634.78			1250.54	625.78	H	967.52	484.26	950.49	475.75	949.51	475.26	8
8	1367.62	684.32			1349.61	675.31	V	830.46	415.73	813.44	407.22	812.45	406.73	7
9	1466.69	733.85			1448.68	724.84	V	731.39	366.20	714.37	357.69	713.38	357.20	6
10	1595.73	798.37			1577.72	789.37	E	632.32	316.67	615.30	308.15	614.31	307.66	5
11	1694.80	847.91			1676.79	838.90	V	503.28	252.14	486.26	243.63	485.27	243.14	4
12	1822.86	911.93	1805.83	903.42	1804.85	902.93	Q	404.21	202.61	387.19	194.10	386.20	193.61	3
13	1951.90	976.46	1934.88	967.94	1933.89	967.45	E	276.16	138.58	259.13	130.07	258.14	129.58	2
14							K	147.11	74.06	130.09	65.55			1

Figure S25. (A) MS/MS spectrum and (B) Full scan mass spectrum of the $[M+3H]^{3+}$ ion of the ARP-HNE modified peptide GC*WDSIHVVEVQEK; monoisotopic m/z_{calc} 700.0080; accuracy $\Delta(m/z) = 0.5$ ppm.

Figure S26.

(A) Proposed CID fragmentation mechanisms specific for ARP-labeled peptide-HNE adducts

Loss of [ARP+H]⁺ followed by neutral loss of 'dehydrated HNE'

Neutral loss of ARP-HNE via retro Michael addition reaction

Neutral loss of ARP (observed in MALDI-MS/MS spectra, i.e. n=1)

Figure S26. continued

B. Observed ARP-related fragment ions

 $\begin{array}{c} \text{ARP F1} \left(\text{C}_{10}\text{H}_{15}\text{N}_2\text{O}_2\text{S}\right)^{+} \\ \left(\text{m/z} \ 227.09\right) \end{array}$