Supporting Information

Photo- and Thermal Isomerization of Shuttlecock- and Bowl-Equipped Phenylazopyridines

Kazuya Suwa, Joe Otsuki, and Kei Goto
J. Phys. Chem. A

Table of Contents

Figure S1. Representative molecular orbitals of 4-PhNNPy, TbetNNPy, BmtNNPy, and BmtNN(O)Py.
Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of TbetNNPy and BmtNNPy before and after irradiation in $\mathrm{C}_{6} \mathrm{D}_{6}$ and trans-BmtNN(O)Py in CDCl_{3}.

TABLE S1. List of Main Transitions by TD-DFT Calculations for 4-PhNNPy, TbetNNPy, BmtNNPy, and BmtNN(O)Py

4-PhNNPy

TbetNNPy
azo π^{*}

LUMO
MO \#177
azo n

HOMO-4
MO \#172

HOMO-5
MO \#171

BmtNNPy

azo π^{*}

LUMO
MO \#225
azo n

HOMO
MO \#224

HOMO-1
MO \#223

HOMO-2
MO \#222

HOMO-9
MO \#215

HOMO-5
MO \#219

HOMO-10
MO\# 214

HOMO-11
MO \#213

BmtNN(O)Py
azo π^{*}

LUMO
MO \#229
structure

azo n

HOMO-16
MO \#212
azo π

structure

HOMO
MO \#228
Figure S1. Representative molecular orbitals of 4-PhNNPy, TbetNNPy, BmtNNPy, and BmtNN(O)Py.

TbetNNPy
trans
(before irradiation)

trans and cis
(after irradiation)

X : parts per Million : 1H
trans
(before irradiation)

trans and cis
(after irradiation)
$t-\mathrm{Bu}$

X : parts per Million : 1H

BmtNNPy

X: parts per Million: 1H

BmtNN(O)Py

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of TbetNNPy and BmtNNPy before and after irradiation in $\mathrm{C}_{6} \mathrm{D}_{6}$ and trans- $\mathrm{BmtNN}(\mathrm{O}) P y$ in CDCl_{3}. The t, c, and asterisks indicate trans, cis, and spinning side bands, respectively.

TABLE S1：List of Main Transitions by TD－DFT Calculations for 4－PhNNPy，TbetNNPy， BmtNNPy，and BmtNN（O）Py

compound	wavelength	osillator strength	main transition	orbital number	coeffecient
4－PhNNPy	501.4 nm	0	n （azo）\rightarrow 隹（azo）	\＃48（H）$\rightarrow 49$（L）	0.66465
	322.9 nm	0.6202	π（azo）$\rightarrow \boldsymbol{\pi *}$（azo）	\＃47（H－1）$\rightarrow 49$（L）	0.60473
TbetNNPy	504.7 nm	0.0012	n （azo）$+\pi$（Ph）$+\pi$（ $\mathrm{C} \equiv \mathrm{C}$ ）$\rightarrow \pi *$（azo）	\＃176（H）$\rightarrow 177$（L）	0.59973
			n （azo）$+\pi$（Ph）$+\pi$（C $三 \mathrm{C}$ ）$\rightarrow \pi *$（azo）	\＃174（H－2），$\rightarrow 177$（L）	－0．15211
			n （azo）$+\pi$（Ph）$+\pi$（ $\mathrm{C} \equiv \mathrm{C}$ ）$\rightarrow \boldsymbol{\pi}$（azo）	\＃172（H－4），$\rightarrow 177$（L）	－0．19962
	391.5 nm	0.005	$\left.\pi_{(\mathrm{Ph})}+\pi_{(\mathrm{C}} \mathrm{C} \mathrm{C}\right) \rightarrow \pi *$（azo）	\＃175（H－1）$\rightarrow 177$（L）	0.70382
	378.4 nm	0.0228	$\mathrm{n}(\mathrm{azo})+\pi$（Ph）$\left.+\pi_{(\mathrm{C}} \mathrm{C} \mathrm{C}\right) \rightarrow \pi *$（azo）	\＃174（H－2）$\rightarrow 177$（L）	0.65373
	373.2 nm	0.0287	$\pi(\mathrm{Ph})+\pi$（ $\mathrm{C} \equiv \mathrm{C}$ ）$\rightarrow \pi *$（azo）	\＃173（H－3）$\rightarrow 177$（L）	0.68143
	342.2 nm	0.0239	n （azo）$\left.+\pi_{(\mathrm{Ph})}+\pi_{\text {（ }} \mathrm{C} \equiv \mathrm{C}\right) \rightarrow \pi *$（azo）	\＃176（H）$\rightarrow 177$（L）	0.22283
			n （azo）$+\pi$（Ph）$+\pi$（CEC）$\rightarrow \pi *$（azo）	\＃174（H－2）$\rightarrow 177$（L）	－0．12358
				\＃172（H－4）$\rightarrow 177$（L）	0.60102
			π（azo）$+\pi$（C三C）$\rightarrow \pi *$（azo）	\＃171（H－5）$\rightarrow 177$（L）	0.16765
	325.0 nm	0.0042	π（azo）$+\pi$（C $\equiv \mathrm{C}$ ）$\rightarrow \pi *$（azo）	\＃171（H－5）$\rightarrow 177$（L）	0.55424
			π（C三C）\rightarrow（ ${ }^{\text {d＊（azo）}}$	\＃170（H－6）$\rightarrow 177$（L）	0.28281
				\＃169（H－7）$\rightarrow 177$（L）	0.26662
	309.2 nm	0.0744	π（CEC）\rightarrow（ ${ }^{\text {（azo）}}$	\＃170（H－6）$\rightarrow 177$（L）	0.45251
			$\left.\mathrm{n}(\mathrm{azo})+\pi(\mathrm{Ph})+\pi{ }_{(\mathrm{C}} \mathrm{C} \mathrm{C}\right) \rightarrow \pi *(\mathrm{Ph})$	\＃176（H）$\rightarrow 178$（L＋1）	0.33417
			π（azo）$+\pi$（C $=\mathrm{C}$ ）$\rightarrow \pi *$（azo）	\＃171（H－5）$\rightarrow 177$（L）	－0．27127
	302.3 nm	0.1079	$\mathrm{n}(\mathrm{azo})+\pi$（Ph）$+\pi$（ $\mathrm{C} \equiv \mathrm{C}) \rightarrow \pi *(\mathrm{Ph})$	\＃176（H）$\rightarrow 178$（L＋1）	0.52421
				\＃169（H－7）$\rightarrow 177$（L）	－0．27616
			π（azo）$+\pi$（C $=\mathrm{C}$ ）$\rightarrow \pi^{*}(\mathrm{azo})$	\＃171（H－5）$\rightarrow 177$（L）	0.20500
BmtNNPy	501.8 nm	0.0188	$\mathrm{n}(\mathrm{azo})+\pi$（Ph）$\rightarrow \pi *$（azo）	\＃224（H）$\rightarrow 225$（L）	0.56424
	378.4 nm	0.0284	$\mathrm{n}(\mathrm{azo})+\pi$（Ph）$\rightarrow \pi *$（azo）	\＃223（H－1）$\rightarrow 225$（L）	0.61657
	369.3 nm	0.0136	n （azo）$+\pi$（Ph）\rightarrow（ ${ }^{\text {a }}$（azo）	\＃222（H－2）$\rightarrow 225$（L）	0.60728
	362.0 nm	0.0289	π（Ph）\rightarrow 供（azo）	\＃221（H－3）$\rightarrow 225$（L）	0.64796
	358.6 nm	0.0143	π（Ph）$\rightarrow \pi *$（azo）	\＃220（H－4）$\rightarrow 225$（L）	0.61866
	348.8 nm	0.012	n （azo）$+\pi$（Ph）$\rightarrow \pi *$（azo）	\＃219（H－5）$\rightarrow 225$（L）	0.51607
	330.8 nm	0.0852	π（Ph）$\rightarrow \boldsymbol{\pi *}$（azo）	\＃218（H－6）$\rightarrow 225$（L）	0.60079
	327.1 nm	0.03	n （azo）$+\pi$（Ph）$\rightarrow \pi *$（azo）	\＃214（H－10）$\rightarrow 225$（L）	－0．55095
	322.9 nm	0.0015	$\mathrm{n}(\mathrm{azo})+\pi$（Ph）$\rightarrow \pi *$（azo）	\＃215（H－9）$\rightarrow 225$（L）	0.62113
	320.5 nm	0.0001	π（Ph）$\rightarrow \boldsymbol{\pi *}$（azo）	\＃217（H－7）$\rightarrow 225$（L）	0.70497
	318.1 nm	0.0007	$\pi(\mathrm{Ph}) \rightarrow \pi^{*}$（azo）	\＃216（H－8）$\rightarrow 225$（L）	－0．69014
	313.7 nm	0.0048	π（azo）$+\pi$（Ph）$\rightarrow \pi *$（azo）	\＃213（H－11）$\rightarrow 225$（L）	－0．52437
	307.2 nm	0.1048	π（azo）$+\pi$（Ph）$\rightarrow \pi *$（azo）	\＃213（H－11）$\rightarrow 225$（L）	0.59588
	300.0 nm	0.0067	$\pi(\mathrm{azo})+\pi(\mathrm{Ph}) \rightarrow \pi *$（azo）	\＃213（H－11）$\rightarrow 225$（L）	0.57942
BmtNN（O）Py	420.0 nm	0.0818		\＃228（H）$\rightarrow 229$（L）	0.65932
	389.0 nm	0.0174	π（Ph）$\rightarrow \boldsymbol{\pi *}$（azo）	\＃227（H－1）$\rightarrow 229$（L）	0.68741
	373.0 nm	0.0049	$\pi(\mathrm{Ph}) \rightarrow \pi *$（azo）	\＃226（H－2）$\rightarrow 229$（L）	0.57373
	369.0 nm	0.0043	$\pi(\mathrm{Ph}) \rightarrow \pi *$（azo）	\＃225（H－3）$\rightarrow 229$（L）	0.54067
	359.1 nm	0.0023	$\pi(\mathrm{Ph}) \rightarrow \pi *$（azo）	\＃224（H－4）$\rightarrow 229$（L）	0.53306
	349.6 nm	0.023	$\pi(\mathrm{Ph}) \rightarrow \boldsymbol{\pi *}$（azo）	\＃223（H－5）$\rightarrow 229$（L）	0.50632
	336.5 nm	0	$\pi(\mathrm{Ph}) \rightarrow \pi *$（azo）	\＃220（H－8）$\rightarrow 229$（L）	0.51378
	334.1 nm	0.0125	$\pi(\mathrm{Ph}) \rightarrow \pi *$（azo）	\＃221（H－7）$\rightarrow 229$（L）	0.56445
	331.4 nm	0.0002	$\pi(\mathrm{Ph}) \rightarrow \pi *$（azo）	\＃222（H－6）$\rightarrow 229$（L）	0.64969
	327.0 nm	0.0037	n （azo）$\rightarrow \pi *$（azo）	\＃212（H－16）$\rightarrow 229$（L）	0.37419
			$\mathrm{n}+\pi$（azo）$\rightarrow \pi^{*}$（azo）	\＃214（H－14）$\rightarrow 229$（L）	－0．35523
			$\pi_{(\mathrm{Ph})} \rightarrow \boldsymbol{\pi *}$（azo）	\＃221（H－7）$\rightarrow 229$（L）	－0．33692

