Supporting Information for jp-2009-099368.

Infrared Spectra of $CH_2=Zr(H)NC$, CH_3 -ZrNC, and η_2 -Zr(NC)- CH_3 Produced by Reactions of

Laser-Ablated Zr Atoms with Acetonitrile

Han-Gook Cho and Lester Andrews*

Department of Chemistry, University of Incheon, 12-1 Songdo-dong, Yonsu-ku, Incheon, 406-840, South Korea, and Department of Chemistry, University of Virginia, P. O. Box 400319, Charlottesville, Virginia 22904-4319

Abstract

The zirconium methylidene isocyanide, methyl isocyanide, and η_2 -nitrile- π -complex are observed in the matrix IR spectra from reactions of laserablated Zr atoms and acetonitrile isotopomers. The methylidene CH₂=Zr(H)NC has a C₁ agostic structure in line with simple early transitionmetal methylidenes recently produced from reactions with small alkanes and methyl halides, and the extent of agostic distortion is also comparable. Formation of the isocyanide complexes from acetonitrile is interesting but not surprising according to previous studies of metal reactions with nitrile containing compounds, and their stabilities over the cyanide species are reproduced by DFT calculations. Observation of the relatively rare nitrile π -complex and its photo-dissociation suggests that the reaction proceeds in the order of Zr \leftarrow NCCH₃, η_2 -Zr(NC)-CH₃, CH₃-ZrNC, and CH₂=Zr(H)NC. The intermediate transition-state structures are also examined.

*Author to whom correspondence should be addressed. E-mail: lsa@virginia.edu

Approximate	(CH₂=Zr	(H)CN		С	D ₂ =Zr	(D)CN		¹³ CH ₂ =Zr(H) ¹³ CN				
Description	BPW91 ^b	Int ^b	B3LYP ^c	Int ^c	BPW91 ^b	Int ^b	B3LYP ^c	Int ^c	BPW91 ^b	Int ^b	B3LYP ^c	Int ^c	
CH ₂ as. str.	3133.5	3	3185.2	2	2317.8	5	2355.9	5	3122.9	2	3174.5	2	
CH ₂ as. str.	2667.5	2	2825.4	5	1942.3	1	2057.0	2	2661.3	2	2818.8	5	
CN str.	2142.8	59	2234.2	68	2142.8	60	2234.2	2234.2 68		53	2185.3	60	
Zr-H str.	1636.4	311	1655.0	388	1164.3	162	1177.7	202	1636.4	311	1655.0	388	
CH_2 scis.	1315.5	24	1336.0	22	1004.4	17	1031.2	22	1309.0	24	1328.1	21	
C-Zr str.	781.8	73	771.5	88	706.8	54	691.2	60	760.8	72	751.8	88	
CH_2 wag	647.3	105	692.3	146	506.2	98	541.7	106	642.2	96	686.4	142	
C-H ip bend	628.0	85	635.8	63	477.7	46	478.6	57	624.8	89	633.4	60	
CH ₂ twist	466.0	16	446.4	25	391.9	41	371.9	55	464.2	16	446.0	25	
CH₂ rock	431.7	53	396.2	22	341.4	12	322.5	4	431.0	51	392.0	19	
Zr-CN str.	392.3	49	371.0	58	310.6	23	302.3	15	386.4	50	366.3	58	
C-H oop bend	299.5	26	283.9	52	257.4	7	238.3	15	294.8	27	279.6	55	
ZrCN oop bend	163.0	2	160.5	1	157.7	2	160.2	1	159.3	2	156.1	1	
ZrCN ip bend	152.0	16	149.9	40	131.1	11	126.7	25	149.2	15	147.8	38	
CZrC bend	77.6	18	68.6	42	70.0	16	60.4	37	76.1	17	67.5	41	

Table S1: Calculated Fundamental Frequencies of CH₂=Zr(H)CN Isotopomers in the Ground ¹A State^a

^aFrequencies and intensities are in cm⁻¹ and km/mol. ^bFrequencies computed with BPW91/6-311++G(3df,3pd). ^cFrequencies and intensities

computed with B3LYP/6-311++G(3df, 3pd). CH₂=Zr(H)CN has a C₁ structure.

Approximate		CH ₃ -	ZrCN			CD ₃ -Z	IrCN	¹³ CH ₃ -ZrCN				
Description	BPW91 ^b	Int ^b	B3LYP ^c	Int ^c	BPW91 ^b	Int ^b	B3LYP ^c	Int ^c	BPW91 ^b	Int ^b	B3LYP ^c	Int ^c
A' CH_3 as. str.	3049.7	1	3090.7	2	2252.3	1	2282.5	1	3039.5	1	3080.4	1
A" CH_3 as. str.	2976.9	3	3023.7	5	2198.9	1	2233.5	1	2966.7	4	3013.3	5
A' CH₃ s. str.	2905.2	4	2960.4 4 2088.8		2088.8	2	2124.0	1	2901.9	4	2957.0	4
A' CN str.	2107.5	6	2212.0	12.0 14 2107.6		6	2212.0	14	2061.7	5	2163.8	11
A" CH_3 bend	1362.9	7	1415.0 5 989.4 4		4	1027.1	4	1359.8	7	1411.8	5	
A' CH_3 bend	1352.5	1	1404.6	1	982.1	1	1019.8	1	1349.4	1	1401.4	1
A' CH ₃ deform	1096.6	9	1149.2	9	869.8	21	906.5	21	1086.8	8	1139.4	7
A' C-Zr str.	513.3	40	516.2	44	452.0	32	454.4	38	501.9	38	505.1	41
A' Zr-CN str.	404.7	53	413.5	71	391.8	47	393.9 66		399.0	54	407.7	71
A" CH ₃ rock	330.0	3	360.6	5	247.1	2	269.4	3	328.3	3	358.8	5
A' CH₃ rock	349.7	1	358.2	7	291.4	1	300.8 1		345.1	1	353.3	7
A' ZrCN ip bend	212.1	1	213.3	1	202.4	1	205.6	2	206.3	1	207.3	1
A" ZrCN oop bend	207.0	0	200.2	0	204.9	0	198.7	0	201.2	0	194.6	0
A" CH ₃ tort	113.0	0	110.3	0	82.1	0	80.0	0	113.0	0	110.2	0
A' CZrC bend	75.2	3	79.2	4	68.9	3	72.5	4	74.2	3	78.1	4

Table S2: Calculated Fundamental Frequencies of CH₃-ZrCN Isotopomers in the Ground ³A" State^a

^aFrequencies and intensities are in cm⁻¹ and km/mol. ^bFrequencies computed with BPW91/6-311++G(3df,3pd). ^cFrequencies and intensities

computed with B3LYP/6-311++G(3df, 3pd). CH₃-ZrCN has a C_s structure, and the symmetry notations are based on the C_s structure.

Approximate		Zr←l	NCCH3			Zr←N	ICCD ₃		Zr←N ¹³ C ¹³ CH ₃					
Description	BPW91 ^b	Int ^b	B3LYP [°]	Int ^c	BPW91 ^b	Int ^b	B3LYP ^c	Int ^c	BPW91 ^b	Int ^b	B3LYP ^c	Int ^c		
E CH ₃ as. str.	3007.5	5	3073.7	3	2225.6	3	2276.4	2	2996.8	5	3062.6	3		
$E CH_3$ as. str.	2989.6	7	3073.7	3	2209.1	6	2276.4	2	2980.2	7	3062.6	3		
$A_1 CH_3$ as. str.	2923.3	137	3014.2	57	2101.3	58	2164.0	0	2919.2	136	3011.2	57		
A ₁ CN str.	1947.4	583	2137.2	580	1945.2	604	2134.3	618	1896.4	584	2082.3	569		
$E CH_3$ as. bend	1417.7	17	1463.1	9	1019.5	7	1051.5	4	1415.9	18	1461.3	9		
$E CH_3$ as. bend	1410.2	7	1463.1	9	1013.8	3	1051.5	4	1408.6	7	1461.3	9		
$A_1 CH_3$ deform	1353.3	41	1408.4	29	1080.7	1	1124.0	0	1343.4	50	1397.9	33		
$E CH_3$ rock	994.1	2	1031.7	2	785.2	1	820.3	1	983.8	2	1020.4	2		
$E CH_3$ rock	970.2	9	1031.7	2	751.6	82	820.3	1	960.1	12	1020.4	2		
A ₁ C-C str.	909.3	151	929.8	87	840.0	89	845.6	97	890.9	142	910.1	81		
E CCN bend	365.6	0	316.1	1	354.8	0	305.9	2	359.8	0	310.6	1		
E CCN bend	247.8	5	316.1	1	245.4	6	305.9	2	249.9	4	310.6	1		
A ₁ Zr-N str.	217.4	67	293.7	48	215.6	62	285.6	44	212.3	71	288.8	46		
E ZrNC bend	68.4	3	112.6	2	63.2	2	104.9	1	69.3	3	110.8	2		
E ZrNC bend	48.8	50	112.6	2	45.4	42	104.9	1	47.0	50	110.8	2		

Table S3: Calculated Fundamental Frequencies of Zr←NCCH₃ Isotopomers in the Ground ³A₁ State^a

^aFrequencies and intensities are in cm⁻¹ and km/mol. ^bFrequencies computed with BPW91/6-311++G(3df,3pd). ^cFrequencies and intensities computed with B3LYP/6-311++G(3df, 3pd). Zr \leftarrow NCCH₃ has a C_{3v} structure with B3LYP/6-311++G(3df, 3pd), whereas it has a C_s structure close to the C_{3v} structure with BPW91/6-311++G(3df,3pd). The symmetry notations are based on the C_{3v} structure.

Approximate		HC≡C-			H ¹³ C≡ ¹³ C-NH ₂										
Description	Obs ^b	BPW91 ^c	Int ^d	B3LYP ^d	Int ^d	Obs ^b	BPW91 ^c	Int ^d	B3LYP ^d	Int ^d	Obs ^b	BPW91 ^c	Int ^d	B3LYP ^d	Int ^d
A" NH ₂ as. str.	3460.2	3533.9	32	3624.2	42	2633.1	2609.1	16	2677.2	20	3460.0	3533.9	32	3624.2	42
A' NH ₂ s. str.		3454.7	4	3540.0	14		2493.7	12	2555.7	19		3454.4	7	3539.9	15
A' C-H str.	3377.7	3422.5	90	3480.5	98	2669.7	2658.2	125	2710.1	138	3366.4	3405.1	82	3462.3	89
A' CCN as. str.	2124.3	2181.6	129	2237.5	139	covered	2045.5	74	2091.9	76	covered	2104.4	123	2158.3	133
A' NH ₂ scis.		1590.6	24	1636.3	26		1203.8	25	1237.5	28		1590.4	23	1636.0	26
A" NH ₂ rock		1161.2	0	1191.1	0		908.4	1	934.6	1		1156.7	0	1186.4	0
A' CCN s. str.		1068.9	15	1086.8	19		982.9	11	1001.0	13		1052.9	14	1070.6	18
A" C-H bend		650.3	40	699.3	41		504.5	19	547.0	20		645.6	40	693.8	41
A' NH ₂ wag	554.3	585.5	172	568.2	129	487.8	494.5	50	499.9	36	552.3	583.9	177	565.3	136
A' C-H bend	457.7	466.8	94	482.1	178		382.9	71	352.2	90	451.7	460.9	93	480.0	170
A' CCN bend		362.8	25	429.1	8		299.9	39	382.0	47		354.0	21	416.2	7
A" CCN bend		354.6	9	369.3	8		318.0	9	329.0	9		344.3	8	358.8	7

Table S4: Observed and Calculated Fundamental Frequencies of HC≡C-NH₂ Isotopomers in the Ground ¹A' State^a

^aFrequencies and intensities are in cm⁻¹ and km/mol. ^bObserved in an argon matrix. ^cFrequencies computed with BPW91/6-311++G(3df,3pd).

^dFrequencies and intensities computed with B3LYP/6-311++G(3df, 3pd). HC=C-NH₂ has a C_s structure, and the symmetry notations are based on the C_s structure.

TOC

Laser-ablated Zr atoms react with acetonitrile, and the products are identified from isotopic shifts and correlation with the DFT calculated frequencies. $CH_2=Zr(H)NC$, CH_3 -ZrNC, and η_2 -Zr-NC-CH₃ are identified in the product spectra. The methylidene complex exhibits an agostic structure.