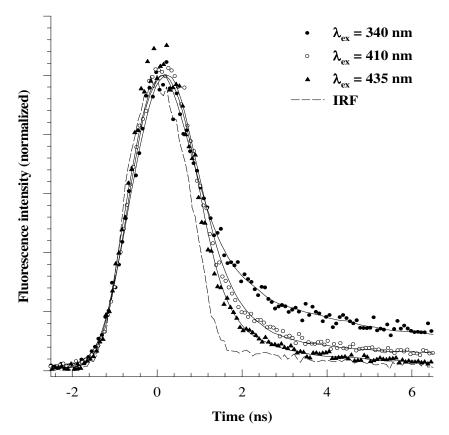
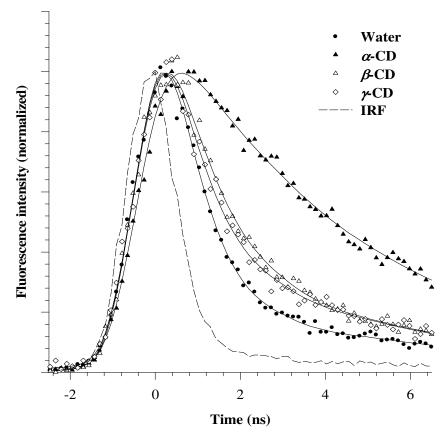

SUPPORTING INFORMATION

Steady-State and Time-Resolved Spectroscopy of 2,2'-Bipyridine-3,3'-diol in Solvents and Cyclodextrins: Polarity and Nanoconfinement Effects on Tautomerization


Osama K. Abou-Zied^{*}

Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Muscat, Sultanate of Oman


^{*} Tel.: (+968) 2414-1468; fax: (+968) 2414-1469. E-mail: <u>abouzied@squ.edu.om.</u>

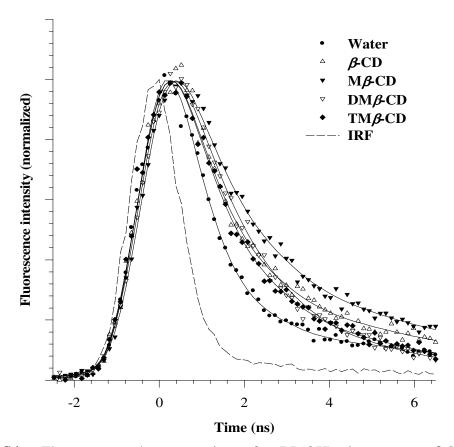

Figure S1. Fluorescence decay transients for $BP(OH)_2$ in different solvents as indicated in the figure. Concentration of $BP(OH)_2$ was 0.01 mM. Excitation was at 340 nm. Instrument response function (IRF) is shown by a dashed line. Solid lines represent the best fit to a single exponential function in all solvents except in water where the function was a double exponential. Lifetimes and their contributions are shown in Table 1 in the paper.

Figure S2. Fluorescence decay transients for $BP(OH)_2$ in water at different excitation wavelengths as indicated in the figure. Concentration of $BP(OH)_2$ was 0.01 mM. IRF is shown by a dashed line. Solid lines represent the best fit to a double exponential function for excitation at 340 and 410 nm, and to a single exponential function for excitation at 435 nm. Lifetimes and their contributions are shown in Table 1 in the paper.

Figure S3. Fluorescence decay transients for BP(OH)₂ in aqueous CDs as indicated in the figure. Concentration of BP(OH)₂ was 0.01 mM. Concentrations of γ - and β -CDs were 10 mM, and that of α -CD was 80 mM. Excitation was at 340 nm. IRF is shown by a dashed line. Solid lines represent the best fit to a double exponential function for BP(OH)₂ in γ -CD and β -CD, whereas a single exponential function produced the best fit for BP(OH)₂ in α -CD. The transient for BP(OH)₂ in water is included for comparison. Lifetimes and their contributions are shown in Table 2 in the paper.

Figure S4. Fluorescence decay transients for BP(OH)₂ in aqueous β -CD and its derivatives as indicated in the figure. Concentration of BP(OH)₂ was 0.01 mM. Concentrations of all CDs were 10 mM. Excitation was at 340 nm. IRF is shown by a dashed line. Solid lines represent the best fit to a double exponential function for BP(OH)₂ in all CDs, except in 2,6-DM β -CD where a single exponential function produced the best fit. The transient for BP(OH)₂ in water is included for comparison. Lifetimes and their contributions are shown in Table 2 in the paper.