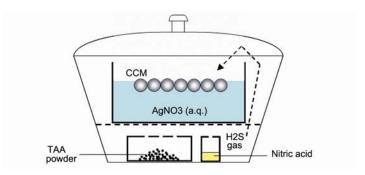
Nanosphere Lithography at the Gas/Liquid Interface: A General Approach towards Free-Standing High-Quality Nanonets

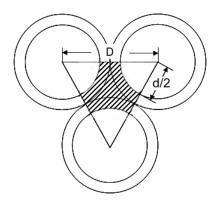
Cheng Li, Guosong Hong, Limin Qi*


Beijing National Laboratory for Molecular Science (BNLMS), State Key

Laboratory for Structural Chemistry of Unstable and Stable Species, College of

Chemistry, Peking University, Beijing 100871, People's Republic of China.

E-mail: liminqi@pku.edu.cn


Supporting Information

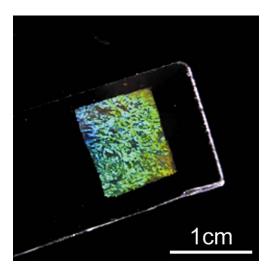

Scheme S1. Schematic illustration of the experimental setup for the preparation of free-standing Ag₂S nanonets through gas/liquid reactions masked by floating CCMs.

Table S1. Summary of the experimental parameters.

Product	Ag_2S	PbS	Ag	CaCO ₃
Colloidal spheres	PSt	PSt	P(St-MMA-AA)	PSt
Reactant subphase	AgNO ₃ (0.010 M)	Pb(NO ₃) ₂ (0.20 M)	AgNO ₃ (0.010 M)	CaCl ₂ (0.020 M), poly (acrylic acid) (M _W = 5100, 80 mg/L)
Source for reactive gas	TAA (1.0 g), nitric acid (7 M, 1.5 mL)	TAA (1.0g), acetic acid (7 M, 1.5 mL)	Hydrazine (80%, 5.0 mL)	$(NH_4)_2CO_3$ powder $(2.0 g)$

Scheme S2. The volume fraction of Ag₂S in the nanonet thin films (f_{Ag_2S}) is estimated by dividing the shadowed area by the triangular area, which gives $f_{Ag_2S} = 1 - \frac{\sqrt{3}}{6} \pi \frac{d^2}{D^2}$, where D is the sphere diameter and d is the hole diameter.

Figure S1. Optical photograph of a piece of Ag₂S nanonet suspended on a glass substrate showing a bright green color.

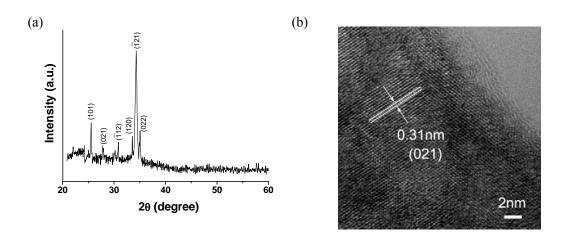
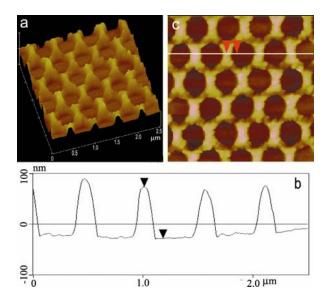



Figure S2. XRD pattern (a) and HRTEM image (b) of Ag_2S nanonets. The diffraction peaks are indexed to the acanthite structure of α - Ag_2S (JCPDS No. 89-3840).

Figure S3. AFM image (a) and section analysis (b, c) of Ag₂S nanonets. The AFM images were acquired using a Nanoscope IV multimode atomic force microscope (Digital Instruments, Santa Barbara, USA) in tapping mode under ambient conditions.