1	
2 3	
3 4	
5	On-Line Supplementary Material
6	
7	
8	Discourte billing of One on Tax Electron Orabit and the Data of the Orabit
9	Bioavailability of Green Tea Flavan-3-ols and the Role of the Colon
10	
11	
12	
13	Suri Roowi ^{\$} , Angelique Stalmach ^{\$} , William Mullen ^{\$} , Michael E.J. Lean [≠] , Christine
14	A. EDWARDS [#] AND ALAN CROZIER ^{\$*}
15	
16	[§] Plant Products and Human Nutrition Group, Graham Kerr Building, Division of Ecology and
17	Evolutionary Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow
18	G12 8QQ, UK; [#] Section of Human Nutrition, University of Glasgow, Faculty of Medicine, Queen
19	Elizabeth Building, Royal Infirmary, Glasgow G31 2ER, UK; *Section of Human Nutrition,
20	University of Glasgow Division of Developmental Medicine, Yorkhill Hospital, Glasgow G3 8SJ,
21	UK.

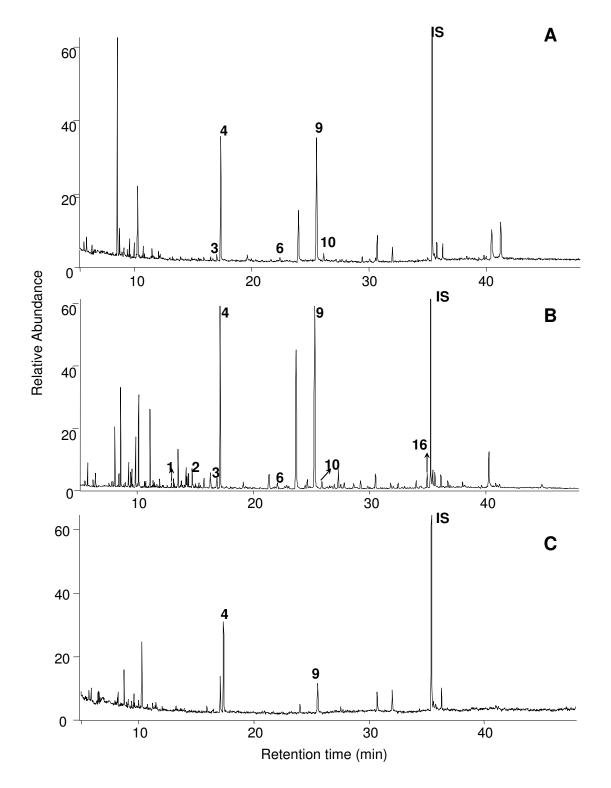
1 As outlined in the main text, GC-MS of trimethylsilyl ethers was used to identify and quantify 2 phenolic acids and related compounds in green tea, urine and fecal slurries. Identifications were 3 based on co-chromatography with reference compounds, coupled with mass spectrometric 4 fragmentation patterns and, when authentic standards were not available, by reference to 5 published data and the NIST 98 MS library. A summary of the 16 compounds identified in this 6 manner is presented in Table S1. It should be noted that 2- and 3-hydroxybenzoic acid, which 7 were not detected in any of the samples analyzed, were separated by GC both from each other 8 and from their 4-hydroxy isomer which, as noted in the main text, was detected in green tea and 9 urine. These separations are in keeping with the GC analyses of Jenner et al. (2) who also 10 reported the GC separation of the trimethylsilylated ether of 3- and 4-hydroxyphenylacetic acid. 11 With regard to the identification of 3-(3-hydroxyphenyl)-3-hydroxypropionic acid, although 12 standards of other 3-(hydroxyphenyl)-hydroxypropionic acid isomers were not available, the GC 13 separation of the hydroxybenzoic acid isomers, and the hydroxyphenylacetic acids suggests that 14 these compounds would also be resolved.

Typical GC-MS traces of urine collected 8-24 h after the ingestion of 300 mL of either green tea or water by a healthy subject and 300 mL of green tea a subject with an ileostomy are illustrated in **Figure S1**.

18

19 LITERATURE CITED

- 20 (1) Olthof, M. R.; Hollman, P. C. J.; Bujisman, M. N. C. P.; van Amalsvoort, J. M. M.; Katan,
 21 M. Chlorogenic acid, quercetin-3-rutinoside and black tea: phenols are extensively
 22 metabolized in humans. *J. Nutr.* 2003, *133*, 1806-1814
- Jenner, A. M.; Rafter, J.; Halliwell, B. Human fecal water content of phenolics, the extent
 of colonic exposure to aromatic compounds. *Free Rad. Biol. Med.* 2006, *40*, 1035-1046.
- Zadernowski, R., Naczk, M., Nesterwicz, J. Phenolic acid profiles in some small berries.
 J. Agric. Food. Chem. 2005, *53*, 2118-2124.
- 27 (4) Gonthier, M.-P.; Cheynier, V.; Donovan, J. L.; Manach, C.; Morand, C.; Mila, I.; Lapierre,
- 28 C.; Rémésy, C.; Scalbert, A. Microbial aromatic acid metabolites formed in the gut


2

- 1 account for a major fraction of polyphenols excreted in urine of rats fed red wine
- 2 polyphenols. J. Nutr. 2003, 133, 461-467.

3

GC Peak	Phenolic acids and catabolites	t _R (min)	Base ion (<i>m/z</i>)	Qualifier ion (<i>m/z</i>)	Identification
1	Pyrocatechol	12.62	254	239; 73	Standard, NIST
2	Pyrogallol	14.98	239	342; 73	Standard, NIST
3	4-Hydroxybenzoic acid	16.86	267	223; 193	Standard, NIST, Olthof et al. (1)
4	4-Hydroxyphenylacetic acid	17.02	296	281; 252	Standard, NIST, Olthof et al. (1)
5	3-(3-Hydroxyphenyl)propionic acid	21.88	310	205; 192	Standard
6	3-Methoxy-4-hydroxyphenylacetic acid	22.07	326	209; 179	Standard, Olthof et al (1) Jenner et al. (2)
7	3-Hydroxycinnamic acid	23.00	308	293; 147	Standard, Zadernowski <i>et al</i> . (3)
8	3,4-Dihydroxybenzoic acid	24.52	193	165; 223	Standard, NIST, Olthof et al. (1)
1	Hippuric acid	25.25	105	206; 236	Standard, NIST, Olthof et al. (1)
10	3-(3-Hydroxyphenyl)-3-hydroxypropionic acid	25.88	267	207; 147	NIST
11	4-Coumaric acid	28.70	308	293; 219	Standard, NIST
12	Gallic acid	29.96	458	281; 443	Standard, NIST
13	Ferulic acid	33.18	338	249; 323	Standard, NIST
14	5-(3,4-Dihydroxyphenyl)-γ-valeric acid	33.90	267	426; 205	NIST
15	(–)-5-(3',4'-Dihydroxyphenyl)-γ-valerolactone	34.44	352	267; 73	Gonthier et al. (4)
16	(–)-5-(3',4',5'-Trihydroxyphenyl)-γ-valerolactone	34.95	352	268; 73	NIST

Table S1. Retention Time and Characteristic Ions of Phenolic Acids and Catabolites in Green Tea, Urine and Fecal Slurries

Figure S1. GC-MS traces of human urine collected 8-24 h after supplementation. (**A**) a healthy subject after drinking water, (**B**) a healthy subject after drinking green tea and, (**C**) an ileostomy volunteer after drinking green tea. For peak numbers, see **Table S1**. IS - internal standard